1
|
Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, Stear MJ, Donskow-Łysoniewska K. Nematode Galectin Inhibits Basophilic Leukaemia RBL-2H3 Cells Apoptosis in IgE-Mediated Activation. Int J Mol Sci 2024; 25:7419. [PMID: 39000527 PMCID: PMC11242912 DOI: 10.3390/ijms25137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Mast cells are essential immune cells involved in the host's defence against gastrointestinal nematodes. To evade the immune response, parasitic nematodes produce a variety of molecules. Galectin 1, produced by Teladorsagia circumcincta (Tci-gal-1), reduces mast cell degranulation and selectively regulates mediator production and release in an IgE-dependent manner. To uncover the activity of Tci-gal-1, we have examined the effect of the protein on gene expression, protein production, and apoptosis in activated basophilic leukaemia RBL-2H3 cells. Rat RBL-2H3 cells were activated with anti-DNP IgE and DNP-HSA, and then treated with Tci-gal-1. Microarray analysis was used to examine gene expression. The levels of several apoptosis-related molecules and cytokines were determined using antibody arrays and ELISA. Early and late apoptosis was evaluated cytometrically. Degranulation of cells was determined by a β-hexosaminidase release assay. Treatment of activated RBL-2H3 cells with Tci-gal-1 resulted in inhibited apoptosis and decreased degranulation, although we did not detect significant changes in gene expression. The production of pro-apoptotic molecules, receptor for advanced glycation end products (RAGE) and Fas ligand (FasL), and the cytokines IL-9, IL-10, IL-13, TNF-α, and IL-2 was strongly inhibited. Tci-gal-1 modulates apoptosis, degranulation, and production of cytokines by activated RBL-2H3 cells without detectable influence on gene transcription. This parasite protein is crucial for modulation of the protective immune response and the inhibition of chronic inflammation driven by mast cell activity.
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.M.-C.); (L.S.); (K.K.-W.)
| | - Ludmiła Szewczak
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.M.-C.); (L.S.); (K.K.-W.)
| | - Katarzyna Krawczak-Wójcik
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.M.-C.); (L.S.); (K.K.-W.)
| | - Michael James Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.M.-C.); (L.S.); (K.K.-W.)
| |
Collapse
|
2
|
Xiao H, Wang T, Gao B, Liu J, Li S, Ma J. The effects of a galectin-3 inhibitor on bladder pain syndrome in mice with cyclophosphamide-induced cystitis. Neurourol Urodyn 2024; 43:754-766. [PMID: 38356381 DOI: 10.1002/nau.25415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
AIMS To explore the effect of blocking galectin-3 in the bladder pain syndrome associated with interstitial cystitis. METHODS A galectin-3 inhibitor was used to treat mice with cyclophosphamide-induced cystitis. The expression of galectin-3 in bladder tissues and urine was examined by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), respectively. Suprapubic-pelvic pain, bladder voiding, bladder pain-like nociceptive behavior, and referred hyperalgesia were assessed. The weights of the bladders were also measured, and inflammatory cell infiltration and inflammatory cytokine levels were examined by histopathological evaluation. The inflammatory cytokines interleukin 1β (IL-1β), nerve growth factor (NGF), IL-6, and tumor necrosis factor α (TNF-α) were measured by ELISA. RESULTS Increases in galectin-3 levels, inflammation, bladder weight, and bladder pain-related symptoms were observed in bladders with cyclophosphamide-induced cystitis. Administration of the galectin-3 inhibitor significantly mitigated bladder pain-related symptoms and inflammatory response. In response to the 500 μM dose of the galectin-3 inhibitor, nociceptive behaviors, nociceptive score, and bladder-to-body weight ratios were reduced by 65.1%, 65.3%, and 40.3%, respectively, while 500 μM Gal-3 inhibitor increased pelvic pain threshold by 86.7%. Moreover, galectin-3 inhibitor treatment inhibited the inflammation. Compared to untreated CYP-induced mice, there were significant changes in the levels of IL-1β (41.72 ± 2.05 vs. 18.91 ± 2.26 pg/mg tissues), NGF (9.64 ± 0.38 vs. 1.88 ± 0.05 pg/mg tissues), IL-6 (42.67 + 1.51 vs. 21.26 + 2.78 pg/mg tissues, and TNF-α (22.02 ± 1.08 vs. 10.70 ± 0.80 pg/mg tissues) in response to the highest dose of the Gal-3 inhibitor subgroup (500 μM), and 500 μM Gal-3 inhibitor reduced mast cell infiltration ratios by 71.8%. CONCLUSIONS The galectin-3 inhibitor relieved pelvic pain, urinary symptoms, and bladder inflammation in mice with cyclophosphamide-induced cystitis. Thus, galectin-3 inhibitors may be novel agents in interstitial cystitis treatment.
Collapse
Affiliation(s)
- Helong Xiao
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ting Wang
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bo Gao
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Junjiang Liu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shoubin Li
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jianguo Ma
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Seropian IM, Fontana Estevez FS, Villaverde A, Cacciagiú L, Bustos R, Touceda V, Penas F, Selser C, Morales C, Miksztowicz V, González GE. Galectin-3 contributes to acute cardiac dysfunction and toxicity by increasing oxidative stress and fibrosis in doxorubicin-treated mice. Int J Cardiol 2023; 393:131386. [PMID: 37741348 DOI: 10.1016/j.ijcard.2023.131386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Doxorubicin (DOX) leads to cardiovascular toxicity through direct cardiomyocyte injury and inflammation. We aimed to study the role of Galectin-3 (Gal-3), a β-galactosidase binding lectin associated with inflammation and fibrosis in DOX-induced acute cardiotoxicity in mice. METHODS Male C57 and Gal-3 knockout (KO) mice were given a single dose of DOX (15 mg/kg, i.p) or placebo. Serum creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and cardiac thiobarbituric acid-reactive substance (TBARS) were measured at 3 days to assess cardiac injury and oxidative stress. Cardiac remodeling and function were studied by echocardiography and catheterization at 7 days. Myocardial fibrosis was quantified in picrosirius red stained slices. RESULTS Absence of Gal-3 tended to reduce the mortality after DOX. DOX significantly increased CPK, LDH, AST and TBARS while treated Gal-3 KO mice showed reduced injury and oxidative stress. After 7 days, adverse remodeling, fibrosis and dysfunction in treated-C57 mice were severely affected while those effects were prevented by absence of Gal-3. CONCLUSION In summary, genetic deletion of Gal-3 prevented cardiac damage, adverse remodeling and dysfunction, associated with reduced cardiac oxidative stress and fibrosis. Understanding the contribution of GAL-3 to doxorubicin-induced cardiac toxicity reinforces its potential use as a therapeutic target in patients with several cancer types.
Collapse
Affiliation(s)
- Ignacio M Seropian
- Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas UCA-CONICET, Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina; Servicio de Hemodinamia y Cardiología Intervencionista, Hospital Italiano de Buenos Aires, Argentina
| | - Florencia S Fontana Estevez
- Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas UCA-CONICET, Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Alejo Villaverde
- Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas UCA-CONICET, Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Leonardo Cacciagiú
- Hospital General de Agudos Teodoro Álvarez, Laboratorio Central, Sección Bioquímica, Argentina
| | - Romina Bustos
- Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas UCA-CONICET, Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Vanessa Touceda
- Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas UCA-CONICET, Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Federico Penas
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Selser
- Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas UCA-CONICET, Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Celina Morales
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina
| | - Verónica Miksztowicz
- Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas UCA-CONICET, Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Germán E González
- Pontificia Universidad Católica Argentina, Facultad de Medicina, Instituto de Investigaciones Biomédicas UCA-CONICET, Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Guo Y, Li L, Hu S. Circulating Galectin-3 levels and Diabetic Nephropathy: a systematic review and meta-analysis. BMC Nephrol 2023; 24:163. [PMID: 37291488 PMCID: PMC10249253 DOI: 10.1186/s12882-023-03226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
AIMS Changes of serum galectin-3 (Gal-3) is associated with the pathogenesis of diabetic nephropathy (DN). However, current literature indicates that the given results remain debatable and inconsistent. Hence, the aim of this present meta-analysis was to focus on the predictive role of serum Gal-3 in patients with DN. METHODS The PubMed, Embase, Cochrane Library and Web of Science databases were systematically searched for studies that reported the relationship between Gal-3 levels and DN risk, from the inception of each database to March, 2023. The literature we selected for inclusion based on inclusion and exclusion criteria. The standard mean difference (SMD) with corresponding 95% confidence intervals (95% CI) were used to investigate the association. When I2 value exceeding 50%, we will consider it has the presence of a higher level of heterogeneity. A sensitivity analysis and subgroup analysis were performed to seek the potential sources of heterogeneity. The quality assessment was performed using according to the Newcastle-Ottawa Quality Assessment Scale (NOS). The data analysis was conducted using STATA version 13.0 software. RESULTS We ultimately enrolled 9 studies enrolling a total of 3137 patients in the final analysis. The SMD of serum Gal-3 was higher in patients with DN group (SMD 1.10 ng/mL [0.63, 1.57]; I2: 96.1%). Upon removal of a study in sensitivity analysis, patients with DN had higher serum Gal-3 levels compared to control patients (SMD 1.03 ng/mL [0.52, 1.54], I2: 94.4%). Further subgroup analysis was performed based on the region. No matter in Asia, Europe or Africa, the serum Gal-3 level of DN patients is significantly higher than that of the control population (SMD: 0.73; 95% CI: 0.58 to 0.87 for Asian; SMD: 0.79; 95% CI: 0.48 to 1.10 for Europe; SMD: 3.15; 95% CI: 2.73 to 3.56 for Africa). CONCLUSION In conclusion, these results suggested that higher serum Gal-3 may increase the risk of DN. More fundamental studies are necessary to clarify the exact physiopathological basis mechanisms of Gal-3 effects. In addition, further research, especially emphasis on the cut-off value should be given, and is best to predict their actual importance as well as the diagnostic accuracy.
