1
|
Shrivastava R, Gandhi P, Sorte SK, Shrivastava A. Characterizing the Linkage of Systemic Hypoxia and Angiogenesis in High-Grade Glioma to Define the Changes in Tumor Microenvironment for Predicting Prognosis. J Mol Neurosci 2024; 74:63. [PMID: 38967861 DOI: 10.1007/s12031-024-02240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
High-grade gliomas (HGG) comprising WHO grades 3 and 4 have a poor overall survival (OS) that has not improved in the past decade. Herein, markers representing four components of the tumor microenvironment (TME) were identified to define their linked expression in TME and predict the prognosis in HGG, namely, interleukin6 (IL6, inflammation), inducible nitric oxide synthase(iNOS), heat shock protein-70 (HSP70, hypoxia), vascular endothelial growth receptor (VEGF), and endothelin1 (ET1) (angiogenesis) and matrix metalloprotease-14 (MMP14) and intercellular adhesion molecule1 (ICAM1, extracellular matrix). To establish a non-invasive panel of biomarkers for precise prognostication in HGG. Eighty-six therapy-naive HGG patients with 45 controls were analyzed for the defined panel. Systemic expression of extracellular/secretory biomarkers was screened dot-immune assay (DIA), quantified by ELISA, and validated by immunocytochemistry (ICC). Expression of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 was found to be positively associated with grade. Quantification of circulating levels of the markers by ELISA and ICC presented a similar result. The biomarkers were observed to negatively correlate with OS (p < 0.0001). Cox-regression analysis yielded all biomarkers as good prognostic indicators and independent of confounders. On applying combination statistics, the biomarker panel achieved higher sensitivity than single markers to define survival. The intra-association of all seven biomarkers was significant, hinting of a cross-talk between the TME components and a hypoxia driven systemic inflammation upregulating the expression of other components. This is a first ever experimental study of a marker panel that can distinguish between histopathological grades and also delineate differential survival using liquid biopsy, suggesting that markers of hypoxia can be a cornerstone for personalized therapy. The panel of biomarkers of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 holds promise for prognostication in HGG.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Research and Training, ICMR-Bhopal Memorial Hospital and Research Centre, Bhopal, 462038, M.P, India
| | - Puneet Gandhi
- Department of Research and Training, ICMR-Bhopal Memorial Hospital and Research Centre, Bhopal, 462038, M.P, India.
| | - Sandeep K Sorte
- Department of Neurosurgery, ICMR-Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, 462038, M.P, India
| | - Adesh Shrivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, 462024, M.P, India
| |
Collapse
|
2
|
Copetti PM, Bissacotti BF, da Silva Gündel S, Bottari NB, Sagrillo MR, Machado AK, Ourique AF, Chitolina Schetinger MR, Schafer da Silva A. Pharmacokinetic profiles, cytotoxicity, and redox metabolism of free and nanoencapsulated curcumin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Selective Inhibitors of the Inducible Nitric Oxide Synthase as Modulators of Cell Responses in LPS-Stimulated Human Monocytes. Molecules 2021; 26:molecules26154419. [PMID: 34361571 PMCID: PMC8348305 DOI: 10.3390/molecules26154419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response towards inflammation, and it is responsible for the production of sustained amounts of nitric oxide. This free radical molecule is involved in the defense against pathogens; nevertheless, its continuous and dysregulated production contributes to the development of several pathological conditions, including inflammatory and autoimmune diseases. In the present study, we investigated the effects of two new iNOS inhibitors, i.e., 4-(ethanimidoylamino)-N-(4-fluorophenyl)benzamide hydrobromide (FAB1020) and N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamidedihydrochloride (CM554), on human LPS-stimulated monocytes, using the 1400 W compound as a comparison. Our results show that CM544 and FAB1020 are selective and decrease cytotoxicity, IL-6 secretion and LPS-stimulated monocyte migration. Furthermore, the modulation of iNOS, nitrotyrosine and Nrf2 were analyzed at the protein level. Based on the collected preliminary results, the promising therapeutic value of the investigated compounds emerges, as they appear able to modulate the pro-inflammatory LPS-stimulated response in the low micromolar range in human monocytes.
