1
|
Ribot C, Soler C, Chartier A, Al Hayek S, Naït-Saïdi R, Barbezier N, Coux O, Simonelig M. Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genet 2022; 18:e1010015. [PMID: 35025870 PMCID: PMC8791501 DOI: 10.1371/journal.pgen.1010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/26/2022] [Accepted: 01/01/2022] [Indexed: 12/05/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD. Oculopharyngeal muscular dystrophy (OPMD) is a genetic disease characterized by progressive weakness of specific muscles, leading to swallowing difficulties (dysphagia), eyelid drooping (ptosis) and walking difficulties at later stages. No drug treatments are currently available. OPMD is due to mutations in a nuclear protein called poly(A) binding protein nuclear 1 (PABPN1) that is involved in processing of different classes of RNAs in the nucleus. We have used an animal model of OPMD that we have developed in the fly Drosophila to investigate the role in OPMD of the ubiquitin-proteasome system, a pathway specialized in protein degradation. We report an increased activity of the ubiquitin-proteasome system that is associated with degradation of muscular proteins in the OPMD Drosophila model. We propose that higher activity of the ubiquitin-proteasome system leads to muscle atrophy in OPMD. Importantly, oral treatment of this OPMD animal model with an inhibitor of proteasome activity reduces muscle defects. A number of proteasome inhibitors are approved drugs used in clinic against cancers, therefore our results provide a proof-of-concept that inhibitors of proteasome might be of interest in future treatments of OPMD.
Collapse
Affiliation(s)
- Cécile Ribot
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Cédric Soler
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Sandy Al Hayek
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRS UMR6293, Clermont-Ferrand, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Nicolas Barbezier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Olivier Coux
- Ubiquitin-proteasome system and cell cycle control, Montpellier Cell Biology Research Center, UMR5237 CNRS-Univ Montpellier, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
2
|
The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells. Stem Cells Int 2019; 2019:1608787. [PMID: 31191665 PMCID: PMC6525796 DOI: 10.1155/2019/1608787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks.
Collapse
|
3
|
Abstract
Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.
Collapse
Affiliation(s)
- Michael Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Bernice Lo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Carrie L Lucas
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
4
|
Popa OM, Diculescu VC. Direct electrochemical oxidation of Abelson tyrosine-protein kinase 1 and evaluation of its interaction with synthetic substrate, ATP and inhibitors. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Chiba T, Hosono H, Nakagawa K, Asaka M, Takeda H, Matsuda A, Ichikawa S. Total Synthesis of Syringolin A and Improvement of Its Biological Activity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Chiba T, Hosono H, Nakagawa K, Asaka M, Takeda H, Matsuda A, Ichikawa S. Total synthesis of syringolin A and improvement of its biological activity. Angew Chem Int Ed Engl 2014; 53:4836-9. [PMID: 24668894 DOI: 10.1002/anie.201402428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Indexed: 11/11/2022]
Abstract
The development process for syringolin A analogues having improved proteasome inhibitory and antitumor activity is described. The strategy was to first establish a convergent synthesis of syringolin A using a rare intramolecular Ugi three-component reaction in the last stage of the synthesis, so as to gain access toa set of structure-based analogues. The inhibitory activity of chymotrypsin-like activity of 20S proteasome was largely improved by targeting the S3 subsite of the β5 subunit. Cytotoxic activity was also improved by installing the membrane-permeable substituent. These biological properties are comparable to those of bortezomib, a clinically used first-line proteasome inhibitor.
Collapse
Affiliation(s)
- Takuya Chiba
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)
| | | | | | | | | | | | | |
Collapse
|
7
|
Simon DF, Domingos RF, Hauser C, Hutchins CM, Zerges W, Wilkinson KJ. Transcriptome sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl Environ Microbiol 2013; 79:4774-85. [PMID: 23728819 PMCID: PMC3754720 DOI: 10.1128/aem.00998-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/29/2013] [Indexed: 01/04/2023] Open
Abstract
The widespread use of nanoparticles (NPs) raises concern over their potential toxicological effects in humans and ecosystems. Here we used transcriptome sequencing (RNA-seq) to evaluate the effects of exposure to four different metal-based NPs, nano-Ag (nAg), nano-TiO2 (nTiO2), nano-ZnO (nZnO), and CdTe/CdS quantum dots (QDs), in the eukaryotic green alga Chlamydomonas reinhardtii. The transcriptome was characterized before and after exposure to each NP type. Specific toxicological effects were inferred from the functions of genes whose transcripts either increased or decreased. Data analysis resulted in important differences and also similarities among the NPs. Elevated levels of transcripts of several marker genes for stress were observed, suggesting that only nZnO caused nonspecific global stress to the cells under environmentally relevant conditions. Genes with photosynthesis-related functions were decreased drastically during exposure to nTiO2 and slightly during exposures to the other NP types. This pattern suggests either toxicological effects in the chloroplast or effects that mimic a transition from low to high light. nAg exposure dramatically elevated the levels of transcripts encoding known or predicted components of the cell wall and the flagella, suggesting that it damages structures exposed to the external milieu. Exposures to nTiO2, nZnO, and QDs elevated the levels of transcripts encoding subunits of the proteasome, suggesting proteasome inhibition, a phenomenon believed to underlie the development and progression of several major diseases, including Alzheimer's disease, and used in chemotherapy against multiple myeloma.
