1
|
Ghazisaeidi S, Muley MM, Tu Y, Finn DP, Kolahdouzan M, Pitcher GM, Kim D, Sengar AS, Ramani AK, Brudno M, Salter MW. Conserved transcriptional programming across sex and species after peripheral nerve injury predicts treatments for neuropathic pain. Br J Pharmacol 2023; 180:2822-2836. [PMID: 37336547 DOI: 10.1111/bph.16168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic pain is a devastating problem affecting one in five individuals around the globe, with neuropathic pain the most debilitating and poorly treated type of chronic pain. Advances in transcriptomics have contributed to cataloguing diverse cellular pathways and transcriptomic alterations in response to peripheral nerve injury but have focused on phenomenology and classifying transcriptomic responses. EXPERIMENTAL APPROACH To identifying new types of pain-relieving agents, we compared transcriptional reprogramming changes in the dorsal spinal cord after peripheral nerve injury cross-sex and cross-species, and imputed commonalities, as well as differences in cellular pathways and gene regulation. KEY RESULTS We identified 93 transcripts in the dorsal horn that were increased by peripheral nerve injury in male and female mice and rats. Following gene ontology and transcription factor analyses, we constructed a pain interactome for the proteins encoded by the differentially expressed genes, discovering new, conserved signalling nodes. We investigated the interactome with the Drug-Gene database to predict FDA-approved medications that may modulate key nodes within the network. The top hit from the analysis was fostamatinib, the molecular target of which is the non-receptor spleen associated tyrosine kinase (Syk), which our analysis had identified as a key node in the interactome. We found that intrathecally administrating the active metabolite of fostamatinib, R406 and another Syk inhibitor P505-15, significantly reversed pain hypersensitivity in both sexes. CONCLUSIONS AND IMPLICATIONS Thus, we have identified and shown the efficacy of an agent that could not have been previously predicted to have analgesic properties.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - YuShan Tu
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Centre for Pain Research, University of Galway, Galway, Ireland
| | - Mahshad Kolahdouzan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Graham M Pitcher
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Doyeon Kim
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ameet S Sengar
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Michael Brudno
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Techna Institute, University Health Network, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
| | - Michael W Salter
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Kuo HCD, Wu R, Sarwar MS, Zheng M, Wang C, Sargsyan D, Suh N, Kong ANT. DNA Methylome and Transcriptome Study of Triterpenoid CDDO in TPA-Mediated Skin Carcinogenesis Model. AAPS J 2022; 24:115. [PMID: 36324037 DOI: 10.1208/s12248-022-00763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Overexposure to ultraviolet radiation and environmental carcinogens drive skin cancer development through redox imbalance and gene mutation. Antioxidants such as triterpenoids have exhibited anti-oxidative and anti-inflammatory potentials to alleviate skin carcinogenesis. This study investigated the methylome and transcriptome altered by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or TPA with 2-cyano 2,3-dioxoolean-1,9-dien-28-oic acid (CDDO). The results show that CDDO blocks TPA-induced transformation dose dependently. Several differential expressed genes (DEGs) involved in skin cell transformation, while counteracted by CDDO, were revealed by differential expression analysis including Lyl1, Lad1, and Dennd2d. In CpG methylomic profiles, the differentially methylated regions (DMRs) in the promoter region altered by TPA while showing the opposite methylation status in the CDDO treatment group were identified. The correlation between DNA methylation and RNA expression has been established and DMRs showing inverse correlation were further studied as potential therapeutic targets. From the CpG methylome and transcriptome results, CDDO significantly restored gene expression of NAD(P)H:quinone oxidoreductase 1 (Nqo1) inhibited by TPA by decreasing their promoter CpG methylation. Ingenuity Pathways Analysis (IPA) shows that CDDO neutralized the effect of TPA through modulating cell cycles, cell migration, and inflammatory and immune response regulatory pathways. Notably, Tumor Necrosis Factor Receptor 2 (TNFR2) signaling was significantly downregulated by CDDO potentially contributing to prevention of TPA-induced cell transformation. Overall, incorporating the transcriptome, CpG methylome, and signaling pathway network, we reveal potential therapeutic targets and pathways by which CDDO could reverse TPA-induced carcinogenesis. The results could be useful for future human study and targets development for skin cancer.
