1
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2025; 9:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
2
|
Akinwande KS, Akinduti PA, Arinola O. Rotavirus-specific-IgA and cytokines responses in Ascaris lumbricoides-infected preschool-aged Nigerian children following rotavirus vaccination. J Immunoassay Immunochem 2025; 46:75-88. [PMID: 39533525 DOI: 10.1080/15321819.2024.2426147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rotavirus diarrhea and Ascaris lumbricoides (Al) infection increase intestinal morbidity and were associated with altered immune responses that compromise the vaccine efficacy in children. The serum level of rotavirus specific IgA (RV-IgA) and cytokine profiles in A. lumbricoides (AI) infected preschool-aged Nigerian children were estimated following oral rotavirus vaccination. Nineteen of the 149 preschool-aged children (aged 6 to 60 months) with Ascaris lumbricoides infection paired with age and sex-matched helminth - free children were administered with oral rotavirus vaccine after intestinal helminth screening using stool sample concentration technique. Separated sera from 3 mL venous blood samples were collected and estimated for cytokines (IFN-γ, TNF-α, IL-4, IL-8 IL-6, IL-10) and RV-IgA before and three weeks after rotavirus vaccination using Enzyme Linked Immunosorbent Assay. IFN-γ, IL-8, IL-4 were significantly lower at post-vaccination in Al-infected children compared with pre-vaccination. Serum IL-10 was significantly higher at post-vaccination in both Al-infected children and helminth-free controls, compared with pre-vaccination levels (p < 0.05). Pre-vaccination IL-8 and IL-6 were significantly higher in Ascaris lumbricoides-infected children, while the post-vaccination IL-8 was significantly higher in Ascaris lumbricoides-infected compared with control. At post-vaccination period, RV-IgA level was lower in Al-infected children and significantly higher in helminth - free control group compared to pre-vaccination RV-IgA level. Ascaris lumbricoides infection contributed to down-regulation of some cytokines and antibody responses to oral rotavirus vaccine.
Collapse
Affiliation(s)
- Kazeem Sanjo Akinwande
- Department of Chemical Pathology and Immunology, Federal Medical Centre, Abeokuta, Nigeria
- Department of Medical Laboratory Science, Chrisland University, Abeokuta, Nigeria
| | | | | |
Collapse
|
3
|
Samarth N, Gulhane P, Singh S. Investigation through naphtho[2,3-a]pyrene on mutated EGFR mediated autophagy in NSCLC: Cellular model system unleashing therapeutic potential. IUBMB Life 2024; 76:1325-1341. [PMID: 39275879 DOI: 10.1002/iub.2914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 09/16/2024]
Abstract
Mutant epidermal growth factor receptor (EGFR) signaling has emerged as a key cause of carcinogenesis and therapy resistance in non-small cell lung cancer (NSCLC), which continues to pose a serious threat to world health. In this study, we aimed to elucidate the complex molecular pathways of EGFR-mediated autophagy signaling in NSCLC. We identified naphtho[2,3-a]pyrene, an anthraquinolone derivative, to be a promising investigational drug that targets EGFR-mediated autophagy using a cellular model system. By utilizing systems biology, we developed a computational model that explained the signaling of EGFR-mediated autophagy and identified critical crosstalk sites that could be inhibited therapeutically. As a lead compound, naphtho[2,3-a]pyrene was confirmed by molecular docking experiments. It was found to be cytotoxic to NSCLC cells, impact migration, induce apoptosis, and arrest cell cycle, both on its own and when combined with standard drugs. The anticancer efficacy of naphtho[2,3-a]pyrene was validated in vivo on CDX nude mice. It showed synergistic activity against NSCLC when coupled with gefitinib, chloroquine, and radiation. Altogether, our study highlights naphtho[2,3-a]pyrene's therapeutic promise in NSCLC by focusing on EGFR-mediated autophagy and providing a new strategy to fight drug resistance and tumor survival.