Collapse
Affiliation(s)
- Dana F. Simon
- Département de Chimie, Université de Montréal, Succursale Centre-Ville, Montréal, Quebec, Canada
| | - Rute F. Domingos
- Centro de Química Estrutural, Instituto Superior Técnico/Universidade Técnica de Lisboa, Lisbon, Portugal
| | - Charles Hauser
- Bioinformatics Program, St. Edward's University, Austin, Texas, USA
| | - Colin M. Hutchins
- Département de Chimie, Université de Montréal, Succursale Centre-Ville, Montréal, Quebec, Canada
| | - William Zerges
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Kevin J. Wilkinson
- Département de Chimie, Université de Montréal, Succursale Centre-Ville, Montréal, Quebec, Canada
| |
Collapse
|
8
|
Desvergne A, Genin E, Maréchal X, Gallastegui N, Dufau L, Richy N, Groll M, Vidal J, Reboud-Ravaux M. Dimerized Linear Mimics of a Natural Cyclopeptide (TMC-95A) Are Potent Noncovalent Inhibitors of the Eukaryotic 20S Proteasome. J Med Chem 2013; 56:3367-78. [DOI: 10.1021/jm4002007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Audrey Desvergne
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Emilie Genin
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Xavier Maréchal
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Nerea Gallastegui
- Center for Integrated Protein
Science, Department Chemie Lehrstuhl für Biochemie, Technische Universität München, Lichetenbergstrasse
4, 85747 Garching, Germany
| | - Laure Dufau
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| | - Nicolas Richy
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michael Groll
- Center for Integrated Protein
Science, Department Chemie Lehrstuhl für Biochemie, Technische Universität München, Lichetenbergstrasse
4, 85747 Garching, Germany
| | - Joëlle Vidal
- Chimie et Photonique Moléculaires, Université de Rennes 1, CNRS-UMR 6510, Bâtiment
10A, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michèle Reboud-Ravaux
- Enzymologie
Moléculaire
et Fonctionnelle, UR4, University Paris 6, Pierre et Marie Curie, UPMC-Sorbonne Universités, Case 256, 7 Quai
Saint Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
9
|
Exposing the subunit diversity within protein complexes: a mass spectrometry approach. Methods 2013; 59:270-7. [PMID: 23296018 DOI: 10.1016/j.ymeth.2012.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 11/22/2022] Open
Abstract
Identifying the list of subunits that make up protein complexes constitutes an important step towards understanding their biological functions. However, such knowledge alone does not reveal the full complexity of protein assemblies, as each subunit can take on multiple forms. Proteins can be post-translationally modified or cleaved, multiple products of alternative splicing can exist, and a single subunit may be encoded by more than one gene. Thus, for a complete description of a protein complex, it is necessary to expose the diversity of its subunits. Adding this layer of information is an important step towards understanding the mechanisms that regulate the activity of protein assemblies. Here, we describe a mass spectrometry-based approach that exposes the array of protein variants that comprise protein complexes. Our method relies on denaturing the protein complex, and separating its constituent subunits on a monolithic column prepared in-house. Following the subunit elution from the column, the flow is split into two fractions, using a Triversa NanoMate robot. One fraction is directed straight into an on-line ESI-QToF mass spectrometer for intact protein mass measurements, while the rest of the flow is fractionated into a 96-well plate for subsequent proteomic analysis. The heterogeneity of subunit composition is then exposed by correlating the subunit sequence identity with the accurate mass. Below, we describe in detail the methodological setting of this approach, its application on the endogenous human COP9 signalosome complex, and the significance of the method for structural mass spectrometry analysis of intact protein complexes.