Collapse
Affiliation(s)
- Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, NJ, 08854, Piscataway, USA.,Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, Piscataway, USA
| | - Renyi Wu
- Department of Pharmaceutics, Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, NJ, 08854, Piscataway, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, NJ, 08854, Piscataway, USA
| | - Meinizi Zheng
- Department of Statistics and Biostatistics, Rutgers, The State University of New Jersey, NJ, 08854, Piscataway, USA
| | - Chao Wang
- Department of Pharmaceutics, Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, NJ, 08854, Piscataway, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, NJ, 08854, Piscataway, USA.,Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, Piscataway, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, Piscataway, USA.,Rutgers Cancer Institute of New Jersey, NJ, New Brunswick, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, NJ, 08854, Piscataway, USA.
| |
Collapse
|
3
|
The transcription factor complex LMO2/TAL1 regulates branching and endothelial cell migration in sprouting angiogenesis. Sci Rep 2022; 12:7226. [PMID: 35508511 PMCID: PMC9068620 DOI: 10.1038/s41598-022-11297-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
The transcription factor complex, consisting of LMO2, TAL1 or LYL1, and GATA2, plays an important role in capillary sprouting by regulating VEGFR2, DLL4, and angiopoietin 2 in tip cells. Overexpression of the basic helix-loop-helix transcription factor LYL1 in transgenic mice results in shortened tails. This phenotype is associated with vessel hyperbranching and a relative paucity of straight vessels due to DLL4 downregulation in tip cells by forming aberrant complex consisting of LMO2 and LYL1. Knockdown of LMO2 or TAL1 inhibits capillary sprouting in spheroid-based angiogenesis assays, which is associated with decreased angiopoietin 2 secretion. In the same assay using mixed TAL1- and LYL1-expressing endothelial cells, TAL1 was found to be primarily located in tip cells, while LYL1-expressing cells tended to occupy the stalk position in sprouts by upregulating VEGFR1 than TAL1. Thus, the interaction between LMO2 and TAL1 in tip cells plays a key role in angiogenic switch of sprouting angiogenesis.
Collapse
|
4
|
von Ziegler LM, Floriou-Servou A, Waag R, Das Gupta RR, Sturman O, Gapp K, Maat CA, Kockmann T, Lin HY, Duss SN, Privitera M, Hinte L, von Meyenn F, Zeilhofer HU, Germain PL, Bohacek J. Multiomic profiling of the acute stress response in the mouse hippocampus. Nat Commun 2022; 13:1824. [PMID: 35383160 PMCID: PMC8983670 DOI: 10.1038/s41467-022-29367-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, the underlying molecular cascades are unclear. Here, we use a brief swim exposure to trigger an acute stress response in mice, which transiently increases anxiety, without leading to lasting maladaptive changes. Using multiomic profiling, such as proteomics, phospho-proteomics, bulk mRNA-, single-nuclei mRNA-, small RNA-, and TRAP-sequencing, we characterize the acute stress-induced molecular events in the mouse hippocampus over time. Our results show the complexity and specificity of the response to acute stress, highlighting both the widespread changes in protein phosphorylation and gene transcription, and tightly regulated protein translation. The observed molecular events resolve efficiently within four hours after initiation of stress. We include an interactive app to explore the data, providing a molecular resource that can help us understand how acute stress impacts brain function in response to stress. Acute stress can help individuals to respond to challenging events, although chronic stress leads to maladaptive changes. Here, the authors present a multi omic analysis profiling acute stress-induced changes in the mouse hippocampus, providing a resource for the scientific community.
Collapse
Affiliation(s)
- Lukas M von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Rebecca R Das Gupta
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Katharina Gapp
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christina A Maat
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Han-Yu Lin
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Laura Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Hanns U Zeilhofer
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Laboratory of Statistical Bioinformatics, Department for Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. .,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
6
|
Zheng T, Huang J, Xiang X, Li S, Yu J, Qu K, Xu Z, Han P, Dong Z, Liu Y, Xu F, Yang H, Jäättelä M, Luo Y, Liu B. Systematical analysis reveals a strong cancer relevance of CREB1-regulated genes. Cancer Cell Int 2021; 21:530. [PMID: 34641874 PMCID: PMC8507136 DOI: 10.1186/s12935-021-02224-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
The transcription factor cyclic-AMP response element-binding protein 1 (CREB1) responds to cAMP level and controls the expression of target genes, which regulates nutrition partitioning. The promoters of CREB1-targeted genes responsive to cAMP have been extensively investigated and characterized with the presence of both cAMP response element and TATA box. Compelling evidence demonstrates that CREB1 also plays an essential role in promoting tumor development. However, only very few genes required for cell survival, proliferation and migration are known to be constitutively regulated by CREB1 in tumors. Their promoters mostly do not harbor any cAMP response element. Thus, it is very likely that CREB1 regulates the expressions of distinct sets of target genes in normal tissues and tumors. The whole gene network constitutively regulated by CREB1 in tumors has remained unrevealed. Here, we employ a systematical and integrative approach to decipher this gene network in the context of both tissue cultured cancer cells and patient samples. We combine transcriptomic, Rank-Rank Hypergeometric Overlap, and Chipseq analysis, to define and characterize CREB1-regulated genes in a multidimensional fashion. A strong cancer relevance of those top-ranked targets, which meet the most stringent criteria, is eventually verified by overall survival analysis of cancer patients. These findings strongly suggest the importance of genes constitutively regulated by CREB1 for their implicative involvement in promoting tumorigenesis.