Collapse
Affiliation(s)
- Yong Guo
- Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
- Department of Organ Procurement Organization, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ling Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanbiao Hu
- Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Atiakshin D, Kostin A, Volodkin A, Nazarova A, Shishkina V, Esaulenko D, Buchwalow I, Tiemann M, Noda M. Mast Cells as a Potential Target of Molecular Hydrogen in Regulating the Local Tissue Microenvironment. Pharmaceuticals (Basel) 2023; 16:817. [PMID: 37375765 DOI: 10.3390/ph16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Knowledge of the biological effects of molecular hydrogen (H2), hydrogen gas, is constantly advancing, giving a reason for the optimism in several healthcare practitioners regarding the management of multiple diseases, including socially significant ones (malignant neoplasms, diabetes mellitus, viral hepatitis, mental and behavioral disorders). However, mechanisms underlying the biological effects of H2 are still being actively debated. In this review, we focus on mast cells as a potential target for H2 at the specific tissue microenvironment level. H2 regulates the processing of pro-inflammatory components of the mast cell secretome and their entry into the extracellular matrix; this can significantly affect the capacity of the integrated-buffer metabolism and the structure of the immune landscape of the local tissue microenvironment. The analysis performed highlights several potential mechanisms for developing the biological effects of H2 and offers great opportunities for translating the obtained findings into clinical practice.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Anna Nazarova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Dmitry Esaulenko
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 816-0811, Japan
| |
Collapse
|
6
|
Raj S, Unsworth LD. Targeting active sites of inflammation using inherent properties of tissue-resident mast cells. Acta Biomater 2023; 159:21-37. [PMID: 36657696 DOI: 10.1016/j.actbio.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Mast cells play a pivotal role in initiating and directing host's immune response. They reside in tissues that primarily interface with the external environment. Activated mast cells respond to environmental cues throughout acute and chronic inflammation through releasing immune mediators via rapid degranulation, or long-term de novo expression. Mast cell activation results in the rapid release of a variety of unique enzymes and reactive oxygen species. Furthermore, the increased density of mast cell unique receptors like mas related G protein-coupled receptor X2 also characterizes the inflamed tissues. The presence of these molecules (either released mediators or surface receptors) are particular to the sites of active inflammation, and are a result of mast cell activation. Herein, the molecular design principles for capitalizing on these novel mast cell properties is discussed with the goal of manipulating localized inflammation. STATEMENT OF SIGNIFICANCE: Mast cells are immune regulating cells that play a crucial role in both innate and adaptive immune responses. The activation of mast cells causes the release of multiple unique profiles of biomolecules, which are specific to both tissue and disease. These unique characteristics are tightly regulated and afford a localized stimulus for targeting inflammatory diseases. Herein, these important mast cell attributes are discussed in the frame of highlighting strategies for the design of bioresponsive functional materials to target regions of inflammations.
Collapse
Affiliation(s)
- Shammy Raj
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, University of Alberta, Edmonton, AB, T6G1H9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, University of Alberta, Edmonton, AB, T6G1H9, Canada.
| |
Collapse
|
7
|
Čoma M, Manning JC, Kaltner H, Gál P. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27:41-53. [PMID: 36716023 DOI: 10.1080/14728222.2023.2175318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Understanding the molecular and cellular processes involved in skin wound healing may pave the way for the development of innovative approaches to transforming the identified natural effectors into therapeutic tools. Based on the extensive involvement of the ga(lactoside-binding)lectin family in (patho)physiological processes, it has been well established that galectins are involved in a wide range of cell-cell and cell-matrix interactions. AREAS COVERED In the present paper, we provide an overview of the biological role of galectins in repair and regeneration, focusing on four main phases (hemostasis, inflammation, proliferation, and maturation/remodeling) of skin repair using basic wound models (open excision vs. sutured incision). EXPERT OPINION The reported data make a strong case for directing further efforts to treat excisional and incisional wounds differently. Functions of galectins essentially result from their modular presentation. In fact, Gal-1 seems to play a role in the early phases of healing (anti-inflammatory) and wound contraction, Gal-3 accelerates re-epithelization and increases tensile strength (scar inductor). Galectins have also become subject of redesigning by engineering to optimize the activity. Clinically relevant, these new tools derived from the carbohydrate recognition domain platform may also prove helpful for other purposes, such as potent antibacterial agglutinins and opsonins.
Collapse
Affiliation(s)
- Matúš Čoma
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic.,Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
8
|
Melatonin ameliorates bleomycin-induced pulmonary fibrosis via activating NRF2 and inhibiting galectin-3 expression. Acta Pharmacol Sin 2022; 44:1029-1037. [PMID: 36333557 PMCID: PMC9638373 DOI: 10.1038/s41401-022-01018-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease with no effective therapies. Galectin-3 (Gal-3), a marker of oxidative stress, plays a key role in the pathogenesis of PF. Fibroblast-myofibroblast differentiation (FMD) is an important source of fibrotic cells in PF. Previous studies showed that melatonin (MT) exerted anti-fibrotic effect in many diseases including PF through its antioxidant activity. In the present study we investigated the relationships among Gal-3, NRF2, ROS in FMD and their regulation by MT. We established an in vitro model of FMD in TGF-β1-treated human fetal lung fibroblast1 (HFL1) cells and a PF mouse model via bleomycin (BLM) intratracheal instillation. We found that Gal-3 expression was significantly increased both in vitro and in vivo. Knockdown of Gal-3 in HFL1 cells markedly attenuated TGF-β1-induced FMD process and ROS accumulation. In TGF-β1-treated HFL1 cells, pretreatment with NRF2-specific inhibitor ML385 (5 μM) significantly increased the levels of Gal-3, α-SMA and ROS, suggesting that the expression of Gal-3 was regulated by NRF2. Treatment with NRF2-activator MT (250 μM) blocked α-SMA and ROS accumulation accompanied by reduced Gal-3 expression. In BLM-induced PF model, administration of MT (5 mg·kg−1·d−1, ip for 14 or 28 days) significantly attenuated the progression of lung fibrosis through up-regulating NRF2 and down-regulating Gal-3 expression in lung tissues. These results suggest that Gal-3 regulates TGF-β1-induced pro-fibrogenic responses and ROS production in FMD, and MT activates NRF2 to block FMD process by down-regulating Gal-3 expression. This study provides a useful clue for a clinical strategy to prevent PF. Graphic abstract of the mechanisms. MT attenuated BLM-induced PF via activating NRF2 and inhibiting Gal-3 expression. ![]()
Collapse
|
9
|
Wang Q, Wang K, Ma Y, Li S, Xu Y. Serum Galectin-3 as a Potential Predictive Biomarker Is Associated with Poststroke Cognitive Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5827812. [PMID: 34900086 PMCID: PMC8660241 DOI: 10.1155/2021/5827812] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Galectin-3, an inflammatory mediator derived from microglia, participates in the pathophysiological process of various neurological diseases. However, the relationship between galectin-3 and poststroke cognitive impairment (PSCI) remains ambiguous. This research purposed to prove whether serum galectin-3 can predict PSCI. METHODS In the end, an aggregate of 416 patients with the first acute ischemic stroke (AIS) were continuously and prospectively enrolled in the study. Upon admission, the baseline data of AIS patients were collected, and their serum galectin-3 levels were measured. Three months after the stroke, the Montreal Cognitive Scale (MoCA) was utilized to measure the cognitive function of AIS patients, and PSCI was defined as a MoCA score less than 26 points. RESULTS Premised on the MoCA scores, patients were categorized into PSCI cohort and non-PSCI cohort. The two AIS patient cohorts did not exhibit any statistical difference in their baseline characteristics (p > 0.05). However, the serum galectin-3 level of AIS patients in the PSCI cohort was considerably elevated (p < 0.001). Pearson correlation analysis illustrated that serum galectin-3 level was negatively linked to MoCA score (r = -0.396, p < 0.05). The findings from the receiver-operating curve (ROC) illustrated that the sensitivity of serum galectin-3 as a possible biomarker for diagnosing PSCI was 66%, and the specificity was 94%. The cut-off value of serum galectin-3 to diagnose PSCI is 6.3 ng/mL (OR = 5.49, p < 0.001). Upon controlling for different variables, serum galectin-3 level remained to be an independent predictor of PSCI (p < 0.001). CONCLUSIONS Elevated serum galectin-3 levels are linked to a higher risk of PSCI. Serum galectin-3 could be a prospective biomarker for predicting PSCI.
Collapse
Affiliation(s)
- Qian Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, Shandong Province, China
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kai Wang
- State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
10
|
Reis-Mendes A, Padrão AI, Duarte JA, Gonçalves-Monteiro S, Duarte-Araújo M, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. Role of Inflammation and Redox Status on Doxorubicin-Induced Cardiotoxicity in Infant and Adult CD-1 Male Mice. Biomolecules 2021; 11:1725. [PMID: 34827723 PMCID: PMC8615472 DOI: 10.3390/biom11111725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX) is a topoisomerase II inhibitor commonly used in the treatment of several types of cancer. Despite its efficacy, DOX can potentially cause fatal adverse effects, like cardiotoxicity. This work aimed to assess the role of inflammation in DOX-treated infant and adult mice and its possible link to underlying cardiotoxicity. Two groups of CD-1 male mice of different ages (infants or adults) were subjected to biweekly DOX administrations, to reach a cumulative dose of 18.0 mg/kg, which corresponds approximately in humans to 100.6 mg/m2 for infants and 108.9 mg/m2 for adults a clinically relevant dose in humans. The classic plasmatic markers of cardiotoxicity increased, and that damage was confirmed by histopathological findings in both groups, although it was higher in adults. Moreover, in DOX-treated adults, an increase of cardiac fibrosis was observed, which was accompanied by an increase in specific inflammatory parameters, namely, macrophage M1 and nuclear factor kappa B (NF-κB) p65 subunit, with a trend toward increased levels of the tumor necrosis factor receptor 2 (TNFR2). On the other hand, the levels of myeloperoxidase (MPO) and interleukin (IL)-6 significantly decreased in DOX-treated adult animals. In infants, a significant increase in cardiac protein carbonylation and in the levels of nuclear factor erythroid-2 related factor 2 (Nrf2) was observed. In both groups, no differences were found in the levels of tumor necrosis factor (TNF-α), IL-1β, p38 mitogen-activated protein kinase (p38 MAPK) or NF-κB p52 subunit. In conclusion, using a clinically relevant dose of DOX, our study demonstrated that cardiac effects are associated not only with the intensity of the inflammatory response but also with redox response. Adult mice seemed to be more prone to DOX-induced cardiotoxicity by mechanisms related to inflammation, while infant mice seem to be protected from the damage caused by DOX, possibly by activating such antioxidant defenses as Nrf2.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Isabel Padrão
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal
| | - Salomé Gonçalves-Monteiro
- Outcomes Research Laboratory, MOREHealth, Outcomes Research Laboratory, Portuguese Institute of Oncology at Porto Francisco Gentil (IPO Porto), 4200-072 Porto, Portugal;
| | - Margarida Duarte-Araújo
- Department of Immuno-Physiology and Pharmacology, ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal;
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Lourdes Bastos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Barman SA, Bordan Z, Batori R, Haigh S, Fulton DJR. Galectin-3 Promotes ROS, Inflammation, and Vascular Fibrosis in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:13-32. [PMID: 33788185 DOI: 10.1007/978-3-030-63046-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive vascular disease arising from the narrowing of pulmonary arteries (PA) resulting in high pulmonary arterial blood pressure and ultimately right ventricular (RV) failure. A defining characteristic of PAH is the excessive remodeling of PA that includes increased proliferation, inflammation, and fibrosis. There is no cure for PAH nor interventions that effectively impede or reverse PA remodeling, and research over the past several decades has sought to identify novel molecular mechanisms of therapeutic benefit. Galectin-3 (Gal-3; Mac-2) is a carbohydrate-binding lectin that is remarkable for its chimeric structure, comprised of an N-terminal oligomerization domain and a C-terminal carbohydrate-recognition domain. Gal-3 is a regulator of changes in cell behavior that contribute to aberrant PA remodeling including cell proliferation, inflammation, and fibrosis, but its role in PAH is poorly understood. Herein, we summarize the recent literature on the role of Gal-3 in the development of PAH and provide experimental evidence supporting the ability of Gal-3 to influence reactive oxygen species (ROS) production, NOX enzyme expression, inflammation, and fibrosis, which contributes to PA remodeling. Finally, we address the clinical significance of Gal-3 as a target in the development of therapeutic agents as a treatment for PAH.