Collapse
|
10
|
Eklund S, Dogan J, Jemth P, Kalbacher H, Tomkinson B. Characterization of the endopeptidase activity of tripeptidyl-peptidase II. Biochem Biophys Res Commun 2012; 424:503-7. [PMID: 22771804 DOI: 10.1016/j.bbrc.2012.06.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022]
Abstract
Tripeptidyl-peptidase II (TPP II) is a giant cytosolic peptidase with a proposed role in cellular protein degradation and protection against apoptosis. Beside its well-characterised exopeptidase activity, TPP II also has an endopeptidase activity. Little is known about this activity, and since it could be important for the physiological role of TPP II, we have investigated it in more detail. Two peptides, Nef(69-87) and LL37, were incubated with wild-type murine TPP II and variants thereof as well as TPP II from human and Drosophila melanogaster. Two intrinsically disordered proteins were also included in the study. We conclude that the endopeptidase activity is more promiscuous than previously reported. It is also clear that TPP II can attack longer disordered peptides up to 75 amino acid residues. Using a novel FRET substrate, the catalytic efficiency of the endopeptidase activity could be determined to be 5 orders of magnitude lower than for the exopeptidase activity.
Collapse
Affiliation(s)
- Sandra Eklund
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Gräwert MA, Groll M. Exploiting nature's rich source of proteasome inhibitors as starting points in drug development. Chem Commun (Camb) 2011; 48:1364-78. [PMID: 22039589 DOI: 10.1039/c1cc15273d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is the No. 2 cause of death in the Western world and one of the most expensive diseases to treat. Thus, it is not surprising, that every major pharmaceutical and biotechnology company has a blockbuster oncology product. In 2003, Millennium Pharmaceuticals entered the race with Velcade®, a first-in-class proteasome inhibitor that has been approved by the FDA for treatment of multiple myeloma and its sales have passed the billion dollar mark. Velcade®'s extremely toxic boronic acid pharmacophore, however, contributes to a number of severe side effects. Nevertheless, the launching of this product has validated the proteasome as a target in fighting cancer and further proteasome inhibitors have entered the market as anti-cancer drugs. Additionally, proteasome inhibitors have found application as crop protection agents, anti-parasitics, immunosuppressives, as well as in new therapies for muscular dystrophies and inflammation. Many of these compounds are based on microbial metabolites. In this review, we emphasize the important role of the structural elucidation of the various unique binding mechanisms of these compounds that have been optimized throughout evolution to target the proteasome. Based on this knowledge, medicinal chemists have further optimized these natural products, resulting in potential drugs with reduced off-target activities.
Collapse
Affiliation(s)
- Melissa Ann Gräwert
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | | |
Collapse
|
12
|
Bortezomib resistance in a myeloma cell line is associated to PSMβ5 overexpression and polyploidy. Leuk Res 2011; 36:212-8. [PMID: 21978467 DOI: 10.1016/j.leukres.2011.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/08/2011] [Accepted: 09/12/2011] [Indexed: 01/22/2023]
Abstract
Bortezomib is a proteasome inhibitor important to the therapy of multiple myeloma (MM), though a number of patients show resistance to this drug. To study the cellular basis of this resistance we have generated a MM cell line displaying enhanced (5-6-fold) resistance to bortezomib by serial cultivation of RPMI 8226 cells with increasing concentrations of this drug. Bortezomib-resistant cells (8226/7B) became bigger in size than parental cells and nearly doubled the amount of DNA per cell, evolving from hypotriploidy to near-tetraploidy. 8226/7B displayed lowered Noxa accumulation and reduced caspase-3 activation in response to bortezomib. Resistant 8226/7B cells overexpressed the PSMβ5 proteasome subunit, the molecular target of bortezomib, both at the mRNA and protein level. No mutations were detected in the PSMβ5 gene. Bortezomib-resistant cells were roughly as sensitive as parental cells to other chemotherapeutic drugs, including doxorubicin, melphalan, vincristine, BMS-214662 and BMS-345541. 8226/7B cells showed partial and high cross-resistance to the proteasome inhibitors epoxomicin and MG-132, respectively. Co-treatment with the histone deacetylase inhibitor trichostatin A (TSA) potentiated bortezomib-induced apoptosis in parental RPMI 8226 cells but did not revert bortezomib resistance in 8226/7B cells. Therefore, treatment of bortezomib-refractory myeloma with drugs targeting molecular structures other than proteasome seems to be the more suitable therapeutic strategy to overcome bortezomib resistance.