Collapse
Affiliation(s)
- Nikhil Samarth
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| | - Pooja Gulhane
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| |
Collapse
|
4
|
Khilwani R, Singh S. Traversing through the Mechanistic Event Analysis in IL-6 and IL-17 Signaling for a New Therapeutic Paradigm in NSCLC. Int J Mol Sci 2024; 25:1216. [PMID: 38279220 PMCID: PMC10816370 DOI: 10.3390/ijms25021216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
IL-6 and IL-17 are paradoxical cytokines that progress inflammatory states in chronic diseases, including cancer. In lung cancer, their role has been elucidated to favor cancer development by modulating signaling mechanisms critical to cellular growth. The intrinsic ability of these cytokines to influence macroautophagy is yet another reason to facilitate lung cancer. Here, we employed a systems immunology approach to discover the mechanistic role of these cytokines in cancer development. In a biological system, at later stages, the activation of NFkB stimulates immunosuppressive phenotypes to achieve tolerating effects in a transformed cell. We found that the upregulation of cytokines signaled M2 macrophages to modulate tumor responses through the activation of autophagic intermediates and inflammasome mediators. This caused immune perturbations in the tumor microenvironment, which were associated with cancer inflammation. To address these inflammatory states, we performed triggered event analysis to examine whether overexpressing immune effectors or downregulating immune suppressors may have an effect on cancer reversal. Interestingly, the inhibition of immune regulators opposed the model outcome to an increased immune response. Therefore, IL6-IL17-mediated regulation of lung cancer may address tumor malignancy and potentiate the development of newer therapeutics for NSCLC.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India;
| |
Collapse
|
5
|
Najar M, Rahmani S, Faour WH, Alsabri SG, Lombard CA, Fayyad-Kazan H, Sokal EM, Merimi M, Fahmi H. Umbilical Cord Mesenchymal Stromal/Stem Cells and Their Interplay with Th-17 Cell Response Pathway. Cells 2024; 13:169. [PMID: 38247860 PMCID: PMC10814115 DOI: 10.3390/cells13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
As a form of immunomodulatory therapeutics, mesenchymal stromal/stem cells (MSCs) from umbilical cord (UC) tissue were assessed for their dynamic interplay with the Th-17 immune response pathway. UC-MSCs were able to modulate lymphocyte response by promoting a Th-17-like profile. Such modulation depended on the cell ratio of the cocultures as well as the presence of an inflammatory setting underlying their plasticity. UC-MSCs significantly increased the expression of IL-17A and RORγt but differentially modulated T cell expression of IL-23R. In parallel, the secretion profile of the fifteen factors (IL1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, INF-γ, sCD40, and TNF-α) involved in the Th-17 immune response pathway was substantially altered during these cocultures. The modulation of these factors demonstrates the capacity of UC-MSCs to sense and actively respond to tissue challenges. Protein network and functional enrichment analysis indicated that several biological processes, molecular functions, and cellular components linked to distinct Th-17 signaling interactions are involved in several trophic, inflammatory, and immune network responses. These immunological changes and interactions with the Th-17 pathway are likely critical to tissue healing and may help to identify molecular targets that will improve therapeutic strategies involving UC-MSCs.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
- Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Saida Rahmani
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Wissam H. Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos 5053, Lebanon
| | - Sami G. Alsabri
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Catherine A. Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, P.O. Box 6573/14, Beirut 1103, Lebanon
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
6
|
Khandibharad S, Singh S. Immuno-metabolic signaling in leishmaniasis: insights gained from mathematical modeling. BIOINFORMATICS ADVANCES 2023; 3:vbad125. [PMID: 37799190 PMCID: PMC10548086 DOI: 10.1093/bioadv/vbad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Motivation Leishmaniasis is a global concern especially in underdeveloped and developing subtropical and tropical regions. The extent of infectivity in host is majorly dependent on functional polarization of macrophages. Classically activated M1 macrophage can eliminate parasite through production of iNOS and alternatively activated M2 macrophages can promote parasite growth through by providing shelter and nutrients to parasite. The biological processes involved in immune signaling and metabolism of host and parasite might be responsible for deciding fate of parasite. Results Using systems biology approach, we constructed two mathematical models and inter-regulatory immune-metabolic networks of M1 and M2 state, through which we identified crucial components that are associated with these phenotypes. We also demonstrated how parasite may modulate M1 phenotype for its growth and proliferation and transition to M2 state. Through our previous findings as well as from recent findings we could identify SHP-1 as a key component in regulating the immune-metabolic characterization of M2 macrophage. By targeting SHP-1 at cellular level, it might be possible to modulate immuno-metabolic mechanism and thereby control parasite survival. Availability and implementation Mathematical modeling is implemented as a workflow and the models are deposited in BioModel database. FactoMineR is available at: https://github.com/cran/FactoMineR/tree/master.
Collapse
Affiliation(s)
- Shweta Khandibharad
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, SPPU Campus, Pune 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, SPPU Campus, Pune 411007, India
| |
Collapse
|