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Robert Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David J R Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
12
|
Tian Y, Lv W, Lu C, Jiang Y, Yang X, Song M. Galectin-3 inhibition attenuates doxorubicin-induced cardiac dysfunction by upregulating the expression of peroxiredoxin-4. Can J Physiol Pharmacol 2020; 98:700-707. [PMID: 32516552 DOI: 10.1139/cjpp-2019-0700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is a highly efficient chemotherapeutic drug limited by its cardiotoxicity. Galectin-3 (Gal-3) overexpression is associated with several cardiovascular diseases. In this study, the in vivo models of DOX-treated rats and the in vitro model of DOX-treated H9C2 cells were used. DOX induced cardiac injury and dysfunction accompanied with the upregulation of Gal-3 at the end of the experiment, while inhibition of Gal-3 with modified citrus pectin (MCP) exhibited a dramatic improvement in cardiac function of the DOX-treated rats, as manifested by increased left ventricular systolic pressure and ±dp/dtmax and decreased left ventricular end-diastolic pressure. The plasma levels of myocardial injury markers such as lactate dehydrogenase, creatine kinase, creatine kinase-MB, and cardiac troponin I were decreased after MCP treatment. In parallel, MCP attenuated myocardial tissue markers of oxidative stress such as hydrogen peroxide and malondialdehyde restored the activities of superoxide dismutase, catalase, and glutathione peroxidase and upregulated antioxidant peroxiredoxin-4 (Prx-4). To further verify the role of Prx-4, it was downregulated by siRNA-mediated knockdown in H9C2 cells. MCP could not reverse DOX-induced oxidative stress in Prx-4-knock-down cells. In conclusion, Gal-3 mediated DOX-induced cardiotoxicity and Gal-3 inhibition attenuated DOX-induced cardiac dysfunction by upregulating the expression of Prx-4 to reduce myocardial oxidative stress.
Collapse
Affiliation(s)
- Yunpeng Tian
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Wei Lv
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Chengzhi Lu
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Yiyao Jiang
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Xue Yang
- Department of Cardiology, Dalian Municipal Central Hospital, Dalian 116003, People's Republic of China
| | - Minghao Song
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200003, People's Republic of China
| |
Collapse
|
13
|
Sartim AG, Sartim MA, Cummings RD, Dias-Baruffi M, Joca SR. Impaired emotional response to stress in mice lacking galectin-1 or galectin-3. Physiol Behav 2020; 220:112862. [PMID: 32156558 DOI: 10.1016/j.physbeh.2020.112862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022]
Abstract
Galectin-1 (Gal-1) and galectin-3 (Gal-3) are multifunctional glycan-binding proteins, expressed in the brain and in its limbic structures that are involved in behavioral control. Gal-1 induces the expression of the brain-derived neurotrophic factor (BDNF) and promotes adult neural stem cells proliferation, biological events impaired in stress-related psychiatric disorders, such as depression and anxiety. Despite that, there is no evidence regarding galectin involvement in emotional control during stressful situations. Thus, we analyzed the behavioral phenotype of Gal-1 or Gal-3 knock-out mice (Gal-1 KO or Gal-3 KO) in different experimental models predictive of depressive and compulsive-like behaviors. METHODS C57BL-6 Gal-1 KO, Gal-3 KO, and wild-type mice (WT) were analyzed under the open field test (OFT) and, 6 h later, under the forced swim test (FST). Additionally, independent groups of male mice, lacking galectins or not, were exposed to the tail suspension test (TST) or to the marble burying test (MBT). The hippocampus and prefrontal cortex (PFC) of the mice submitted to MBT were dissected to access BDNF levels. RESULTS Both Gal-1 and Gal-3 KO mice showed increased time of immobility in the FST and in the TST compared to WT animals, thus reflecting an impaired stress-coping behavior. Additionally, Gal-1 and Gal-3 KO female mice presented increased compulsive-like behavior in the MBT, without significant changes in the locomotor activity. BDNF levels were found to be decreased in the PFC of Gal-1 KO mice. DISCUSSION Our results demonstrate that the absence of either endogenous Gal-1 and Gal-3 impairs stress-coping and increases compulsive-like behavior, suggesting that Gal-1 and Gal-3 are involved in the neurobiology of depression and obsessive-compulsive-like disorder.
Collapse
Affiliation(s)
- A G Sartim
- Department of Biomolecular Sciences, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - M A Sartim
- Basic and Applied Immunology Graduate Program, Institute of Biological Sciences, Federal University of Amazonas, Manaus, AM, Brazil
| | - R D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Room 11087, Boston, MA, 02115, United States
| | - M Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo. Ribeirão Preto, SP, Brazil.
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus Denmark.
| |
Collapse
|
14
|
Galectin-3 Is a Potential Mediator for Atherosclerosis. J Immunol Res 2020; 2020:5284728. [PMID: 32149158 PMCID: PMC7042544 DOI: 10.1155/2020/5284728] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic inflammatory arterial disease forming the pathological basis of many cardiovascular diseases such as coronary heart disease, heart failure, and stroke. Numerous studies have implicated inflammation as a key player in the initiation and progression of atherosclerosis. Galectin-3 (Gal-3) is a 30 kDa β-galactose, highly conserved and widely distributed intracellularly and extracellularly. Gal-3 has been demonstrated in recent years to be a novel inflammatory factor participating in the process of intravascular inflammation, lipid endocytosis, macrophage activation, cellular proliferation, monocyte chemotaxis, and cell adhesion. This review focuses on the role of Gal-3 in atherosclerosis and the mechanism involved and several classical Gal-3 agonists and antagonists in the current studies.
Collapse
|
15
|
Roles of galectin-3 in metabolic disorders and tumor cell metabolism. Int J Biol Macromol 2020; 142:463-473. [DOI: 10.1016/j.ijbiomac.2019.09.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
|
16
|
Fulton DJR, Li X, Bordan Z, Wang Y, Mahboubi K, Rudic RD, Haigh S, Chen F, Barman SA. Galectin-3: A Harbinger of Reactive Oxygen Species, Fibrosis, and Inflammation in Pulmonary Arterial Hypertension. Antioxid Redox Signal 2019; 31:1053-1069. [PMID: 30767565 PMCID: PMC6767862 DOI: 10.1089/ars.2019.7753] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease arising from the narrowing of pulmonary arteries (PAs) resulting in high pulmonary arterial blood pressure and ultimately right ventricle (RV) failure. A defining characteristic of PAH is the excessive and unrelenting inward remodeling of PAs that includes increased proliferation, inflammation, and fibrosis. Critical Issues: There is no cure for PAH nor interventions that effectively arrest or reverse PA remodeling, and intensive research over the past several decades has sought to identify novel molecular mechanisms of therapeutic value. Recent Advances: Galectin-3 (Gal-3) is a carbohydrate-binding lectin remarkable for its chimeric structure, composed of an N-terminal oligomerization domain and a C-terminal carbohydrate-recognition domain. Gal-3 has been identified as a regulator of numerous changes in cell behavior that contributes to aberrant PA remodeling, including cell proliferation, inflammation, and fibrosis, but its role in PAH has remained poorly understood until recently. In contrast, pathological roles for Gal-3 have been proposed in cancer and inflammatory and fibroproliferative disorders, such as pulmonary vascular and cardiac fibrosis. Herein, we summarize the recent literature on the role of Gal-3 in the development of PAH. We provide experimental evidence supporting the ability of Gal-3 to influence reactive oxygen species production, NADPH oxidase enzyme expression, and redox signaling, which have been shown to contribute to both vascular remodeling and increased pulmonary arterial pressure. Future Directions: While several preclinical studies suggest that Gal-3 promotes hypertensive pulmonary vascular remodeling, the clinical significance of Gal-3 in human PAH remains to be established. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- David J R Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia.,Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Xueyi Li
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yusi Wang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Keyvan Mahboubi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - R Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Feng Chen
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
17
|
Araújo JRC, Coelho CB, Campos AR, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences. Curr Neuropharmacol 2019; 18:202-215. [PMID: 31622208 PMCID: PMC7327950 DOI: 10.2174/1570159x17666191016092221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.