Collapse
|
13
|
Abstract
AbstractSearching the antitumor drug targets among proteasomes, “ubiquitous” enzyme systems, may provide a new impulse to the antitumor drug discovery. In this study, changes in the proteasome pool in the development of human papillary thyroid carcinoma were determined. Proteasome activities were evaluated by hydrolysis of commercial fluorogenic peptides. Changes in the expression of the total proteasome pool, proteasome 19S activator and proteolytic constitutive subunits X(β5), Y(β1) and immune subunits LMP7 (β5i) and LMP2 (β1i) were investigated by Western blotting. The distribution of the proteasome subunits in thyroid gland cells was detected by immunohistochemistry. It was shown that the chymotrypsin- and caspase-like activities as well as the expression of the total proteasome pool, proteasome 19S activator and immune subunits increased gradually in the tumors at the T2N0M0 and T3N0M0 stages in comparison with the control tissues. Among the structures studied, the expression of the 19S activator and immune proteasomes, which contain the LMP2 (β1i) subunit, was enhanced to the largest degree in tumor cells. The data obtained may be implicated in a new therapeutic strategy. Taking into consideration the antitumor function of the immune proteasomes, we advance the 19S activator as the target for the development of a novel antitumor therapy.
Collapse
|
14
|
van Endert P. Post-proteasomal and proteasome-independent generation of MHC class I ligands. Cell Mol Life Sci 2011; 68:1553-67. [PMID: 21390545 PMCID: PMC11115176 DOI: 10.1007/s00018-011-0662-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/18/2022]
Abstract
Peptide ligands presented by MHC class I molecules are produced by intracellular proteolysis, which often involves multiple steps. Initial antigen degradation seems to rely almost invariably on the proteasome, although tripeptidyl peptidase II (TPP II) and insulin-degrading enzyme (IDE) may be able to substitute for the proteasome in rare cases. Recent evidence suggests that the net effect of cytosolic aminopeptidases is destruction of potential class I ligands, although a positive role in selected cases has been documented. This may apply particularly to the trimming of long precursors by TPP II. In contrast, trimming of ligand precursors in the endoplasmic reticulum is essential for the generation of suitable peptides and has a substantial impact on the repertoire of ligands presented. Trimming by the ER aminopeptidase (ERAP) enzymes most likely acts on free precursors and is adapted to the needs of class I molecules by way of a molecular ruler mechanism. Trimming by ERAP enzymes also occurs for cross-presented ligands, which can alternatively be processed in a special endosomal compartment by insulin-regulated aminopeptidase.
Collapse
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris 75015, France.
| |
Collapse
|
15
|
Chiaviello A, Paciello I, Postiglione I, Crescenzi E, Palumbo G. Combination of photodynamic therapy with aspirin in human-derived lung adenocarcinoma cells affects proteasome activity and induces apoptosis. Cell Prolif 2010; 43:480-93. [PMID: 20887554 DOI: 10.1111/j.1365-2184.2010.00698.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Photodynamic treatment (PDT) of human lung carcinoma cells A549 (p53(+/+)) and H1299 (p53(-/-)) induces fast but transient stalling of proteasome activity. We have explored the possibility of prolonging this effect by combining PDT with drugs capable of sustaining the stall, and promote apoptosis of surviving cells. We show that aspirin can be used to accomplish this. MATERIALS AND METHODS Cells were irradiated at doses ranging from 0.54 to 1.10 J cm(-2), and subsequently were incubated with aspirin at either high (10 and 5 mm) or low concentration (2.5 and 1.5 mm). Photofrin concentration and incubation time were constant (2.5 μg/ml and 16 h). Under these conditions, we analysed cell viability, colony-forming efficiency, cycle profile, expression patterns of specific proteins and ubiquitination state, after individual or combined administration. RESULTS Treatment with either PDT or aspirin, rapidly induced proteasome malfunction and accumulation of cells in G(2)M, but did not induce apoptosis. However, when aspirin was added to cells (even at low concentrations) after PDT, the proteasome block was sustained. Moreover, significant cytotoxic effects, including apoptosis, were observed along with cytostatic effects (G(2)M accumulation/decreased colony formation). CONCLUSIONS Combination of PDT and low-toxicity drugs (such as aspirin) resulted in protracted inhibition of proteasome activity and induced apoptosis even in apoptosis-resistant cancer cells.