Collapse
Affiliation(s)
- Tianyu Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jinrong Huang
- BGI-Shenzhen, Shenzhen, China, 518083.,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Xiang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Siyuan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jiaying Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhanying Dong
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,BGI-Shenzhen, Shenzhen, China, 518083
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,BGI-Shenzhen, Shenzhen, China, 518083
| | | | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China. .,BGI-Shenzhen, Shenzhen, China, 518083. .,Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark. .,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
7
|
Pawlonka J, Rak B, Ambroziak U. The regulation of cyclin D promoters - review. Cancer Treat Res Commun 2021; 27:100338. [PMID: 33618151 DOI: 10.1016/j.ctarc.2021.100338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Cyclins are key regulators of cell cycle progression and survival. Particularly cyclins D (cyclin D1, D2, and D3) act in response to the mitogenic stimulation and are pivotal mediators between proliferative pathways and the nuclear cell cycle machinery. Dysregulation of cyclins expression results in impaired development, abnormal cell growth or tumorigenesis. In this review we summarize current knowledge about regulatory role of the cyclin D promoters, transcriptional factors: regulators, co-activators and adaptor proteins necessary to their activation. We focused on the intracellular signaling pathways vital to cell growth, differentiation and apoptosis including transcription factor families: activator protein 1 (AP1), nuclear factor (NFκB), signal transducer and activator of transcription (STAT), cAMP response element-binding protein (CREB) and Sp/NF-Y, with a special insight into the tissue specific cyclin representation.
Collapse
Affiliation(s)
- Jan Pawlonka
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw
| | - Beata Rak
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw; Department of Genomic Medicine, Medical University of Warsaw, Warsaw.
| | - Urszula Ambroziak
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw
| |
Collapse
|
8
|
Systematical Identification of the Protective Effect of Danhong Injection and BuChang NaoXinTong Capsules on Transcription Factors in Cerebral Ischemia Mice Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:5879852. [PMID: 33414894 PMCID: PMC7755463 DOI: 10.1155/2020/5879852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
Cerebral ischemia has led to a high rate of both disability and mortality with massive healthcare costs. Although transcriptional regulation is typically mediated by different combinations of TFs, a combined regulatory unit to synergistically activate transcription has remained unclear in cerebral ischemia, especially in different drug treatments. In this study, TFs alterations after 6 h cerebral ischemic injury and repair were performed by a concatenated tandem array of consensus transcription factor response elements (catTFREs), and vital TFs were obtained by TFs-target imbalanced network. Drug intervention used Danhong injection (DHI) and BNC (BuChang NaoXinTong Capsules), which has been widely prescribed in Chinese herb medicine for the treatment of cerebrovascular and cardiovascular diseases. There were 198 TFs identified after 6 h MCAO operation, and six TFs (Sox2, Smad3, FoxO1, Creb1, Egr,1 and Smad4) were considered as critical TFs in response to cerebral ischemia. Moreover, Smad3 was identified as a hub TF among six vital TFs, and the transcription activity of Smad3 was further verified. These 6 TFs were all reversed by DHI or BNC, indicating different medications may regulate different transcription factors through TF synergy. Moreover, validation results indicated that Smad3 was a putative target TF for DHI and BNC-mediated protection against cerebral ischemia. The observations of the present study provide a fresh understanding of biomolecules and possible new avenues for therapeutic interventions, in addition to the new intervention pattern for different treatments for ischemia stroke.