Collapse
Affiliation(s)
| | - Cauê Barbosa Coelho
- Programa de Pos-Graduacao em Ciencia e Tecnologia Ambiental para o Semiarido (PPGCTAS), State University of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | | | | |
Collapse
|
18
|
Mo D, Tian W, Zhang HN, Feng YD, Sun Y, Quan W, Hao XW, Wang XY, Liu XX, Li C, Cao W, Liu WJ, Li XQ. Cardioprotective effects of galectin-3 inhibition against ischemia/reperfusion injury. Eur J Pharmacol 2019; 863:172701. [PMID: 31568784 DOI: 10.1016/j.ejphar.2019.172701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023]
Abstract
Myocardial ischemia/reperfusion (IR) injury is caused by the restoration of the coronary blood flow following an ischemic episode. Accumulating evidence suggests that galectin-3, a β-galactoside-binding lectin, acts as a biomarker in heart disease. However, it remains unclear whether manipulating galectin-3 affects the susceptibility of the heart to IR injury. In this study, RNA sequencing (RNA-seq) analysis identified that Lgals3 (galecin-3) plays an indispensable role in IR-induced cardiac damage. Immunostaining and immunoblot assays confirmed that the expression of galectin-3 was markedly increased in myocardial IR injury both in vivo and in vitro. Echocardiographic analysis showed that cardiac dysfunction in experimental IR injury was significantly attenuated by galectin-3 inhibitors including pectin (1%, i.p.) from citrus and binding peptide G3-C12 (5.0 mg/kg, i.p.). Galectin-3 inhibitor-treated mice exhibited smaller infarct sizes and decreased tissue injury. Furthermore, TUNEL staining showed that galectin-3 inhibition suppressed IR-mediated cardiomyocyte apoptosis. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) levels were well-preserved and IR-induced changes of mitochondrial cyto c, cytosol cyto c, caspase-9, caspase-3, Bcl-2 and Bax in the galectin-3 inhibitor-treated groups were observed. Our findings indicate that the pathological upregulation of galectin-3 contributes to IR-induced cardiac dysfunction and that galectin-3 inhibition ameliorates myocardial injury, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Dan Mo
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wen Tian
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Hui-Nan Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wei Quan
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiao-Wei Hao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xue-Ying Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiao-Xiao Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Wen-Juan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
19
|
Galectin-1 and Galectin-3 and Their Potential Binding Partners in the Dermal Thickening of Keloid Tissues. Am J Dermatopathol 2019; 41:193-204. [PMID: 30801341 DOI: 10.1097/dad.0000000000001284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Keloids are defined histopathologically as an inflammatory disorder characterized by exhibiting numerous fibroblasts, abnormal vascularization, increased number of proinflammatory immune cells as well as uncontrolled cell proliferation, and exacerbated and disorganized deposition of extracellular matrix (ECM) molecules. Importantly, many of these ECM molecules display N- and O-linked glycan residues and are considered as potential targets for galectin-1 (Gal-1) and galectin-3 (Gal-3). Nevertheless, the presence and localization of Gal-1 and Gal-3 as well as the interactions with some of their binding partners in keloid tissues have not been considered. Here, we show that in the dermal thickening of keloids, versican, syndecan-1, fibronectin, thrombospondin-1, tenascin C, CD44, integrin β1, and N-cadherin were immunolocalized in the elongated fibroblasts that were close to the immune cell infiltrate, attached to collagen bundles, and around the microvasculature and in some immune cells. We also show that Gal-1 and Gal-3 were present in the cytoplasm and along the cell membrane of some fibroblasts and immune and endothelial cells of the dermal thickening. We suggest that Gal-1 and Gal-3, in concert with some of the ECM molecules produced by fibroblasts and by immune cells, counteract the inflammatory response in keloids. We also proposed that Gal-1 and Gal-3 through their binding partners may form a supramolecular structure at the cell surface of fibroblasts, immune cells, endothelial cells, and in the extracellular space that might influence the fibroblast morphology, adhesion, proliferation, migration, and survival as well as the inflammatory responses.
Collapse
|
20
|
Santoro T, Azevedo CT, E Silva PMR, Martins MA, Carvalho VF. Glucocorticoids decrease the numbers and activation of mast cells by inducing the transactivation receptors of AGEs. J Leukoc Biol 2018; 105:131-142. [PMID: 30199117 DOI: 10.1002/jlb.3a0917-364rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are potent anti-allergic compounds that function, at least in part, by inhibiting signaling pathways in mast cells. We hypothesized that the GC-induced mastocytopenia and suppression of mast cell activation are mediated by the advanced glycation end products (AGEs)/receptors of AGEs (RAGEs) signaling axis. We evaluated the role of AGEs in GC-mediated mastocytopenia and impaired mast cell degranulation in male Wistar rats and Swiss-Webster mice subcutaneously injected with dexamethasone or prednisolone (0.1 mg/kg) once a day for 21 consecutive days. The animals were treated with either the AGE inhibitor aminoguanidine (250 mg/kg), the RAGE antagonist FPS-ZM1 (1 mg/kg) or the galectin-3 antagonist GSC-100 (1 mg/kg) daily for 18 days, starting 3 days following GC treatment. Aminoguanidine inhibited GC-induced mast cell apoptosis and restored mast cell numbers in the pleural cavity of GC-treated rats. Aminoguanidine also reversed the GC-induced reduction in histamine release triggered by allergens or compound 48/80 in vitro. GC treatment induced RAGE and galectin expression in mast cells, and blocking these agents by FPS-ZM1 or GSC-100 significantly reversed mast cell numbers in the peritoneal cavity and mesenteric tissue of GC-treated mice. In addition, the combination of GC and AGE-induced mast cell apoptosis in vitro was inhibited by both FPS-ZM1 and GSC-100. We concluded that the GC-induced mastocytopenia and suppression of mast cell stimulation are associated with the gene transactivation of RAGE and galectin-3.
Collapse
Affiliation(s)
- Tassia Santoro
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carolina T Azevedo
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia M R E Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinicius F Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Kishimoto A, Kimura S, Nio-Kobayashi J, Takahashi-Iwanaga H, Park AM, Iwanaga T. Histochemical characteristics of regressing vessels in the hyaloid vascular system of neonatal mice: Novel implication for vascular atrophy. Exp Eye Res 2018; 172:1-9. [PMID: 29596849 DOI: 10.1016/j.exer.2018.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
The hyaloid vasculature constitutes a transitory system nourishing the internal structures of the developing eye, but the mechanism of vascular regression and its cell biological characteristics are not fully understood. The present study aimed to reveal the specificity of the hyaloid vessels by a systematic immunohistochemical approach for marker substances of myeloid cells and the extracellular matrix (ECM) in neonatal mice. Macrophages immunoreactive for F4/80, cathepsin D, and LYVE-1 gathered around the vasa hyaloidea propria (VHP), while small round cells in vascular lumen of VHP were selectively immunoreactive for galectin-3; their segmented nuclei and immunoreactivities for Ly-6G, CD11b, and myeloperoxidase indicated their neutrophilic origin. VHP possessed thick ECM and a dense pericyte envelope as demonstrated by immunostaining for laminin, type IV collagen, integrin β1, and NG2. The galectin-3+ cells loosely aggregated with numerous erythrocytes in the lumen of hyaloid vessels in a manner reminiscent of vascular congestion. Galectin-3 is known to polymerize and form a complex with ECM and NG2 as well as recruit leukocytes on the endothelium. Observation of galectin-3 KO mice implicated the involvement of galectin-3 in the regression of hyaloid vasculature. Since macrophages may play central roles including blocking of the blood flow and the induction of apoptosis in the regression, galectin-3+ neutrophils may play a supportive role in the macrophage-mediated involution of the hyaloid vascular system.
Collapse
Affiliation(s)
- Ayuko Kishimoto
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hiromi Takahashi-Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
22
|
Rao SP, Ge XN, Sriramarao P. Regulation of Eosinophil Recruitment and Activation by Galectins in Allergic Asthma. Front Med (Lausanne) 2017; 4:68. [PMID: 28620605 PMCID: PMC5450023 DOI: 10.3389/fmed.2017.00068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
Eosinophils are differentiated granulocytes that are recruited from the bone marrow to sites of inflammation via the vascular system. Allergic asthma is characterized by the presence of large numbers of eosinophils in the lungs and airways. Due to their capacity to rapidly release inflammatory mediators such as cytokines, chemokines, growth factors, and cytotoxic granule proteins upon stimulation, eosinophils play a critical role in pro-inflammatory processes in allergen-exposed lungs. Identifying key players and understanding the molecular mechanisms directing eosinophil trafficking and recruitment to inflamed airways is a key to developing therapeutic strategies to limit their influx. Recent studies have brought to light the important role of glycans and glycan binding proteins in regulating recruitment of eosinophils. In addition to the role of previously identified eosinophil- and endothelial-expressed adhesion molecules in mediating eosinophil trafficking and recruitment to the inflamed airways, studies have also indicated a role for galectins (galectin-3) in this process. Galectins are mammalian lectins expressed by various cell types including eosinophils. Intracellularly, they can regulate biological processes such as cell motility. Extracellularly, galectins interact with β-galactosides in cell surface-expressed glycans to regulate cellular responses like production of inflammatory mediators, cell adhesion, migration, and apoptosis. Eosinophils express galectins intracellularly or on the cell surface where they interact with cell surface glycoconjugate receptors. Depending on the type (galectin-1, -3, etc.) and location (extracellular or intracellular, endogenous or exogenously delivered), galectins differentially regulate eosinophil recruitment, activation, and apoptosis and thus exert a pro- or anti-inflammatory outcome. Here, we have reviewed information pertaining to galectins (galectin-1, -3 -9, and -10) that are expressed by eosinophils themselves and/or other cells that play a role in eosinophil recruitment and function in the context of allergic asthma and their potential use as disease biomarkers or therapeutic targets for immunomodulation.