Collapse
Affiliation(s)
- A Chiaviello
- Department of Molecular and Cellular Biology and Pathology L. Califano, University of Naples Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
16
|
Clerc J, Schellenberg B, Groll M, Bachmann AS, Huber R, Dudler R, Kaiser M. Convergent Synthesis and Biological Evaluation of Syringolin A and Derivatives as Eukaryotic 20S Proteasome Inhibitors. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000317] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Gelman JS, Fricker LD. Hemopressin and other bioactive peptides from cytosolic proteins: are these non-classical neuropeptides? AAPS JOURNAL 2010; 12:279-89. [PMID: 20383670 DOI: 10.1208/s12248-010-9186-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/22/2010] [Indexed: 12/31/2022]
Abstract
Peptides perform many roles in cell-cell signaling; examples include neuropeptides, hormones, and growth factors. Although the vast majority of known neuropeptides are produced in the secretory pathway, a number of bioactive peptides are derived from cytosolic proteins. For example, the hemopressins are a family of peptides derived from alpha and beta hemoglobin which bind to the CB1 cannabinoid receptor, functioning as agonists or antagonists/inverse agonists depending on the size of the peptide. However, the finding that peptides derived from cytosolic proteins can affect receptors does not prove that these peptides are true endogenous signaling molecules. In order for the hemopressins and other peptides derived from cytosolic proteins to be considered neuropeptide-like signaling molecules, they must be synthesized in brain, they must be secreted in levels sufficient to produce effects, and either their synthesis or secretion should be regulated. If these criteria are met, we propose the name "non-classical neuropeptide" for this category of cytosolic bioactive peptide. This would be analogous to the non-classical neurotransmitters, such as nitric oxide and anandamide, which are not stored in secretory vesicles and released upon stimulation but are synthesized upon stimulation and constitutively released. We review some examples of cytosolic peptides from various protein precursors, describe potential mechanisms of their biosynthesis and secretion, and discuss the possibility that these peptides are signaling molecules in the brain, focusing on the criteria that these peptides would have to fill in order to be considered non-classical neuropeptides.
Collapse
Affiliation(s)
- Julia S Gelman
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
18
|
Sterz J, Jakob C, Kuckelkorn U, Heider U, Mieth M, Kleeberg L, Kaiser M, Kloetzel PM, Sezer O, von Metzler I. BSc2118 is a novel proteasome inhibitor with activity against multiple myeloma. Eur J Haematol 2010; 85:99-107. [PMID: 20374272 DOI: 10.1111/j.1600-0609.2010.01450.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The ubiquitin-proteasome system emerged as a new therapeutic target in cancer treatment. The purpose of this study was to elucidate the effects of the novel proteasome inhibitor BSc2118 on t(4;14) positive and negative multiple myeloma (MM) cells and normal peripheral blood mononuclear cells (PBMNC). METHODS Human MM cell lines OPM-2, RPMI-8226, and U266 and primary MM cells from bone marrow aspirates were exposed to BSc2118. Cytotoxicity levels were evaluated using the MTT-test. BSc2118-induced apoptosis was analyzed by annexin-V assay. Further methods used included proteasomal activity determination, cell cycle analysis, western blot, and transcription factor assays. RESULTS In OPM-2, RPMI-8226, U266 cell lines and primary MM cells, BSc2118 caused dose-dependent growth inhibitory effects. After 48 h, dose-dependent apoptosis occurred both in cell lines and primary myeloma cells irrespective of t(4;14). A significant G2-M cell cycle arrest occurred after 24 h. Furthermore, we observed a marked inhibition of intracellular proteasome activity, an increase in intracellular p21 levels, and an inhibition of NF-kappaB activation. The toxicity against PBMNC remained low, suggesting a broad therapeutic range of this agent. CONCLUSION Taken together, BSc2118 shows significant antimyeloma activity and may be considered as a promising agent in cancer drug development.
Collapse
Affiliation(s)
- Jan Sterz
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany. ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Impact of high-risk cytogenetics and prior therapy on outcomes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexaméthasone. Leukemia 2010; 24:623-8. [PMID: 20072152 DOI: 10.1038/leu.2009.273] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This retrospective analysis investigated the prognostic value of del(13) and t(4;14) abnormalities and the impact of prior treatment on outcomes in 207 heavily pretreated patients with relapsed or refractory multiple myeloma (MM) treated with lenalidomide plus dexamethasone. Patients with relapsed or refractory MM who had either earlier received thalidomide or bortezomib, or for whom continuation of these agents was contraindicated, and who had fluorescence in situ hybridization data available were included in the analysis. Patients with relapsed or refractory MM who received treatment with lenalidomide plus dexamethasone in the presence of del(13) and t(4;14) chromosomal abnormalities had lower overall response rates (ORRs) and shorter median progression-free survival (PFS) and overall survival (OS) compared with those who did not have these abnormalities. The results also showed that prior treatment with bortezomib was associated with shorter median PFS and OS. Progression during thalidomide therapy was the only significant independent predictor for OS and that the presence of del(13) and hemoglobin levels <10 g per 100 ml were prognostic factors for ORR and PFS, but not OS, in these heavily pretreated relapsed or refractory MM patients treated with lenalidomide plus dexamethasone.