Collapse
|
4
|
Resanović I, Zarić B, Radovanović J, Sudar-Milovanović E, Gluvić Z, Jevremović D, Isenović ER. Hyperbaric Oxygen Therapy and Vascular Complications in Diabetes Mellitus. Angiology 2020; 71:876-885. [PMID: 32638622 DOI: 10.1177/0003319720936925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular complications in patients with diabetes mellitus (DM) are common. Since impaired oxygen balance in plasma plays an important role in the pathogenesis of chronic DM-associated complications, the administration of hyperbaric oxygen therapy (HBOT) has been recommended to influence development of vascular complications. Hyperbaric oxygen therapy involves inhalation of 100% oxygen under elevated pressure from 1.6 to 2.8 absolute atmospheres in hyperbaric chambers. Hyperbaric oxygen therapy increases plasma oxygen solubility, contributing to better oxygen diffusion to distant tissues and preservation of the viability of tissues reversibly damaged by atherosclerosis-induced ischemia, along with microcirculation restoration. Hyperbaric oxygen therapy exerts antiatherogenic, antioxidant, and cardioprotective effects by altering the level and composition of plasma fatty acids and also by promoting signal transduction through membranes, which are impaired by hyperglycemia and hypoxia. In addition, HBOT affects molecules involved in the regulation of nitric oxide synthesis and in that way exerts anti-inflammatory and angiogenic effects in patients with DM. In this review, we explore the recent literature related to the effects of HBOT on DM-related vascular complications.
Collapse
Affiliation(s)
- Ivana Resanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Božidarka Zarić
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvić
- Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Serbia
| | - Danimir Jevremović
- Faculty of Stomatology in Pancevo, University Business Academy, Novi Sad, Serbia
| | - Esma R Isenović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Dick BP, McMahan R, Knowles T, Becker L, Gharib SA, Vaisar T, Wietecha T, O'Brien KD, Bornfeldt KE, Chait A, Kim F. Hematopoietic Cell-Expressed Endothelial Nitric Oxide Protects the Liver From Insulin Resistance. Arterioscler Thromb Vasc Biol 2020; 40:670-681. [PMID: 31996027 DOI: 10.1161/atvbaha.119.313648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Mice genetically deficient in endothelial nitric oxide synthase (Nos3-/-) have fasting hyperinsulinemia and hepatic insulin resistance, indicating the importance of Nos3 (nitric oxide synthase) in maintaining metabolic homeostasis. Although the current paradigm holds that these metabolic effects are derived specifically from the expression of Nos3 in the endothelium, it has been established that bone marrow-derived cells also express Nos3. The aim of this study was to investigate whether bone marrow-derived cell Nos3 is important in maintaining metabolic homeostasis. Approach and Results: To test the hypothesis that bone marrow-derived cell Nos3 contributes to metabolic homeostasis, we generated chimeric male mice deficient or competent for Nos3 expression in circulating blood cells. These mice were placed on a low-fat diet for 5 weeks, a time period which is known to induce hepatic insulin resistance in global Nos3-deficient mice but not in wild-type C57Bl/6 mice. Surprisingly, we found that the absence of Nos3 in the bone marrow-derived component is associated with hepatic insulin resistance and that restoration of Nos3 in the bone marrow-derived component in global Nos3-deficient mice is sufficient to restore hepatic insulin sensitivity. Furthermore, we found that overexpression of Nos3 in bone marrow-derived component in wild-type mice attenuates the development of hepatic insulin resistance during high-fat feeding. Finally, compared with wild-type macrophages, the loss of macrophage Nos3 is associated with increased inflammatory responses to lipopolysaccharides and reduced anti-inflammatory responses to IL-4, a macrophage phenotype associated with the development of hepatic and systemic insulin resistance. CONCLUSIONS These results would suggest that the metabolic and hepatic consequences of high-fat feeding are mediated by loss of Nos3/nitric oxide actions in bone marrow-derived cells, not in endothelial cells.