Collapse
Affiliation(s)
- Savita P Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Xiao Na Ge
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - P Sriramarao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
23
|
Fort-Gallifa I, Hernández-Aguilera A, García-Heredia A, Cabré N, Luciano-Mateo F, Simó JM, Martín-Paredero V, Camps J, Joven J. Galectin-3 in Peripheral Artery Disease. Relationships with Markers of Oxidative Stress and Inflammation. Int J Mol Sci 2017; 18:ijms18050973. [PMID: 28471381 PMCID: PMC5454886 DOI: 10.3390/ijms18050973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/06/2017] [Accepted: 04/29/2017] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is a modulator of oxidative stress, inflammation, and fibrogenesis involved in the pathogenesis of vascular diseases. The present study sought to characterize, in patients with peripheral artery disease (PAD), the localization of galectin-3 in arterial tissue, and to analyze the relationships between the circulating levels of galectin-3 and oxidative stress and inflammation. It also sought to compare the diagnostic accuracy of galectin-3 with that of other biochemical markers of this disease. We analyzed femoral or popliteal arteries from 50 PAD patients, and four control arteries. Plasma from 86 patients was compared with that from 72 control subjects. We observed differences in the expression of galectin-3 in normal arteries, and arteries from patients with PAD, with a displacement of the expression from the adventitia to the media, and the intima. In addition, plasma galectin-3 concentration was increased in PAD patients, and correlated with serologic markers of oxidative stress (F2-isoprostanes), and inflammation [chemokine (C−C motif) ligand 2, C-reactive protein, β-2-microglobulin]. We conclude that the determination of galectin-3 has good diagnostic accuracy in the assessment of PAD and compares well with other analytical parameters currently in use.
Collapse
Affiliation(s)
- Isabel Fort-Gallifa
- Biochemical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, Reus, 43201 Catalonia, Spain.
- Reference Laboratory of Catalonia South, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Cambra de Comerç 42, Reus, 43204 Catalonia, Spain.
| | - Anna Hernández-Aguilera
- Biochemical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, Reus, 43201 Catalonia, Spain.
| | - Anabel García-Heredia
- Biochemical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, Reus, 43201 Catalonia, Spain.
| | - Noemí Cabré
- Biochemical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, Reus, 43201 Catalonia, Spain.
| | - Fedra Luciano-Mateo
- Biochemical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, Reus, 43201 Catalonia, Spain.
| | - Josep M Simó
- Reference Laboratory of Catalonia South, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Cambra de Comerç 42, Reus, 43204 Catalonia, Spain.
| | - Vicente Martín-Paredero
- Service of Angiology, Vascular Surgery and Endosurgery, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Dr. Mallafré Guasch 4, Tarragona, 43005 Catalonia, Spain.
| | - Jordi Camps
- Biochemical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, Reus, 43201 Catalonia, Spain.
| | - Jorge Joven
- Biochemical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, Reus, 43201 Catalonia, Spain.
| |
Collapse
|
24
|
Xue J, Fu C, Cong Z, Peng L, Peng Z, Chen T, Wang W, Jiang H, Wei Q, Qin C. Galectin-3 promotes caspase-independent cell death of HIV-1-infected macrophages. FEBS J 2016; 284:97-113. [PMID: 27981746 DOI: 10.1111/febs.13955] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/10/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
HIV-1-infected macrophages are a key contributor to the formation of a viral reservoir and new treatment strategies focus on eliminating this pool of virus. Galectin-3 is a potent apoptosis-inducing protein that regulates diverse cellular activities. In the present study, we investigated whether galectin-3 could induce cell death in HIV-1-infected macrophages using HIV-1-infected THP1 monocytes (THP1-MNs) and THP1-derived macrophages (THP1-MΦs) as in vitro cellular models. We found that THP1-MΦs were more resistant than the THP1-MNs to HIV-1 infection-induced death, and that HIV-1 infection of the THP1-MΦs increased expression of the anti-apoptotic proteins Mcl-1, Bcl-2 and Bcl-xL. Additionally, galectin-3 but not FasL, tumor necrosis factor (TNF)-related apoptosis-inducing ligand or TNF-α, could induce cell death in HIV-1-infected THP1-MΦs. A similar result was shown for primary human monocyte-derived macrophages. Galectin-3-induced cell death was also significantly increased in macrophages obtained from SIVmac251-infected macaques compared to that of macrophages from healthy macaques. Furthermore, galectin-3-induced cell death in HIV-1-infected THP1-MΦs was caspase independent. Interestingly, endonuclease G (Endo G) was increased in the nucleus and decreased in the cytoplasm of galectin-3-treated cells; thus, galectin-3-induced cell death in HIV-1-infected THP1-MΦs is most likely related to the translocation of Endo G from the cytoplasm to the nucleus. These findings suggest that galectin-3 may potentially aid in the eradication of HIV-1/SIV-infected macrophages.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Chunyan Fu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Zhe Cong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Lingjuan Peng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Zhuoying Peng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Ting Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Wei Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Hong Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Qiang Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, China
| |
Collapse
|
25
|
Stefanoska I, Tadić J, Vilotić A, Jovanović Krivokuća M, Abu Rabi T, Vićovac L. Histological chorioamnionitis in preterm prelabor rupture of the membranes is associated with increased expression of galectin-3 by amniotic epithelium. J Matern Fetal Neonatal Med 2016; 30:2232-2236. [PMID: 27690725 DOI: 10.1080/14767058.2016.1243100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Gal-3, which can regulate immune responses upon infection and inflammation, was not studied so far in intrauterine infection leading to preterm prelabor rupture of the membranes (PPROM), although gal-1 was reported to be implicated in the process. Gal-3 mRNA and protein expression in amnion and its changes during histological chorioamnionitis were studied here. MATERIALS AND METHODS Fetal membranes were obtained from women with PPROM with (n =15) and without histological chorioamnionitis (n =15) during second and third trimester. Immunohistochemical reactivity was evaluated semiquantitatively and analyzed using t-test. Galectin profile of amniotic epithelia was determined by polymerase chain reaction (PCR) and change assessed in gal-3 in PPROM with (n =5) or without histological chorioamnionitis (n =5) by real-time PCR. RESULTS Human amniotic epithelium was found to express gal-1, gal-3, gal-7 and gal-8 mRNA. Gal-3 mRNA and protein is increased in fetal membranes and in the amniotic epithelium in patients with chorionamnionitis. CONCLUSION Histological chorioamnionitis is associated with increased gal-3 expression and strong immunoreactivity of the amnion. Gal-3 may participate in the regulation of the inflammatory responses to chorioamniotic infection and/or direct interaction with pathogens.
Collapse
Affiliation(s)
- Ivana Stefanoska
- a Institute for the Application of Nuclear Energy, INEP, University of Belgrade , Belgrade , Serbia and
| | - Jasmina Tadić
- b Department of Histopathology , Clinical Center of Serbia , Belgrade , Serbia
| | - Aleksandra Vilotić
- a Institute for the Application of Nuclear Energy, INEP, University of Belgrade , Belgrade , Serbia and
| | | | - Tamara Abu Rabi
- a Institute for the Application of Nuclear Energy, INEP, University of Belgrade , Belgrade , Serbia and
| | - Ljiljana Vićovac
- a Institute for the Application of Nuclear Energy, INEP, University of Belgrade , Belgrade , Serbia and
| |
Collapse
|
26
|
Nunomura S, Okayama Y, Terui T, Ra C. Treatment of murine mast cells with IgEκ and protein L enhances apoptotic cell death induced by IL-3 withdrawal. Biochem Biophys Res Commun 2015; 456:700-5. [PMID: 25522877 DOI: 10.1016/j.bbrc.2014.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Engagement of the high-affinity IgE receptor (FcεRI) can be either protective or non-protective against apoptotic cell death (ACD) in bone marrow-derived murine mast cells (BMMCs) after IL-3 withdrawal, depending on the avidity between IgE and its antigen. We recently reported that protein L (PpL), a bacterial Igκ-binding soluble protein, is able to stimulate intracellular signaling to induce activation of BMMCs by interacting with the IgEκ-FcεRI complex. However, it is unclear if cross-linking of FcεRI with IgEκ and PpL prevents or enhances IL-3-dependent ACD in BMMCs. In the present study, we found that IL-3-dependent ACD of BMMCs is accelerated by loading soluble PpL in the presence of IgEκ-occupied FcεRIα. For this purpose, soluble PpL was incorporated into the BMMCs. Unlike soluble PpL, immobilized PpL failed to enhance ACD, although both forms of PpL induced IL-6 production equally in BMMCs. In addition, we observed that DNS5-BSA protected anti-DNS IgE-sensitized BMMCs from IL-3 depletion-mediated ACD by inducing the production of autocrine IL-3. In contrast, DNS5-PpL enhanced IL-3 withdrawal-induced ACD of anti-DNS IgE-sensitized BMMCs and reduced the production of autocrine IL-3. These findings suggest that PpL increases IL-3 withdrawal-induced ACD of IgEκ-sensitized BMMCs by incorporating PpL into the BMMCs and that this internalized PpL may interfere with survival signals via FcεRI.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan; Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan.
| | - Yoshimichi Okayama
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan
| | - Tadashi Terui
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Chisei Ra
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Department of Microbiology, Nihon University School of Medicine, Tokyo, Japan; Asahi Hospital, Chiba, Japan
| |
Collapse
|
27
|
Abstract
Galectins are an evolutionarily ancient family of glycan-binding proteins (GBPs) and are found in all animals. Although they were discovered over 30 years ago, ideas about their biological functions continue to evolve. Current evidence indicates that galectins, which are the only known GBPs that occur free in the cytoplasm and extracellularly, are involved in a variety of intracellular and extracellular pathways contributing to homeostasis, cellular turnover, cell adhesion, and immunity. Here we review evolving insights into galectin biology from a historical perspective and explore current evidence regarding biological roles of galectins.
Collapse
|
28
|
Madrigal-Matute J, Lindholt JS, Fernandez-Garcia CE, Benito-Martin A, Burillo E, Zalba G, Beloqui O, Llamas-Granda P, Ortiz A, Egido J, Blanco-Colio LM, Martin-Ventura JL. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. J Am Heart Assoc 2014; 3:jah3627. [PMID: 25095870 PMCID: PMC4310363 DOI: 10.1161/jaha.114.000785] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Galectin‐3 (Gal‐3) participates in different mechanisms involved in atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Thus, there have been committed intensive efforts to elucidate the function of Gal‐3 in cardiovascular (CV) diseases. The role of Gal‐3 as a circulating biomarker has been demonstrated in patients with heart failure, but its importance as a biomarker in atherothrombosis is still unknown. Methods and Results Because Gal‐3 is involved in monocyte‐to‐macrophage transition, we used fresh isolated monocytes and the in vitro model of macrophage differentiation of THP‐1 cells stimulated with phorbol myristate acetate (PMA). Gal‐3 release is increased by PMA in human monocytes and macrophages, a process involving exosomes and regulated by reactive oxygen species/NADPH oxidase activity. In asymptomatic subjects (n=199), Gal‐3 plasma levels are correlated with NADPH oxidase activity in peripheral blood mononuclear cells (r=0.476; P<0.001) and carotid intima‐media thickness (r=0.438; P<0.001), a surrogate marker of atherosclerosis. Accordingly, Gal‐3 plasma concentrations are increased in patients with carotid atherosclerosis (n=158), compared to control subjects (n=115; 14.3 [10.7 to 16.9] vs. 10.4 [8.6 to 12.5] ng/mL; P<0.001). Finally, on a 5‐year follow‐up study in patients with peripheral artery disease, Gal‐3 concentrations are significantly and independently associated with an increased risk for CV mortality (hazard ratio=2.24, 95% confidence interval: 1.06 to 4.73, P<0.05). Conclusions Gal‐3 extracellular levels could reflect key underlying mechanisms involved in atherosclerosis etiology, development, and plaque rupture, such as inflammation, infiltration of circulating cells and oxidative stress. Moreover, circulating Gal‐3 concentrations are associated with clinical outcomes in patients with atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.) Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (J.M.M.)
| | | | - Carlos Ernesto Fernandez-Garcia
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.)
| | - Alberto Benito-Martin
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.)
| | - Elena Burillo
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.)