Collapse
|
20
|
Clerc J, Florea BI, Kraus M, Groll M, Huber R, Bachmann AS, Dudler R, Driessen C, Overkleeft HS, Kaiser M. Syringolin A Selectively Labels the 20 S Proteasome in Murine EL4 and Wild-Type and Bortezomib-Adapted Leukaemic Cell Lines. Chembiochem 2009; 10:2638-43. [DOI: 10.1002/cbic.200900411] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Berges C, Haberstock H, Fuchs D, Sadeghi M, Opelz G, Daniel V, Naujokat C. Proteasome inhibition activates the mitochondrial pathway of apoptosis in human CD4+T cells. J Cell Biochem 2009; 108:935-46. [DOI: 10.1002/jcb.22325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun 2009; 390:743-9. [PMID: 19835841 DOI: 10.1016/j.bbrc.2009.10.042] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 12/13/2022]
Abstract
Salinomycin is a polyether antibiotic isolated from Streptomyces albus that acts in different biological membranes as a ionophore with a preference for potassium. It is widely used as an anticoccidial drug in poultry and is fed to ruminants to improve nutrient absorption and feed efficiency. Salinomycin has recently been shown to selectively deplete human breast cancer stem cells from tumorspheres and to inhibit breast cancer growth and metastasis in mice. We show here that salinomycin induces massive apoptosis in human cancer cells of different origin, but not in normal cells such as human T lymphocytes. Moreover, salinomycin is able to induce apoptosis in cancer cells that exhibit resistance to apoptosis and anticancer agents by overexpression of Bcl-2, P-glycoprotein or 26S proteasomes with enhanced proteolytic activity. Salinomycin activates a distinct apoptotic pathway that is not accompanied by cell cycle arrest and that is independent of tumor suppressor protein p53, caspase activation, the CD95/CD95L system and the proteasome. Thus, salinomycin should be considered as a novel and effective anticancer agent that overcomes multiple mechanisms of apoptosis resistance in human cancer cells.
Collapse
|
23
|
de Roos B, Rungapamestry V, Ross K, Rucklidge G, Reid M, Duncan G, Horgan G, Toomey S, Browne J, Loscher CE, Mills KHG, Roche HM. Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet. Proteomics 2009; 9:3244-56. [PMID: 19562798 DOI: 10.1002/pmic.200800761] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of insulin resistance in the obese is associated with chronic, low-grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin-1 receptor knockout (IL-1RI(-/-)) mice, which are protected against diet-induced insulin resistance. Mice were fed a high-fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL-1RI(-/-) mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL-1RI(-/-) mice was associated with down-regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid beta-oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid-binding protein expression and decreased lipogenesis. Correlation analysis revealed down-regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL-1RI-mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet-induced insulin resistance, independent of obesity.
Collapse
Affiliation(s)
- Baukje de Roos
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur J Pain 2009; 14:343-50. [PMID: 19695912 DOI: 10.1016/j.ejpain.2009.07.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/08/2009] [Accepted: 07/03/2009] [Indexed: 11/22/2022]
Abstract
Bortezomib is a proteasome inhibitor showing strong antitumor activity against many tumors, primarily multiple myeloma. Bortezomib-induced neuropathic pain is the main side effect and the dose-limiting factor of the drug in clinical practice. In order to obtain a pre-clinical model to reproduce the characteristic pain symptoms in bortezomib-treated patients, we developed an animal model of bortezomib-induced nociceptive sensory neuropathy. In this study, bortezomib (0.15 or 0.20mg/kg) was administered to Wistar rats three times/week for 8 weeks, followed by a 4 week follow-up period. At the end of the treatment period a significant decrease in weight gain was observed in the treated groups vs. controls, and hematological and histopathological parameters were evaluated. After the treatment period, both doses of bortezomib induced a severe reduction in nerve conduction velocity and demonstrated a dose-cumulative effect of the drug. The sensory behavioral assessment showed the onset of mechanical allodynia, while no effect on thermal perception was observed. Sciatic nerves and dorsal root ganglia (DRG) were collected at the end of the 8-week treatment and at the end of the follow-up period. The pathological examination revealed a dose-dependent axonopathy of the unmyelinated fibers in nerves of treated animals. No pathological alteration in most of DRG satellite cells and neurons was observed. Therefore, this animal model may be useful for studying the neurotoxicity and pain onset mechanisms related to bortezomib treatment.