Collapse
Affiliation(s)
- Brian P Dick
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Ryan McMahan
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Taft Knowles
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Lev Becker
- Ben May Department for Cancer Research, University of Chicago, IL (L.B.)
| | - Sina A Gharib
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Tomas Vaisar
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Tomasz Wietecha
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Kevin D O'Brien
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Karin E Bornfeldt
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Alan Chait
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| | - Francis Kim
- From the Department of Medicine, University of Washington, Seattle (B.P.D., R.M., T.K., S.A.G., T.V., T.W., K.D.O., K.E.B., A.C., F.K.)
| |
Collapse
|
6
|
Gresele P, Momi S, Guglielmini G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. Biochem Pharmacol 2019; 166:300-312. [DOI: 10.1016/j.bcp.2019.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
7
|
Kulinska KI, Billert M, Sawinski K, Czerniak K, Gaca M, Kusza K, Nowak KW, Siemionow M, Billert H. Local anaesthetics upregulate nitric oxide generation in cord blood and adult human neutrophils. Sci Rep 2019; 9:569. [PMID: 30679708 PMCID: PMC6346062 DOI: 10.1038/s41598-018-37090-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) generation by systemic neonatal neutrophils is not clarified. It is also not known whether local anaesthetics (LAs) transferred to the fetal systemic circulation following maternal epidural blockade may affect this process. In the present study, NO generation was evaluated in neutrophils from cord blood (CB, n = 11) and adult blood (n = 10) following exposure to bupivacaine (0.0005, 0.005, 1 mM), lidocaine (0.002, 0.02, 4 mM) and ropivacaine (0.0007, 0.007, 1.4 mM) using flow cytometry, as well as indirectly by determining nitrite concentrations in cell incubation media. To determine the role of NO synthase (NOS) isoforms in NO generation following exposure to LAs, experiments were repeated in the presence of the NOS inhibitors, NG-nitro-L-arginine methyl ester and aminoguanidine; in addition, the expression of NOS isoforms was analysed. CB neutrophils produced less NO than adult neutrophils. LAs, especially ropivacaine and lidocaine, stimulated neutrophil NO generation, but in CB neutrophils this effect was negligible at clinically relevant drug concentrations. A mechanism involving NOS activity was responsible for the observed phenomena. In conclusion, LAs are able to upregulate neutrophil NO production, but in neonates this effect is likely to be clinically insignificant.
Collapse
Affiliation(s)
- Karolina I Kulinska
- Department of Experimental Anaesthesiology, Chair of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 14, Sw. Marii Magdaleny st., 61-861, Poznan, Poland.
| | - Maria Billert
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 33, Wolynska st., 60-637, Poznan, Poland
| | - Krzysztof Sawinski
- Department of Haematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 82/84, Szamarzewskiego st., 60-569, Poznan, Poland
| | - Katarzyna Czerniak
- Department of Experimental Anaesthesiology, Chair of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 14, Sw. Marii Magdaleny st., 61-861, Poznan, Poland
| | - Michał Gaca
- Clinics of Anaesthesiology in Obstetrics and Gynecology, Chair of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 33, Polna st., 60-101, Poznan, Poland
| | - Krzysztof Kusza
- Clinics of Anaesthesiology and Intensive Therapy, Chair of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 49, Przybyszewskiego st., 60-355, Poznan, Poland
| | - Krzysztof W Nowak
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 33, Wolynska st., 60-637, Poznan, Poland
| | - Maria Siemionow
- University of Illinois at Chicago, Department of Orthopaedics MC 944, 900 South Ashland Avenue, 3356 MCBRB, Chicago, Illinois, 60607, USA
| | - Hanna Billert
- Department of Experimental Anaesthesiology, Chair of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 14, Sw. Marii Magdaleny st., 61-861, Poznan, Poland.