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, CIMA University of Navarra, Pamplona, Spain (G.Z.) Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain (G.Z.)
| | - Oscar Beloqui
- University Clinic, University of Navarra, Pamplona, Spain (O.B.)
| | - Patricia Llamas-Granda
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.)
| | - Alberto Ortiz
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.)
| | - Jesus Egido
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.) Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain (J.E.)
| | - Luis Miguel Blanco-Colio
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.)
| | - Jose Luis Martin-Ventura
- Vascular Research Lab, IIS Fundación Jiménez Díaz, Autónoma University, IRSIN, Madrid, Spain (J.M.M., C.E.F.G., A.B.M., E.B., P.L.G., A.O., J.E., L.M.B.C., J.L.M.V.)
| |
Collapse
|
29
|
Hashiba K, Sano M, Nio-Kobayashi J, Hojo T, Skarzynski DJ, Okuda K. Galectin-3 Contributes to Luteolysis by Binding to Beta 1 Integrin in the Bovine Corpus Luteum1. Biol Reprod 2014; 91:2. [DOI: 10.1095/biolreprod.114.119057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Mast Cells Kill Candida albicans in the Extracellular Environment but Spare Ingested Fungi from Death. Inflammation 2014; 37:2174-89. [DOI: 10.1007/s10753-014-9951-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Galectin-3: its role in asthma and potential as an anti-inflammatory target. Respir Res 2013; 14:136. [PMID: 24313993 PMCID: PMC3878924 DOI: 10.1186/1465-9921-14-136] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/04/2013] [Indexed: 01/13/2023] Open
Abstract
Galectins constitute an evolutionary conserved family that bind to β-galactosides. Increasing evidence shows that galectins are involved in many fundamental biological processes such as cellular communication, inflammation, differentiation and apoptosis. Changes in galectin-3 (Gal-3) expression are commonly seen in cancer and pre-cancerous conditions, and Gal-3 may be involved in the regulation of diverse cancer cell activities that contribute to tumourigenesis, cancer progression and metastasis. In addition, Gal-3 is a pro-inflammatory regulator in rheumatoid arthritis. Gal-3 has been shown to be involved in many aspects in allergic inflammation, such as eosinophil recruitment, airway remodeling, development of a Th2 phenotype as well as increased expression of inflammatory mediators. In an in vivo model it was shown that bronchoalveolar lavage (BAL) fluid from ovalbumin-challenged mice contained significantly higher levels of Gal-3 compared to control mice. The molecular mechanisms of Gal-3 in human asthma have not been fully elucidated. This review will focus on what is known about the Gal-3 and its role in the pathophysiological mechanisms of asthma to evaluate the potential of Gal-3 as a biomarker and therapeutic target of asthma.
Collapse
|
32
|
Saksida T, Nikolic I, Vujicic M, Nilsson UJ, Leffler H, Lukic ML, Stojanovic I, Stosic-Grujicic S. Galectin-3 deficiency protects pancreatic islet cells from cytokine-triggered apoptosis in vitro. J Cell Physiol 2013; 228:1568-76. [PMID: 23280610 DOI: 10.1002/jcp.24318] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/19/2012] [Indexed: 11/10/2022]
Abstract
Beta cell apoptosis is a hallmark of diabetes. Since we have previously shown that galectin-3 deficient (LGALS3(-/-) ) mice are relatively resistant to diabetes induction, the aim of this study was to examine whether beta cell apoptosis depends on the presence of galectin-3 and to delineate the underlying mechanism. Deficiency of galectin-3, either hereditary or induced through application of chemical inhibitors, β-lactose or TD139, supported survival and function of islet beta cells compromised by TNF-α + IFN-γ + IL-1β stimulus. Similarly, inhibition of galectin-3 by β-lactose or TD139 reduced cytokine-triggered apoptosis of beta cells, leading to conclusion that endogenous galectin-3 propagates beta apoptosis in the presence of an inflammatory milieu. Exploring apoptosis-related molecules expression in primary islet cells before and after treatment with cytokines we found that galectin-3 ablation affected the expression of major components of mitochondrial apoptotic pathway, such as BAX, caspase-9, Apaf, SMAC, caspase-3, and AIF. In contrast, anti-apoptotic molecules Bcl-2 and Bcl-XL were up-regulated in LGALS3(-/-) islet cells when compared to wild-type (WT) counterparts (C57BL/6), resulting in increased ratio of anti-apoptotic versus pro-apoptotic molecules. However, Fas-triggered apoptotic pathway as well as extracellular signal-regulated kinase 1/2 (ERK1/2) was not influenced by LGALS-3 deletion. All together, these results point to an important role of endogenous galectin-3 in beta cell apoptosis in the inflammatory milieu that occurs during diabetes pathogenesis and implicates impairment of mitochondrial apoptotic pathway as a key event in protection from beta cell apoptosis in the absence of galectin-3.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Daffu G, del Pozo CH, O'Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 2013; 14:19891-910. [PMID: 24084731 PMCID: PMC3821592 DOI: 10.3390/ijms141019891] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a central mechanism by which the receptor for advanced glycation endproducts (RAGE) mediates its pathological effects. Multiple experimental inquiries in RAGE-expressing cultured cells have demonstrated that ligand-RAGE interaction mediates generation of reactive oxygen species (ROS) and consequent downstream signal transduction and regulation of gene expression. The primary mechanism by which RAGE generates oxidative stress is via activation of NADPH oxidase; amplification mechanisms in the mitochondria may further drive ROS production. Recent studies indicating that the cytoplasmic domain of RAGE binds to the formin mDia1 provide further support for the critical roles of this pathway in oxidative stress; mDia1 was required for activation of rac1 and NADPH oxidase in primary murine aortic smooth muscle cells treated with RAGE ligand S100B. In vivo, in multiple distinct disease models in animals, RAGE action generates oxidative stress and modulates cellular/tissue fate in range of disorders, such as in myocardial ischemia, atherosclerosis, and aneurysm formation. Blockade or genetic deletion of RAGE was shown to be protective in these settings. Indeed, beyond cardiovascular disease, evidence is accruing in human subjects linking levels of RAGE ligands and soluble RAGE to oxidative stress in disorders such as doxorubicin toxicity, acetaminophen toxicity, neurodegeneration, hyperlipidemia, diabetes, preeclampsia, rheumatoid arthritis and pulmonary fibrosis. Blockade of RAGE signal transduction may be a key strategy for the prevention of the deleterious consequences of oxidative stress, particularly in chronic disease.
Collapse
Affiliation(s)
- Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, Smilow 901C, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Borges BE, Teixeira VR, Appel MH, Steclan CA, Rigo F, Filipak Neto F, da Costa Ferreira AM, Chammas R, Zanata SM, Nakao LS. De novo galectin-3 expression influences the response of melanoma cells to isatin-Schiff base copper (II) complex-induced oxidative stimulus. Chem Biol Interact 2013; 206:37-46. [PMID: 23994248 DOI: 10.1016/j.cbi.2013.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/25/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022]
Abstract
Galectin-3, a ubiquitous member of the galectin family, has been shown to control cellular proliferation, adhesion, migration and apoptosis; thus, it has a role in tumor development and progression. Galectin-3 expression is both up- and down-regulated during melanoma progression. However, conflicting data regarding its roles in tumor biology prompted us to investigate if the presence of galectin-3 influences the response of melanoma cells to a novel metallodrug because metastatic melanoma acquires chemo resistance and is reported to be redox-sensitive. Previously, it was demonstrated that the complex [bis-(2-oxindol-3-yl-imino)-2-(2-aminoethyl) pyridine-N,N'] copper (II) perchlorate, herein referred to as [Cu(isaepy)], induces ROS formation and apoptosis in neuroblastoma cells through mitochondrial uncoupling and the activation of AMPK/p38/p53 signaling. Here, we used a model of vertical growth melanoma (TM1), in which GAL3 expression is lost during tumor progression. When de novo expressed, galectin-3 was found to be ubiquitously present in all subcellular compartments. Our results demonstrate that de novo galectin-3 expression impairs the cellular antioxidant system and renders TM1G3 cells more susceptible than GAL3-null TM1MNG3 cells to [Cu(isaepy)] treatment. This compound, in contrast with the redox inactive [dichloro (2-oxindol-3-yl-imino)-2-(2-aminoethyl) pyridine-N,N'] zinc (II), herein referred to as [Zn(isaepy)], leads to increased intracellular ROS accumulation, increased carbonyl stress, increased mitochondrial depolarization, decreased cell adhesion, increased p38 activation and apoptosis in TM1G3, compared with TM1MNG3. Cell death was shown to be dependent on a hydrogen peroxide-derived species and on the activation of p38. Because mitochondria are a target of both [Cu(isaepy)] and galectin-3, we propose that the presence of galectin-3 in this organelle favors increased ROS production, thereby inducing oxidative cellular damage and apoptotic death. Therefore, [Cu(isaepy)] may be envisaged as a possible anti-melanoma strategy, particularly for melanomas that express galectin-3.