Collapse
|
25
|
Knecht E, Aguado C, Cárcel J, Esteban I, Esteve JM, Ghislat G, Moruno JF, Vidal JM, Sáez R. Intracellular protein degradation in mammalian cells: recent developments. Cell Mol Life Sci 2009; 66:2427-43. [PMID: 19399586 PMCID: PMC11115841 DOI: 10.1007/s00018-009-0030-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 04/02/2009] [Indexed: 12/16/2022]
Abstract
In higher organisms, dietary proteins are broken down into amino acids within the digestive tract but outside the cells, which incorporate the resulting amino acids into their metabolism. However, under certain conditions, an organism loses more nitrogen than is assimilated in the diet. This additional loss was found in the past century to come from intracellular proteins and started an intensive research that produced an enormous expansion of the field and a dispersed literature. Therefore, our purpose is to provide an updated summary of the current knowledge on the proteolytic machinery involved in intracellular protein degradation and its physiological and pathological relevance, especially addressed to newcomers in the field who may find further details in more specialized reviews. However, even providing a general overview, this is an extremely wide field and, therefore, we mainly focus on mammalian cells, while other cells will be mentioned only for comparison purposes.
Collapse
Affiliation(s)
- Erwin Knecht
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Role of ubiquitin ligases in neural stem and progenitor cells. Arch Immunol Ther Exp (Warsz) 2009; 57:177-88. [DOI: 10.1007/s00005-009-0019-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/30/2009] [Indexed: 01/18/2023]
|
27
|
Clerc J, Groll M, Illich DJ, Bachmann AS, Huber R, Schellenberg B, Dudler R, Kaiser M. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. Proc Natl Acad Sci U S A 2009; 106:6507-12. [PMID: 19359491 PMCID: PMC2672505 DOI: 10.1073/pnas.0901982106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Indexed: 11/18/2022] Open
Abstract
Syrbactins, a family of natural products belonging either to the syringolin or glidobactin class, are highly potent proteasome inhibitors. Although sharing similar structural features, they differ in their macrocyclic lactam core structure and exocyclic side chain. These structural variations critically influence inhibitory potency and proteasome subsite selectivity. Here, we describe the total synthesis of syringolin A and B, which together with enzyme kinetic and structural studies, allowed us to elucidate the structural determinants underlying the proteasomal subsite selectivity and binding affinity of syrbactins. These findings were used successfully in the rational design and synthesis of a syringolin A-based lipophilic derivative, which proved to be the most potent syrbactin-based proteasome inhibitor described so far. With a K(i)' of 8.65 +/- 1.13 nM for the chymotryptic activity, this syringolin A derivative displays a 100-fold higher potency than the parent compound syringolin A. In light of the medicinal relevance of proteasome inhibitors as anticancer compounds, the present findings may assist in the rational design and development of syrbactin-based chemotherapeutics.
Collapse
Affiliation(s)
- Jérôme Clerc
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Damir J. Illich
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - André S. Bachmann
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI 96813
| | - Robert Huber
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
- Zentrum für Medizinische Biotechnologie, Universität Duisburg–Essen, 45117 Essen, Germany; and
| | - Barbara Schellenberg
- Zurich–Basel Plant Science Center, Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Robert Dudler
- Zurich–Basel Plant Science Center, Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Markus Kaiser
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| |
Collapse
|
28
|
McCloskey SM, McMullin MF, Walker B, Irvine AE. The therapeutic potential of the proteasome in leukaemia. Hematol Oncol 2008; 26:73-81. [PMID: 18324639 DOI: 10.1002/hon.848] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many cellular processes converge on the proteasome, and its key regulatory role is increasingly being recognized. Proteasome inhibition allows the manipulation of many cellular pathways including apoptotic and cell cycle mechanisms. The proteasome inhibitor bortezomib has enhanced responses in newly diagnosed patients with myeloma and provides a new line of therapy in relapsed and refractory patients. Malignant cells are more sensitive to proteasome inhibition than normal haematopoietic cells. Proteasome inhibition enhances many conventional therapies and its role in leukaemia is promising.
Collapse
|
29
|
SUKHTHANKAR MUGDHA, YAMAGUCHI KIYOSHI, LEE SEONGHO, MCENTEE MICHAELF, ELING THOMASE, HARA YUKIHIKO, BAEK SEUNGJOON. A green tea component suppresses posttranslational expression of basic fibroblast growth factor in colorectal cancer. Gastroenterology 2008; 134:1972-80. [PMID: 18549879 PMCID: PMC2562743 DOI: 10.1053/j.gastro.2008.02.095] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/19/2008] [Accepted: 02/28/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Green tea catechins are known to have anticarcinogenic effects. Epigallocatechin-3-gallate (EGCG) accounts for almost 50% of the total catechin content in green tea extract and has very potent antioxidant effects. EGCG also inhibits angiogenesis, possibly through the inhibition of proangiogenic factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which in turn, inhibits tumor growth and metastasis. However, the exact molecular mechanism by which EGCG suppresses bFGF expression is not known. Our objective was to elucidate the molecular mechanisms by which EGCG inhibits bFGF expression in colorectal cancer. METHODS We examined posttranslational regulation of bFGF by EGCG in human colorectal cancer cells. We also examined bFGF in intestinal tumor formation of APC(Min/+) mice with and without catechin treatment. RESULTS The bFGF protein was quickly degraded in the presence of EGCG, but a proteasome inhibitor suppressed this degradation. EGCG was also found to increase ubiquitination of bFGF and trypsin-like activity of the 20S proteasome, thereby resulting in the degradation of bFGF protein. Furthermore, EGCG suppressed tumor formation in APC(Min/+) mice, compared with vehicle-treated mice, in association with reduced bFGF expression. CONCLUSIONS The ubiquitin-proteasome degradation pathway contributes significantly to down-regulation of bFGF expression by EGCG. Catechin compounds have fewer adverse effects than chemotherapeutic agents and hence can be used as proof-of-concept in cancer therapeutics to suppress growth and metastasis by targeting proteins such as bFGF.