Collapse
|
9
|
Song M, Wang C, Wang H, Zhang T, Li J, Benezra R, Chouchane L, Sun YH, Cui XG, Ma X. Targeting ubiquitin protein ligase E3 component N-recognin 5 in cancer cells induces a CD8+ T cell mediated immune response. Oncoimmunology 2020; 9:1746148. [PMID: 32363114 PMCID: PMC7185213 DOI: 10.1080/2162402x.2020.1746148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/16/2019] [Accepted: 01/04/2020] [Indexed: 12/31/2022] Open
Abstract
UBR5 is a nuclear phosphoprotein of obscure functions. Clinical analyses reveal that UBR5 amplifications and overexpression occur in over 20% cases of human breast cancers. Breast cancer patients carrying UBR5 genetic lesions with overexpression have significantly reduced survival. Experimental work in vitro and in vivo demonstrates that UBR5, functioning as an oncoprotein, plays a profound role in breast cancer growth and metastasis. UBR5 drives tumor growth largely through paracrine interactions with the immune system, particularly through inhibiting the cytotoxic response mediated by CD8+ T lymphocytes, whereas it facilitates metastasis in a tumor cell-autonomous manner via its transcriptional control of key regulators of the epithelial–mesenchymal transition, ID1 and ID3. Furthermore, simultaneous targeting of UBR5 and PD-L1 yields strong therapeutic benefit to tumor-bearing hosts. This work significantly expands our scarce understanding of the pathophysiology and immunobiology of a fundamentally important molecule and has strong implications for the development of novel immunotherapy to treat highly aggressive breast cancers that resist conventional treatment.
Collapse
Affiliation(s)
- Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Chao Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China.,Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Huan Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Jiuqi Li
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Robert Benezra
- Cancer Biology and Genetics Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Yin-Hao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.,Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Kim SI, Lee JW, Lee N, Lee M, Kim HS, Chung HH, Kim JW, Park NH, Song YS, Seo JS. LYL1 gene amplification predicts poor survival of patients with uterine corpus endometrial carcinoma: analysis of the Cancer genome atlas data. BMC Cancer 2018; 18:494. [PMID: 29716549 PMCID: PMC5930686 DOI: 10.1186/s12885-018-4429-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Somatic amplifications of the LYL1 gene are relatively common occurrences in patients who develop uterine corpus endometrial carcinoma (UCEC) as opposed to other cancers. This study was undertaken to determine whether such genetic alterations affect survival outcomes of UCEC. METHODS In 370 patients with UCEC, we analysed clinicopathologic characteristics and corresponding genomic data from The Cancer Genome Atlas database. Patients were stratified according to LYL1 gene status, grouped as amplification or non-amplification. Heightened levels of cancer-related genes expressed in concert with LYL1 amplification were similarly investigated through differentially expressed gene and gene set enrichment analyses. Factors associated with survival outcomes were also identified. RESULTS Somatic LYL1 gene amplification was observed in 22 patients (5.9%) with UCEC. Patients displaying amplification (vs. non-amplification) were significantly older at the time of diagnosis and more often were marked by non-endometrioid, high-grade, or advanced disease. In survival analysis, the amplification subset showed poorer progression-free survival (PFS) and overall survival (OS) rates (3-year PFS: 34.4% vs. 79.9%, P = 0.031; 5-year OS: 25.1% vs. 84.9%, P = 0.014). However, multivariate analyses adjusted for tumor histologic type, grade, and stage did not confirm LYL1 gene amplification as an independent prognostic factor for either PFS or OS. Nevertheless, MAPK, WNT, and cell cycle pathways were significantly enriched by LYL1 gene amplification (P < 0.001, P = 0.002, and P = 0.004, respectively). CONCLUSIONS Despite not being identified as an independent prognostic factor in UCEC, LYL1 gene amplification is associated with other poor prognostic factors and correlated with upregulation of cancer-related pathways.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Ji Won Lee
- Gongwu Genomic Medicine Institute (G2MI), Medical Research Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nara Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea.
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Noh Hyun Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Jeong-Sun Seo
- Gongwu Genomic Medicine Institute (G2MI), Medical Research Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Macrogen Inc., Seoul, Republic of Korea.
| |
Collapse
|
11
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
12
|
Rossi M, Spichty M, Attorri L, Distante C, Nervi C, Salvati S, Vitelli L. Eicosapentaenoic acid modulates the synergistic action of CREB1 and ID/E2A family members in the rat pup brain and mouse embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:870-884. [PMID: 28666847 DOI: 10.1016/j.bbagrm.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the molecular mechanism by which eicosapentaenoic acid (EPA) may exert neuroprotective effects through an "EPA-cyclic AMP response element-binding protein (CREB)" signaling pathway. The current study reveals that EPA modulates the exquisite interplay of interaction of CREB1 with the inhibitor of DNA binding (ID) and E2A family members, thereby delivering mechanistic insights into specific neural differentiation program. In this scenario, our work provides evidence for the capability of CREB1 to sequester ID:E2A family members in brain tissues and neural differentiating mouse embryonic stem cells (mESCs) through formation of a [CREB1]2:ID2:E47 tetrameric complex.In essence, the molecular function of CREB1 is to dynamically regulate the location-specific assembly or disassembly of basic-helix-loop-helix (bHLH):HLH protein complexes to mediate the activation of neural/glial target genes. Together, these findings support the one-to-many binding mechanism of CREB1 and indicate that EPA treatment potentiates the integration of CREB dependent signaling with HLH/bHLH transcriptional network, adding specificity to the CREB1-mediated gene regulation during neural/glial differentiation. Our current research on the EPA-CREB axis could reveal new molecular targets for treating neurogenerative disease.