Collapse
Affiliation(s)
- Beatriz E Borges
- Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
de Vasconcelos Carvalho M, Pereira JDS, Alves PM, Silveira EJDD, de Souza LB, Queiroz LMG. Alterations in the immunoexpression of galectins-1, -3 and -7 between different grades of oral epithelial dysplasia. J Oral Pathol Med 2012; 42:174-9. [PMID: 22845866 DOI: 10.1111/j.1600-0714.2012.01199.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2012] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Oral epithelial dysplasia (OED) is a potentially malignant lesion characterized by a combination of cytological and architectural anomalies, which are essential for its diagnosis. Galectins are proteins that participate in cell cycle, adhesion and differentiation, apoptosis, and immune responses, as well as in cancer development and progression. MATERIALS AND METHODS The aim of this study was to analyze the immunohistochemical expression of galectins-1, -3, and -7 in the OED (21 low risk and 29 high risk) and normal oral mucosa (NOM). The binary grading system was used. RESULTS Galectin-1 was expressed in the middle/lower third in most OED cases. Nuclear/cytoplasmic staining was observed in most low-risk and high-risk OEDs. All cases of NOM were negative for galectin-1. Galectin-3 was expressed in the middle/lower third in most low-risk cases. Nuclear/cytoplasmic staining was noted in most low-risk and high-risk OEDs. Middle/lower third and in membrane staining was detected in four cases of NOM for galectin-3. Galectin-7 was expressed in the upper/middle third in most of OED cases. Nuclear/cytoplasmic staining predominated in low-risk and high-risk OEDs. Galectin-7 was detected in four cases of NOM, all of them presenting staining in the upper/middle third and in the membrane. CONCLUSION The differences in the immunoexpression of galactin-1, -3, and -7 between different grades of OEDs suggest the involvement of this protein in the progression of dysplasias.
Collapse
|
36
|
Abstract
Galectins are animal lectins that bind to β-galactosides, such as lactose and N-acetyllactosamine, in free form or contained in glycoproteins or glycolipids. They are located intracellularly or extracellularly. In the latter they exhibit bivalent or multivalent interactions with glycans on cell surfaces and induce various cellular responses, including production of cytokines and other inflammatory mediators, cell adhesion, migration, and apoptosis. Furthermore, they can form lattices with membrane glycoprotein receptors and modulate receptor properties. Intracellular galectins can participate in signaling pathways and alter biological responses, including apoptosis, cell differentiation, and cell motility. Current evidence indicates that galectins play important roles in acute and chronic inflammatory responses, as well as other diverse pathological processes. Galectin involvement in some processes in vivo has been discovered, or confirmed, through studies of genetically engineered mouse strains, each deficient in a given galectin. Current evidence also suggests that galectins may be therapeutic targets or employed as therapeutic agents for these inflammatory responses.
Collapse
Affiliation(s)
- Fu-Tong Liu
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, 95816, USA.
| | | | | |
Collapse
|
37
|
Inhibition of advanced glycation end products by aminoguanidine restores mast cell numbers and reactivity in alloxan-diabetic rats. Eur J Pharmacol 2011; 669:143-8. [DOI: 10.1016/j.ejphar.2011.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/21/2011] [Accepted: 08/05/2011] [Indexed: 02/03/2023]
|
38
|
Inoue T, Suzuki Y, Ra C. Epigallocatechin-3-gallate induces cytokine production in mast cells by stimulating an extracellular superoxide-mediated calcium influx. Biochem Pharmacol 2011; 82:1930-9. [PMID: 21945989 DOI: 10.1016/j.bcp.2011.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 11/28/2022]
Abstract
The green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) has various biological activities, including anti-inflammatory, anti-neoplastic, anti- and pro-apoptotic, and neuroprotective effects. Although these are often associated with increased intracellular reactive oxygen species (ROS) and Ca(2+) levels, their involvement in biological effects is poorly understood. Here we report that EGCG induces cytokine production in mast cells via Ca(2+) influx and ROS generation. EGCG at concentrations of ≥50 μM induced interleukin-13 and tumor necrosis factor-α production in RBL-2H3 and bone marrow-derived mast cells. The effects were dependent on extracellular Ca(2+), and EGCG induced Ca(2+) release from intracellular stores and Ca(2+) influx. Ca(2+) influx was suppressed by 2-aminoethoxydiphenyl borate, an inhibitor of store-operated Ca(2+) (SOC) channels, including Ca(2+) release-activated Ca(2+) channels and transient receptor potential canonical channels. EGCG failed to induce Ca(2+) influx through SOC channels. EGCG-activated Ca(2+) channels were genetically and pharmacologically distinct from Ca(v)1.2 L-type Ca(2+) channels, another route of Ca(2+) influx into mast cells. EGCG evoked release of superoxide (O(2)(·-)) into the extracellular space. Exogenous superoxide dismutase, but not catalase, inhibited EGCG-evoked Ca(2+) influx and cytokine production, indicating that extracellular O(2)(·-) regulates these events. EGCG can serve as a powerful tool for studying O(2)(·-)-regulated Ca(2+) channels, which may be selectively involved in the regulation of cytokine production but have yet to be elucidated.
Collapse
Affiliation(s)
- Toshio Inoue
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
39
|
Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 2011; 50:7842-57. [PMID: 21848324 DOI: 10.1021/bi201121m] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Santiago Di Lella
- Laboratorio de Inmunopatologı́a, Instituto de Biologı́a y Medicina Experimental, CONICET, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Davicino RC, Eliçabe RJ, Di Genaro MS, Rabinovich GA. Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms. Int Immunopharmacol 2011; 11:1457-63. [PMID: 21600310 DOI: 10.1016/j.intimp.2011.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/02/2011] [Indexed: 12/21/2022]
Abstract
Innate immune cells have evolved to sense microbial pathogens through pattern recognition receptors (PRRs), which interact with conserved pathogen-associated molecular patterns (PAMPs) to convey microbial information into immune cell signaling and activation events. PRRs also recognize endogenous damage-associated molecular patterns (DAMPs), including alarmins released during microbial invasion, initiation of autoimmune inflammation or tumor growth. In spite of the well-established role of Toll-like receptors (TLRs) in mediating these recognition events, compelling evidence supports a central function for lectin-glycan interactions in promoting microbial sensing and evoking immune responses. Here we discuss the role of glycans and lectins (particularly galectins) in mediating microbial recognition and initiation of innate immune responses. Both microbes and host cells are sources of glycan-containing information which is, at least in part, decoded by endogenous glycan-binding proteins or lectins, including C-type lectins, siglecs and galectins. Although C-type lectins and siglecs can recognize microbial glycans when expressed on the cell surface of innate immune cells, galectins mainly function as soluble mediators that bridge microbial or host glycans to amplify or attenuate immune responses. Galectins are widely expressed in host cells and play important roles during different steps of infection such as pathogen recognition, invasion and resolution. In addition, recent studies report the presence of conserved 'galectin-like' domains in certain pathogens including helminths and protistan parasites, suggesting that they could also serve as potential virulence factors that influence the outcome and course of infection. Understanding the role of lectin-glycan interactions and the relevance of PRR or PAMP glycosylation in microbial recognition might contribute to the design of novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Roberto C Davicino
- Division of Immunology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Laboratory of Immunopathology, Multidisciplinary Institute of Biological Investigations - San Luis, CONICET, San Luis, Argentina
| | | | | | | |
Collapse
|
41
|
Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 2010; 31:10-21. [PMID: 21184154 DOI: 10.1007/s10875-010-9494-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 12/31/2022]
Abstract
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Collapse
Affiliation(s)
- Juan P Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
42
|
Sick E, Brehin S, André P, Coupin G, Landry Y, Takeda K, Gies JP. Advanced glycation end products (AGEs) activate mast cells. Br J Pharmacol 2010; 161:442-55. [PMID: 20735427 PMCID: PMC2989594 DOI: 10.1111/j.1476-5381.2010.00905.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/19/2010] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Advanced glycation endproducts (AGEs) represent one of the many types of chemical modifications that occur with age in long-lived proteins. AGEs also accumulate in pathologies such as diabetes, cardiovascular diseases, neurodegeneration and cancer. Mast cells are major effectors of acute inflammatory responses that also contribute to the progression of chronic diseases. Here we investigated interactions between AGEs and mast cells. EXPERIMENTAL APPROACHES Histamine secretion from AGEs-stimulated mast cells was measured. Involvement of a receptor for AGEs, RAGE, was assessed by PCR, immunostaining and use of inhibitors of RAGE. Production of reactive oxygen species (ROS) and cytokines was measured. KEY RESULTS Advanced glycation endproducts dose-dependently induced mast cell exocytosis with maximal effects being obtained within 20 s. RAGE mRNA was detected and intact cells were immunostained by a specific anti-RAGE monoclonal antibody. AGEs-induced exocytosis was inhibited by an anti-RAGE antibody and by low molecular weight heparin, a known RAGE antagonist. RAGE expression levels were unaltered after 3 h treatment with AGEs. AGE-RAGE signalling in mast cells involves Pertussis toxin-sensitive G(i)-proteins and intracellular Ca(2+) increases as pretreatment with Pertussis toxin, caffeine, 2-APB and BAPTA-AM inhibited AGE-induced exocytosis. AGEs also rapidly stimulated ROS production. After 6 h treatment with AGEs, the pattern of cytokine secretion was unaltered compared with controls. CONCLUSIONS AND IMPLICATIONS Advanced glycation endproducts activated mast cells and may contribute to a vicious cycle involving generation of ROS, increased formation of AGEs, activation of RAGE and to the increased low-grade inflammation typical of chronic diseases.
Collapse
Affiliation(s)
- E Sick
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Nemoto-Sasaki Y, Kasai KI. Deletion of lec-10, a galectin-encoding gene, increases susceptibility to oxidative stress in Caenorhabditis elegans. Biol Pharm Bull 2010; 32:1973-7. [PMID: 19952414 DOI: 10.1248/bpb.32.1973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Galectins are a family of beta-galactoside-binding lectins. They are involved in the regulation of a variety of biological phenomena in mammals. However, little is known about their roles in invertebrates. Caenorhabditis elegans is a well-characterized model organism whose complete genome has been sequenced. C. elegans is now being studied extensively in various fields of medical sciences. In this study, we examined the phenotypes of a mutant strain of C. elegans (tm1262) lacking lec-10, a galectin-encoding gene. We observed no difference in the rates of embryonic lethality and larval arrest/slow growth between this mutant strain and the wild-type strain. No apparent morphological defect was observed in the lec-10-deletion mutant (tm1262). Moreover, the life-spans of this mutant and the wild-type strain were equivalent. However, this mutant showed significantly greater susceptibility to paraquat and hydrogen peroxide than the wild type did. The lec-10-deletion mutants (tm1262) were as susceptible as the daf-16-deletion mutants (mu86) to paraquat and hydrogen peroxide. These results suggest that the deletion of lec-10 does not have a notable effect on the worm's survival under laboratory conditions. However, this study indicates that lec-10 does confer some protection against oxidative stress.