| |
Collapse
|
8
|
Aggarwal H, Kanuri BN, Dikshit M. Role of iNOS in Insulin Resistance and Endothelial Dysfunction. OXIDATIVE STRESS IN HEART DISEASES 2019:461-482. [DOI: 10.1007/978-981-13-8273-4_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Alves MT, Ortiz MMO, Dos Reis GVOP, Dusse LMS, Carvalho MDG, Fernandes AP, Gomes KB. The dual effect of C-peptide on cellular activation and atherosclerosis: Protective or not? Diabetes Metab Res Rev 2019; 35:e3071. [PMID: 30160822 DOI: 10.1002/dmrr.3071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
C-peptide is a cleavage product of proinsulin that acts on different type of cells, such as blood and endothelial cells. C-peptide biological effects may be different in type 1 and type 2 diabetes. Besides, there are further evidence for a functional interaction between C-peptide and insulin. In this way, C-peptide has ambiguous effects, acting as an antithrombotic or thrombotic molecule, depending on the physiological environment and disease conditions. Moreover, C-peptide regulates interaction of leucocytes, erythrocytes, and platelets with the endothelium. The beneficial effects include stimulation of nitric oxide production with its subsequent release by platelets and endothelium, the interaction with erythrocytes leading to the generation of adenosine triphosphate, and inhibition of atherogenic cytokine release. The undesirable action of C-peptide includes the chemotaxis of monocytes, lymphocytes, and smooth muscle cells. Also, C-peptide was related with increased lipid deposits and elevated smooth muscle cells proliferation in the vessel wall, contributing to atherosclerosis. Purpose of this review is to explore these dual roles of C-peptide on the blood, contributing at one side to haemostasis and the other to atherosclerotic process.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mylena Maira Oliveira Ortiz
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luci Maria Sant'Ana Dusse
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina Braga Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Al Dubayee MS, Alayed H, Almansour R, Alqaoud N, Alnamlah R, Obeid D, Alshahrani A, Zahra MM, Nasr A, Al-Bawab A, Aljada A. Differential Expression of Human Peripheral Mononuclear Cells Phenotype Markers in Type 2 Diabetic Patients and Type 2 Diabetic Patients on Metformin. Front Endocrinol (Lausanne) 2018; 9:537. [PMID: 30356719 PMCID: PMC6189318 DOI: 10.3389/fendo.2018.00537] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 08/23/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Although peripheral blood mononuclear cells (PBMC) have been demonstrated to be in a pro-inflammatory state in obesity and type 2 Diabetes Mellitus (T2DM), characterization of circulating PBMC phenotypes in the obese and T2DM and the effect of Metformin on these phenotypes in humans is still ill-defined and remains to be determined. Methods: Thirty normal healthy adult volunteers of normal weight, 30 obese subjects, 20 obese newly diagnosed diabetics and 30 obese diabetics on Metformin were recruited for the study. Fasting blood samples were collected and PBMC were isolated from whole blood. Polarization markers (CD86, IL-6, TNFα, iNOS, CD36, CD11c, CD169, CD206, CD163, CD68, CD11b, CD16, and CD14) were measured by RT-qPCR. Gene expression fold changes were calculated using the 2-ΔΔCT method for RT-qPCR. Results: Obesity and T2DM are associated an increased CD68 marker in PBMC. mRNA expression of CD11b, CD11c, CD169, and CD163 were significantly reduced in PBMC from T2DM subjects whereas CD11c was significantly inhibited in PBMC from obese subjects. On the other hand, macrophage M1-like phenotype was observed in T2DM circulation as demonstrated by increased mRNA expression of CD16, IL-6, iNOS, TNFα, and CD36. There were no significant changes in CD14 and CD86 in the obese and T2DM when compared to the lean subjects. Metformin treatment in T2DM reverted CD11c, CD169, IL-6, iNOS, TNFα, and CD36 to levels comparable to lean subjects. CD206 mRNA expression was significantly upregulated in PBMC of T2DM while Metformin treatment inhibited CD206 expression levels. Conclusions: These data support the notion that PBMC in circulation in T2DM express different pattern of phenotypic markers than the patterns typically present in M1 and M2 like cells. These phenotypic markers could be representative of metabolically activated macrophages (MMe)-like cells. Metformin, on the other hand, reduces MMe-like cells in circulation.