Collapse
Affiliation(s)
- Maurizio Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Martin Spichty
- Laboratory of Biology and Modelling of the Cell, Lyon University, ENS Lyon, University Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 allée d'Italie, Site Jacques Monod, F-69007 Lyon, France
| | - Lucilla Attorri
- Department of Public Veterinary Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Distante
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, 04100, Latina, Italy
| | - Serafina Salvati
- Department of Public Veterinary Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luigi Vitelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
13
|
Formosa R, Vassallo J. Aryl Hydrocarbon Receptor-Interacting Protein (AIP) N-Terminus Gene Mutations Identified in Pituitary Adenoma Patients Alter Protein Stability and Function. Discov Oncol 2017; 8:174-184. [PMID: 28255869 DOI: 10.1007/s12672-017-0288-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/10/2017] [Indexed: 01/23/2023] Open
Abstract
Mutations spanning the entire aryl hydrocarbon receptor-interacting protein (AIP) gene have been found in isolated familial cases of pituitary adenomas (PA). Missense mutations located in the N-terminus of the gene have been identified in several patients. However, the functional significance of these mutations remains a matter of controversy. In most studies, the N-terminus of AIP has been shown to regulate protein stability and subcellular localization of the AIP-AHR-HSP90 complex but not to be involved in protein-protein interactions. Other studies found that the N-terminal domain interacts directly with other proteins. The aim of this study was to analyze whether specific N-terminus AIP mutations identified in PA patients would be functionally different from wild-type (WT) AIP. In vitro analyses were used to assess the role of known N-terminus variants, a locally identified mutant, R9Q, and three other commonly genotyped N-terminus mutations R16H, V49M and K103R are found in PA patients. Given the functional effect of WT AIP on cAMP signalling alterations caused by N-terminus mutants on this pathway were also analyzed in GH3 cells. Results indicate that N-terminus mutations lead to de-regulation of the effect of WT AIP on cAMP signalling and increased cAMP thresholds in GH3 cells resulting in increased growth hormone (GH) secretion. Cycloheximide chase analysis identified a variation in protein degradation patterns between WT and N-terminus variants. Therefore, both functional and structural studies reveal that N-terminus mutations in the AIP gene alter protein behaviour significantly and hence can truly be pathogenic in nature.
Collapse
Affiliation(s)
- Robert Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta.
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta. .,Neuroendocrine Clinic, Mater Dei Hospital, Msida, Malta.
| |
Collapse
|
14
|
El-Menshawy N, Shahin D, Ghazi HF. Prognostic Significance of the Lymphoblastic Leukemia-Derived Sequence 1 (LYL1) GeneExpression in Egyptian Patients with AcuteMyeloid Leukemia. Turk J Haematol 2014; 31:128-35. [PMID: 25035669 PMCID: PMC4102039 DOI: 10.4274/tjh.2012.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/21/2012] [Indexed: 12/01/2022] Open
Abstract
Objective: Aberrant activation of transcription factor genes is the most frequent target of genetic alteration in lymphoid malignancies. The lymphoblastic leukemia-derived sequence 1 (LYL1) gene, which encodes a basic helix-loop helix, was first identified with human T-cell acute leukemia. Recent studies suggest its involvement in myeloid malignancies. We aimed to study the expression percent of oncogene LYL1 in primary and secondary high-risk myeloid leukemia and the impact on prognostic significance in those patients. Materials and Methods: Using quantitative real-time polymerase chain reaction for detection of LYL1 oncogenes, our study was carried out on 39 myeloid leukemia patients including de novo cases, myelodysplastic syndrome (MDS) with transformation, and chronic myelogenous leukemia (CML) in accelerated and blast crisis, in addition to 10 healthy individuals as the reference control. Results: LYL1 expression was increased at least 2 times compared to the controls. The highest expression of this transcription factor was observed in the MDS cases transformed to acute leukemia at 7.3±3.1, p=0.0011. LYL1 expression was found in 68.2%, 75%, and 77.8% of cases of acute myeloid leukemia, CML crisis, and MDS, respectively. Significant correlation of LYL1 overexpression with some subtypes of French-American-British classification was found. There was, for the first time, significant correlation between the blood count at diagnosis and LYL1 expression (p=0.023, 0.002, and 0.031 for white blood cells, hemoglobin, and platelets, respectively). The rate of complete remission was lower with very high levels of LYL1 expression and the risk of relapse increased with higher levels of LYL1 expression, suggesting an unfavorable prognosis for cases with enhanced expression. Conclusion: Overexpression of LYL1 is highly associated with acute myeloid leukemia and shows more expression in MDS with unfavorable prognosis in response to induction chemotherapy. These observations could signal a promising tool for a therapeutic target to basic helix–loop helix protein related to transcription factors, which may improve patient outcome in acute myeloid leukemia, MDS, and CML in blast crisis.