Collapse
Affiliation(s)
- Yoko Nemoto-Sasaki
- Department of Biological Chemistry, Teikyo University School of Pharmaceutical Sciences, Japan
| | | |
Collapse
|
44
|
Suzuki Y, Inoue T, Ra C. Endothelial nitric oxide synthase is essential for nitric oxide generation, L-type Ca2+ channel activation and survival in RBL-2H3 mast cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:372-85. [DOI: 10.1016/j.bbamcr.2009.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/26/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
|
45
|
|
46
|
Suzuki Y, Yoshimaru T, Inoue T, Ra C. Discrete generations of intracellular hydrogen peroxide and superoxide in antigen-stimulated mast cells: reciprocal regulation of store-operated Ca2+ channel activity. Mol Immunol 2009; 46:2200-9. [PMID: 19467708 DOI: 10.1016/j.molimm.2009.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 12/01/2022]
Abstract
Mast cells and T cells produce reactive oxygen species (ROS) after stimulation with the high-affinity IgE receptor (Fc epsilon RI) and T cell receptor. A growing body of evidence suggests the existence of ROS-regulated intracellular and/or plasma membrane Ca(2+) channels in these cells but their molecular entities remain to be identified. Here, we report that store-operated Ca(2+) channel (SOC) activity is regulated by superoxide (O(2)(*-)) and hydrogen peroxide (H(2)O(2)) in mast cells. MnTBaP (Mn(III)tetrakis(4-benzoic acid)porphyrin) and ebselen (2-phenyl-1,2-benziso-selenazol-3(2H)-one) selectively blocked the generation of O(2)(*-) and H(2)O(2), respectively, in antigen-stimulated cells. The H(2)O(2) generation was dependent on the Src family kinase (SFK) and phosphatidylinositol-3-kinase (PI3K) activities but independent of extracellular Ca(2+), and the Fc epsilon RI beta-chain immunoreceptor tyrosine-based activation motif played an essential role. On the other hand, O(2)(*-) generation was strictly dependent on extracellular Ca(2+), but negatively regulated by the SFK and PI3K activities. Inhibition of O(2)(*-) generation resulted in increased H(2)O(2) generation and reduced SOC activity, although it had a minimal effect on endoplasmic reticulum Ca(2+) store depletion. On the contrary, inhibition of H(2)O(2) generation resulted in increased intracellular O(2)(*-) generation and augmented SOC activity. The findings suggest that O(2)(*-) and H(2)O(2), which are generated by separate signaling pathways/sources, reciprocally regulate SOC activity in mast cells. Such generations of multiple oxidant species and their distinct roles in the regulation of SOC activity may facilitate the fine tuning of Ca(2+) signaling in mast cells.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, 30-1 Oyaguchikami-cho Itabashi-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
47
|
Ca v 1.2 L-type Ca2+ channel protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption. Mol Immunol 2009; 46:2370-80. [PMID: 19447492 DOI: 10.1016/j.molimm.2009.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 11/23/2022]
Abstract
In non-excitable cells, store-operated Ca(2+) channels (SOCs) are the principal routes of Ca(2+) entry. Recently, store-independent Ca(2+) channels which are pharmacologically and/or immunologically similar to L-type Ca(2+) channels (LTCCs) have been shown to exist in various hematopoietic cells, including T cells, B cells and neutrophils. We previously reported that mast cells express LTCCs which regulate mast cell effector responses in a distinct manner from SOCs. In the present study, we examined the possible role for LTCCs in mast cell survival. Both RBL-2H3 mast cells and bone marrow-derived mast cells underwent considerable apoptosis after treatment with thapsigargin (Tg) but not stimulation through the high-affinity IgE receptor (Fc epsilon RI). The LTCC-selective antagonists such as nifedipine greatly augmented Fc epsilon RI-mediated apoptosis, while the LTCC-selective agonist (S)-BayK8644 blocked Tg-induced apoptosis. The modulation of apoptosis was accompanied by altered mitochondrial integrity, as measured with the mitochondrial membrane potential, cytochrome c release and caspase-3/7 activation. Fc epsilon RI stimulation induced mitochondrial Ca(2+) ([Ca(2+)](m)) entry through both SOCs and LTCCs, while Tg evoked [Ca(2+)](m) entry through LTCCs but not SOCs. The LTCC-selective antagonists blocked [Ca(2+)](m) entry, whereas (S)-BayK8644 augmented Tg-induced [Ca(2+)](m) entry. Moreover, blockade of the expression of the alpha(1C) subunit of Ca(v)1.2 LTCC using small-interfering RNA strongly augmented Fc epsilon RI-mediated apoptosis, mitochondrial integrity, and mitochondrial Ca(2+) collapse, and abolished the protective effects of (S)-BayK8644 against Tg-induced apoptosis. These findings suggest that Ca(v)1.2 LTCC protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption.
Collapse
|
48
|
Inoue T, Suzuki Y, Yoshimaru T, Ra C. Ca2+-dependent mast cell death induced by Ag (I) via cardiolipin oxidation and ATP depletion. J Leukoc Biol 2009; 86:167-79. [PMID: 19401388 DOI: 10.1189/jlb.1108691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In genetically susceptible humans and/or experimental animals, ions of heavy metals, Hg (II), Au (III), and Ag (I) have been shown to strongly induce autoimmunity, in which mast cells have been implicated to play a role. Here, we demonstrate that Ag (I) application results in mast cell death through a unique Ca(2+)- and mitochondria-dependent pathway. As cellular susceptibilities to Ag (I) cytotoxicity varied considerably, we analyzed the cell death pathway in the low and high responding cells. In the low responding cells, long application (e.g., 20 h) of Ag (I) at concentrations (>or=30 microM) induced cell death, which was accompanied by mitochondrial membrane depolarization, cyt c release, and caspase-3/7 activation but was not prevented by selective inhibitors of caspase-3/7 and the mitochondrial permeability transition. The cell death was preceded by elevations in the cytoplasmic and mitochondrial Ca(2+) levels, and Ca(2+) responses and cell death were prevented by thiol reagents, including DTT, N-acetylcysteine, and reduced glutathione monoethyl ester. In the high responding cells, Ag (I) evoked considerable cell death by necrosis within 1 h, without inducing caspase activation, and this cell death was reduced significantly by depleting extracellular but not intracellular Ca(2+). Moreover, Ag (I) strongly induced Ca(2+)-dependent CL oxidation and intracellular ATP depletion, both of which were blocked by thiol reagents. These results suggest that Ag (I) activates thiol-dependent Ca(2+) channels, thereby promoting Ca(2+)-dependent CL oxidation, cyt c release, and ATP depletion. This necrotic cell death may play roles in Ag-induced inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Toshio Inoue
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
49
|
Dhirapong A, Lleo A, Leung P, Gershwin ME, Liu FT. The immunological potential of galectin-1 and -3. Autoimmun Rev 2009; 8:360-363. [PMID: 19064001 DOI: 10.1016/j.autrev.2008.11.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 11/21/2008] [Indexed: 01/01/2023]
Abstract
A family of beta-galactosides-binding proteins, called galectins, have recently emerged as novel molecules with immunoregulatory functions. These proteins are expressed in both inflammatory and non-inflammatory cells including monocytes, macrophages, dendritic cells, mast cells, and B and T cells, giving a broad spectrum of involvement in the immune response. Galectins are uniquely capable of acting both intracellularly and extracellularly, affecting such processes as cell adhesion, signaling, proliferation, differentiation, and apoptosis. Different members of this family have been shown to modulate several pathological processes such as allergic reactions, autoimmunity, and tumor invasion. Therefore, understanding the role of galectins in achieving appropriate proliferative and effector responses to antigens will yield important insights to autoimmune diseases and delineate novel strategies for disease intervention.
Collapse
Affiliation(s)
- Amy Dhirapong
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, School of Medicine, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
50
|
Zhuo Y, Chammas R, Bellis SL. Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J Biol Chem 2008; 283:22177-85. [PMID: 18676377 DOI: 10.1074/jbc.m8000015200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In previous studies, we determined that beta1 integrins from human colon tumors have elevated levels of alpha2-6 sialylation, a modification added by beta-galactosamide alpha-2,6-sialyltranferase I (ST6Gal-I). Intriguingly, the beta1 integrin is thought to be a ligand for galectin-3 (gal-3), a tumor-associated lectin. The effects of gal-3 are complex; intracellular forms typically protect cells against apoptosis through carbohydrate-independent mechanisms, whereas secreted forms bind to cell surface oligosaccharides and induce apoptosis. In the current study, we tested whether alpha2-6 sialylation of the beta1 integrin modulates binding to extracellular gal-3. Herein we report that SW48 colonocytes lacking alpha2-6 sialylation exhibit beta1 integrin-dependent binding to gal-3-coated tissue culture plates; however, binding is attenuated upon forced expression of ST6Gal-I. Removal of alpha2-6 sialic acids from ST6Gal-I expressors by neuraminidase treatment restores gal-3 binding. Additionally, using a blot overlay approach, we determined that gal-3 binds directly and preferentially to unsialylated, as compared with alpha2-6-sialylated, beta1 integrins. To understand the physiologic consequences of gal-3 binding, cells were treated with gal-3 and monitored for apoptosis. Galectin-3 was found to induce apoptosis in parental SW48 colonocytes (unsialylated), whereas ST6Gal-I expressors were protected. Importantly, gal-3-induced apoptosis was inhibited by function blocking antibodies against the beta1 subunit, suggesting that beta1 integrins are critical transducers of gal-3-mediated effects on cell survival. Collectively, our results suggest that the coordinate up-regulation of gal-3 and ST6Gal-I, a feature that is characteristic of colon carcinoma, may confer tumor cells with a selective advantage by providing a mechanism for blockade of the pro-apoptotic effects of secreted gal-3.
Collapse
Affiliation(s)
- Ya Zhuo
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|