Collapse
Affiliation(s)
- Mohammed S. Al Dubayee
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah Specialized Children Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Hind Alayed
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Rana Almansour
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Nora Alqaoud
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Rahaf Alnamlah
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Dana Obeid
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Awad Alshahrani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mahmoud M. Zahra
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Amre Nasr
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmad Al-Bawab
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmad Aljada
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Aljada
| |
Collapse
|
11
|
Maharaj S, Lu KD, Radom-Aizik S, Zaldivar F, Haddad F, Shin HW, Leu SY, Nussbaum E, Randhawa I, Cooper DM. Inter- and intra-subject variability of nitric oxide levels in leukocyte subpopulations. Nitric Oxide 2017; 72:41-45. [PMID: 29129818 DOI: 10.1016/j.niox.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Assessment of nitric oxide (NO) dynamics in immune cells, commonly measured using NO surrogates such as inducible nitric oxide synthase (iNOS) rather than NO itself, has been effective in understanding pathophysiology across a wide range of diseases. Although the intracellular measurement of NO is now feasible, many technical issues remain unresolved. The principle aim of our study was to determine the effect of storage time of whole blood on nitric oxide (NO) level expression in leukocytes. This is important because immune cells remain chemically dynamic even after they are removed from the circulation, and the impact of storage time must be known to optimally quantify the effect of a disease or condition on NO dynamics in circulating leukocytes. We measured NO levels using the fluorescent probe, diaminofluorescein (DAF-2DA), and flow cytometry in monocytes, neutrophils, and natural killer cells from healthy subjects immediately after blood draw (Time 0) and 30, 60, and 120 min following the blood draw. There was no significant difference among the 4 study time points in NO (DAF-2) levels, though there was wide intra-subject variability at all time points. Using LPS stimulation, we compared iNOS (the more traditional surrogate marker of NO dynamics) with NO (by DAF-2) in natural killer cells and monocytes and, we found no difference in the response patterns. In summary, we did find that within a 2-hour interval from blood draw to sample processing, there was a remarkably wide intra-subject variability in expression of intracellular NO (DAF-2) in leukocytes of healthy individuals at baseline and over time. The mechanism(s) for these differences are not known but could clearly confound efforts to detect changes in NO metabolism in white blood cells. We speculate that rapid pulsatility of NO could explain the wide variability seen.
Collapse
Affiliation(s)
- Sheena Maharaj
- Miller Children's Hospital, Long Beach Memorial-University of California Irvine, Long Beach, CA, United States
| | - Kim D Lu
- Department of Pediatrics, University of California, Irvine, CA, United States
| | - Shlomit Radom-Aizik
- Department of Pediatrics, University of California, Irvine, CA, United States
| | - Frank Zaldivar
- Department of Pediatrics, University of California, Irvine, CA, United States
| | - Fadia Haddad
- Department of Pediatrics, University of California, Irvine, CA, United States
| | - Hye-Won Shin
- Department of Pediatrics, University of California, Irvine, CA, United States
| | - Szu-Yun Leu
- Department of Pediatrics, University of California, Irvine, CA, United States
| | - Eliezer Nussbaum
- Miller Children's Hospital, Long Beach Memorial-University of California Irvine, Long Beach, CA, United States
| | - Inderpal Randhawa
- Miller Children's Hospital, Long Beach Memorial-University of California Irvine, Long Beach, CA, United States
| | - Dan M Cooper
- Department of Pediatrics, University of California, Irvine, CA, United States.