Collapse
Affiliation(s)
- Nadia El-Menshawy
- Mansoura University Faculty of Medicine, Department of Clinical Pathology, Mansoura, Egypt
| | - Doaa Shahin
- Mansoura University Faculty of Medicine, Department of Clinical Pathology, Mansoura, Egypt
| | - Hayam Fathi Ghazi
- Mansoura University Faculty of Medicine, Department of Oncology Medicine, Mansoura, Egypt
| |
Collapse
|
15
|
Abstract
Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been linked to predisposition to pituitary adenomas. However, the mechanism by which this occurs remains unknown. AIP interacts with a number of interesting proteins, including members of the cAMP signalling pathway that has been shown to be consistently altered in pituitary tumours. The functional role of Aip was investigated using both over-expression and knock down of Aip in GH3 cells. cAMP signalling and its downstream effectors, including GH secretion, were then investigated. cAMP signalling was analysed using cAMP assays, cAMP-response element-promoter luciferase reporter assays, real-time PCR and finally secreted GH quantification. Over-expression of wild-type (WT)-Aip reduced forskolin-induced cAMP signalling at the total cAMP level, luciferase reporter activity and target gene expression, when compared with empty vector and the non-functional R304X mutant. Additionally, GH secretion was reduced in WT-Aip over-expressing GH3 cells treated with forskolin. Knock down of endogenous Aip resulted in increased cAMP signalling but a decrease in GH secretion was also noted. Inhibition of phosphodiesterase activity using general and selective inhibitors did not completely ablate the effect of Aip on forskolin-augmented cAMP signalling. A mechanism by which Aip acts as a tumour suppressor, by maintaining a low cAMP signalling and concentration, is suggested. Mutations of Aip render the protein incapable of such activity. This effect appears not to be mediated by the AIP-PDE interaction, suggesting the involvement of other interacting partners in mediating this outcome.
Collapse
Affiliation(s)
- R Formosa
- Department of Medicine, Faculty of Medicine and Surgery, Mater Dei Hospital, University of Malta, Msida, Malta
| | | | | |
Collapse
|
16
|
San-Marina S, Han Y, Liu J, Minden MD. Suspected leukemia oncoproteins CREB1 and LYL1 regulate Op18/STMN1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1164-72. [PMID: 23000483 DOI: 10.1016/j.bbagrm.2012.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/27/2022]
Abstract
Stathmin (STMN1) is a microtubule destabilizing protein with a key role in cell cycle progression and cell migration that is up-regulated in several cancers and may contribute to the malignant phenotype. However, the factors that regulate its expression are not well understood. Loss as well as gain-of-function p53 mutations up-regulate STMN1 and in acute myelogenous leukemia where p53 is predominantly wild-type, STMN1 is also over-expressed. Here we show regulatory control of STMN1 expression by the leucine zipper transcription factor (TF) CREB1 and the basic helix-loop-helix TF LYL1. By ChIP-chip experiments we demonstrate in vivo the presence of LYL1 and CREB1 in close proximity on the STMN1 promoter and using promoter assays we reveal co-regulation of STMN1 by CREB1 and LYL1. By contrast, TAL1, another suspected oncoprotein in leukemia and close relative of LYL1, exerts no regulatory effect on the STMN1 promoter. NLI, LMO2 and GATA2 are previously described co-activators of Tal1/Lyl1-E47 transcriptional complexes and potentiate Lyl1 activation of the STMN1 promoter while having no effect on TAL1 transactivation. Promoter mutations that abrogate CREB1 proximal binding or mutations of the DNA-binding domain of CREB1 abolish LYL1 transcriptional activation. These results show that CRE and Ebox sites function as coordinated units and support previous evidence of joint CREB1-and LYL1 transcription events activating an aberrant subset of promoters in leukemia. CREB1 or LYL1 shRNA knock-down down-regulate STMN1 expression. Because down-regulation of STMN1 has been shown to have anti-proliferative effects, while CREB1 and LYL1 are suspected oncoproteins, interference with CREB1-LYL1 interactions may complement standard chemotherapy and yield additional beneficial effects.