Collapse
Affiliation(s)
- MUGDHA SUKHTHANKAR
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - KIYOSHI YAMAGUCHI
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - SEONG-HO LEE
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - MICHAEL F. MCENTEE
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - THOMAS E. ELING
- Laboratory of Molecular Carcinogenesis, NIEHS, Research Triangle Park, North Carolina
| | - YUKIHIKO HARA
- Mitsui Norin Co., Ltd, Food Research Lab, Miyabara, Fujieda City, Japan
| | - SEUNG JOON BAEK
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
30
|
Votteler J, Schubert U. Ubiquitin ligases as therapeutic targets in HIV-1 infection. Expert Opin Ther Targets 2008; 12:131-43. [PMID: 18208363 DOI: 10.1517/14728222.12.2.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Introduction of highly active antiretroviral therapy has led to a profound reduction in human immunodeficiency virus (HIV) related mortality; although, the complete eradication of the virus from infected individuals has never been achieved. In addition, due to the high mutation and evolution rate, drug-resistant viruses are continuously emerging. OBJECTIVE Genetically more stable cellular pathways represent attractive targets for innovative antiviral strategies, especially the ubiquitin proteasome system, which regulates various steps in the HIV replication cycle. METHODS This review focuses on certain interactions of HIV and E3 ligases as a major player in the ubiquitin proteasome system. RESULTS/CONCLUSION Due to the importance in HIV replication, and together with the high substrate specificity, E3 ligases can be considered as bona fide targets to interfere with HIV infection.
Collapse
Affiliation(s)
- Jörg Votteler
- University of Erlangen-Nuremberg, Institute of Clinical and Molecular Virology, Schlossgarten 4, 91054 Erlangen, Germany.
| | | |
Collapse
|
31
|
Berges C, Haberstock H, Fuchs D, Miltz M, Sadeghi M, Opelz G, Daniel V, Naujokat C. Proteasome inhibition suppresses essential immune functions of human CD4+ T cells. Immunology 2008; 124:234-46. [PMID: 18217957 DOI: 10.1111/j.1365-2567.2007.02761.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The proteasome constitutes the central proteolytic component of the highly conserved ubiquitin-proteasome system, which is required for the maintenance and regulation of basic cellular processes, including differentiation, proliferation, cell cycling, gene transcription and apoptosis. Here we show that inhibition of proteasomal proteolytic activity by the proteasome inhibitors bortezomib and lactacystin suppresses essential immune functions of human CD4(+) T cells activated by allogeneic dendritic cells (DCs). In activated CD4(+) T cells, proteasome inhibition induces apoptosis accompanied by rapid accumulation and stabilization of the tumour suppressor protein p53. Activated CD4(+) T cells surviving proteasome inhibition undergo inhibition of proliferation by induction of G(1) phase cell-cycle arrest. Induction of G(1) arrest is accompanied by the accumulation of cyclin-dependent kinase inhibitors p21(WAF1/CIP1) and p27(KIP1) and the disappearance of cyclin A, cyclin D2 and proliferating cell nuclear antigen, proteins known to regulate G(1) to S phase cell-cycle transitions. Expression of the activation-associated cell surface receptors CD25, CD28, CD120b and CD134 as well as production of interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), interleukin-4 (IL-4) and IL-5 is suppressed in response to proteasome inhibition in CD4(+) T cells activated by DCs. Expression of CD25, IFN-gamma, TNF-alpha, IL-4 and IL-5 is known to be mediated by the transcriptional activity of nuclear factor of activated T cells (NFAT), and we show here that proteasome inhibition suppresses activation and nuclear translocation of NFATc2 in activated CD4(+) T cells. Thus, the proteasome is required for essential immune functions of activated CD4(+) T cells and can be defined as a molecular target for the suppression of deregulated and unwanted T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Carsten Berges
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|