Collapse
Affiliation(s)
- Serban San-Marina
- University Health Network, Princess Margaret Hospital, Toronto ON, Canada.
| | | | | | | |
Collapse
|
17
|
Curtis DJ, Salmon JM, Pimanda JE. Concise Review: Blood Relatives: Formation and regulation of hematopoietic stem cells by the basic helix-loop-helix transcription factors stem cell leukemia and lymphoblastic leukemia-derived sequence 1. Stem Cells 2012; 30:1053-8. [DOI: 10.1002/stem.1093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Kueh HY, Rothenberg EV. Regulatory gene network circuits underlying T cell development from multipotent progenitors. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 4:79-102. [PMID: 21976153 DOI: 10.1002/wsbm.162] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulatory gene circuits enable stem and progenitor cells to detect and process developmental signals and make irreversible fate commitment decisions. To gain insight into the gene circuits underlying T cell fate decision making in progenitor cells, we generated an updated T-lymphocyte developmental gene regulatory network from genes and connections found in the literature. This reconstruction allowed us to identify candidate regulatory gene circuit elements underlying T cell fate decision making. Here, we examine the roles of these circuits in facilitating different aspects of the decision making process, and discuss experiments to further probe their structure and function.
Collapse
Affiliation(s)
- Hao Yuan Kueh
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
19
|
Capron C, Lacout C, Lécluse Y, Wagner-Ballon O, Kaushik AL, Cramer-Bordé E, Sablitzky F, Duménil D, Vainchenker W. LYL-1 deficiency induces a stress erythropoiesis. Exp Hematol 2011; 39:629-42. [PMID: 21420467 DOI: 10.1016/j.exphem.2011.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/02/2011] [Accepted: 02/26/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE LYL-1 is a transcription factor containing a basic helix-loop-helix motif closely related to SCL/TAL-1, a regulator of erythroid differentiation. Because LYL-1 is expressed in erythroid cell populations, we addressed its role in erythropoiesis using knockin mice. MATERIALS AND METHODS Erythropoiesis of LYL-1(-/-) mice was studied by progenitor assays, flow cytometry, reconstitution assays, and functional tests. Expression of LYL-1, SCL, and GATA-1 was assessed at messenger RNA level by quantitative reverse transcription polymerase chain reaction. RESULTS LYL-1(-/-) mice displayed decreased erythropoiesis with a partial arrest in differentiation, and enhanced apoptosis associated with decreased Bcl-x(L) expression in the bone marrow (BM). In addition, LYL-1(-/-) BM cells were severely impaired in their abilities to reconstitute the erythroid lineage in competitive assays, suggesting a cell autonomous abnormality of erythropoiesis. In parallel, erythroid progenitor and precursor cells were significantly increased in the spleen of LYL-1(-/-) mice. Expression of LYL-1 was differentially regulated during maturation of erythroblasts and strikingly different between spleen- and BM-derived erythroblasts. Expression of LYL-1 decreased during erythroid differentiation in the spleen whereas it increased in the BM to reach the same level in mature erythroblasts as in the soleen. Loss of Lyl-1 expression was accompanied with an increase of SCL/TAL-1 and GATA-1 transcripts in spleen but not in BM-derived erythroblasts. Furthermore, phenylhydrazine-induced stress erythropoiesis was elevated in LYL-1(-/-) mice and mutant BM and spleen erythroid progenitors were hypersensitive to erythropoietin. CONCLUSIONS Taken together, these results suggest that LYL-1 plays a definite role in erythropoiesis, albeit with different effects in BM specifically regulating basal erythropoiesis, and spleen, controlling stress-induced erythropoiesis.
Collapse
Affiliation(s)
- Claude Capron
- INSERM U1009, IFR 54, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Genomic analysis reveals pre- and postchallenge differences in a rhesus macaque AIDS vaccine trial: insights into mechanisms of vaccine efficacy. J Virol 2010; 85:1099-116. [PMID: 21068249 DOI: 10.1128/jvi.01522-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have employed global transcriptional profiling of whole blood to identify biologically relevant changes in cellular gene expression in response to alternative AIDS vaccine strategies with subsequent viral challenge in a rhesus macaque vaccine model. Samples were taken at day 0 (prechallenge), day 14 (peak viremia), and week 12 (set point) from animals immunized with replicating adenovirus type 5 host range (Ad5hr) recombinant viruses expressing human immunodeficiency virus HIV(env)(89.6P), simian immunodeficiency virus SIV(gag)(239), or SIV(nef)(239) alone or in combination with two intramuscular boosts with HIV(89.6P)gp140ΔCFI protein (L. J. Patterson et al., Virology 374:322-337, 2008), and each treatment resulted in significant control of viremia following simian-human immunodeficiency virus SHIV(89.6P) challenge (six animals per group plus six controls). At day 0, 8 weeks after the last treatment, the microarray profiles revealed significant prechallenge differences between treatment groups; data from the best-protected animals led to identification of a network of genes related to B cell development and lymphocyte survival. At peak viremia, expression profiles of the immunized groups were extremely similar, and comparisons to control animals reflected immunological differences other than effector T cell functions. Suggested protective mechanisms for vaccinated animals included upregulation of interleukin-27, a cytokine known to inhibit lentivirus replication, and increased expression of complement components, which may synergize with vaccine-induced antibodies. Divergent expression profiles at set point for the immunized groups implied distinct immunological responses despite phenotypic similarities in viral load and CD4(+) T cell levels. Data for the gp140-boosted group provided evidence for antibody-dependent, cell-mediated viral control, whereas animals immunized with only the replicating Ad5hr recombinants exhibited a different evolution of the B cell compartment even at 3 months postchallenge. This study demonstrates the sensitivity and discrimination of gene expression profiling of whole blood as an analytical tool in AIDS vaccine trials, providing unique insights into in vivo mechanisms and potential correlates of protection.
Collapse
|
21
|
Abstract
The 2 related basic helix loop helix genes, LYL1 and TAL-1 are active in hematopoietic and endothelial lineages. While Tal-1 is essential for both hematopoietic and vascular development, the role of Lyl1 appears to be distinct as deficient mice are viable and display modest hematopoietic defects. Here, we reveal a role for Lyl1 as a major regulator of adult neovascularization. Tumors implanted into Lyl1-deficient mice showed higher proliferation and angiogenesis, as evidenced by enlarged lumens, reduced pericyte coverage and increased permeability, compared with wild type littermates. Of note, Lyl1-deficient tumor vessels exhibited an up-regulation of Tal-1, the VE-Cadherin target gene, as well as Angiopoietin-2, 3 major actors in angiogenesis. Hematopoietic reconstitution experiments demonstrated that this sustained tumor angiogenesis was of endothelial origin. Moreover, the angiogenic phenotype observed in the absence of Lyl1 function was not tumor-restricted as microvessels forming in Matrigel or originating from aortic explants were also more numerous and larger than their wild-type counterparts. Finally, LYL1 depletion in human endothelial cells revealed that LYL1 controls the expression of molecules involved in the stabilization of vascular structures. Together, our data show a role for LYL1 in the postnatal maturation of newly formed blood vessels.
Collapse
|
22
|
Nagel S, Venturini L, Meyer C, Kaufmann M, Scherr M, Drexler HG, MacLeod RA. Multiple mechanisms induce ectopic expression of LYL1 in subsets of T-ALL cell lines. Leuk Res 2010; 34:521-8. [DOI: 10.1016/j.leukres.2009.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/09/2009] [Accepted: 06/17/2009] [Indexed: 12/01/2022]
|
23
|
Mathieu D. [The bHLH TAL1 protein: a key molecule in the hematopoietic and endothelial systems]. JOURNAL DE LA SOCIETE DE BIOLOGIE 2009; 203:143-53. [PMID: 19527627 DOI: 10.1051/jbio/2009017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The formation of blood cells and vascular networks occurs simultaneously during development, and both lineages remain in close association in all adult tissues. The functional setting of both systems within the embryo and their renewal during adult life are highly complex processes, and require the involvement of numerous molecular actors, the activities of which are often overlapping. Here, I review the activity of TAL-1, a basic-helix-loop-helix transcription factor, which plays a key role in the formation and functioning of both blood and endothelial systems, with a particular emphasis on recent data that associate TAL-1 with angiogenesis.
Collapse
Affiliation(s)
- Danièle Mathieu
- Institut de Génétique Moléculaire, CNRS-UMR 5535, Universités de Montpellier 1 et Montpellier 2, 1919 route de Mende, 34293 Montpellier Cedex 1, France.
| |
Collapse
|