| |
Collapse
|
12
|
Armenis I, Kalotychou V, Tzanetea R, Kollia P, Kontogeorgiou Z, Anastasopoulou D, Mantzourani M, Samarkos M, Pantos K, Konstantopoulos K, Rombos I. Prognostic value of T786C and G894T eNOS polymorphisms in sickle cell disease. Nitric Oxide 2017; 62:17-23. [DOI: 10.1016/j.niox.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 11/29/2022]
|
13
|
Almeida Cardelli NJ, Elisa Lopes-Pires M, Bonfitto PHL, Ferreira HH, Antunes E, Marcondes S. Cross-talking between lymphocytes and platelets and its regulation by nitric oxide and peroxynitrite in physiological condition and endotoxemia. Life Sci 2016; 172:2-7. [PMID: 28017682 DOI: 10.1016/j.lfs.2016.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
AIMS Cross-talk between platelets and lymphocytes may play a role in different pathological conditions like sepsis. This study aimed to investigate the effect of lymphocytes on platelet aggregation in lipopolysaccharide (LPS)-stimulated and non-stimulated cells. MAIN METHODS Lymphocytes and platelet-rich plasma (PRP) were obtained from rat arterial blood. Platelets (1.2×108platelets/ml) were incubated with lymphocytes (0.8×106cells/ml) in the presence or not of LPS (100μg/ml), after which ADP (5μM)-induced platelet aggregation was carried out. KEY FINDINGS Lymphocytes inhibited by 51% the platelet aggregation, which was significantly prevented by the non-selective NO inhibitor l-NAME (300μM) or the selective iNOS inhibitor 1400W (100μM), as well as by the soluble guanylyl cyclase (sGC) inhibitor ODQ (10μM). The platelet inhibition by lymphocytes was accompanied by 2-fold increase of intraplatelet cGMP levels. Next, lymphocytes and platelets were co-incubated with LPS for 6h. In LPS-treated cells, lymphocytes produced a larger inhibition of platelet aggregation (62%), despite the same elevation of cGMP levels (2.2-fold increase). This inhibitory effect was prevented by l-NAME and 1400W, but rather unaffected by ODQ. The peroxynitrite (ONOO-) scavenger -(-)epigallocatechin gallate (ECG, 100μM) abolished the inhibition by lymphocytes on platelet aggregation in LPS-treated cells, but not in non-treated cells. SIGNIFICANCE Our results show that lymphocytes act to inhibit platelet aggregation via iNOS-derived NO release and cGMP generation. In presence of LPS, ONOO- production accounts for the platelet inhibition.
Collapse
Affiliation(s)
- Nádia J Almeida Cardelli
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - M Elisa Lopes-Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Pedro H L Bonfitto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Heloisa H Ferreira
- Laboratory of Inflammation Research, São Leopoldo Mandic Institute and Research Center, Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
14
|
Abstract
Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.
Collapse
Affiliation(s)
- Sarah Kreuz
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Wolfgang Fischle
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Mohanan Nair M, Zhao R, Xie X, Shen GX. Impact of glycated LDL on endothelial nitric oxide synthase in vascular endothelial cells: involvement of transmembrane signaling and endoplasmic reticulum stress. J Diabetes Complications 2016; 30:391-7. [PMID: 26853630 DOI: 10.1016/j.jdiacomp.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Cardiovascular diseases are the major cause of mortality in diabetes patients. Increased levels of glycated low density lipoprotein (glyLDL) are detected in diabetic patients. Endothelial nitric oxide synthase (eNOS) generates nitric oxide, which is responsible to endothelium-dependent vasodilation. The impact of glyLDL on the expression and activity of eNOS in vascular endothelial cells (EC) remains unknown. The present study investigated the effect of glyLDL on the levels of protein, mRNA and activity of eNOS in cultured human umbilical vein EC. The results demonstrated that incubation of EC with physiological concentrations of glyLDL significantly reduced the abundances of eNOS protein in EC with the maximal inhibition at 100μg/ml for 24h. At the optimized condition, glyLDL decreased eNOS mRNA and reduced its activity in EC. Blocking antibody against the receptor for advanced glycation end products (RAGE) prevented glyLDL-induced downregulation of eNOS in EC. GlyLDL increased the translocation of H-Ras from cytoplasm to membrane in EC. Farnesyl-transferase inhibitor-276, an H-Ras antagonist, normalized glyLDL-induced downregulation of eNOS and prevented glyLDL-induced upregulation of H-Ras in EC membrane. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress antagonist, prevented glyLDL-induced eNOS downregulation in EC. The results suggest that diabetes-associated metabolic stress inhibits the production and activity of eNOA in cultured human vascular EC through the activation of RAGE/H-Ras mediated upstream signaling pathway. ER stress induced by glyLDL is possibly involved in eNOS downregulation.
Collapse
Affiliation(s)
- Manoj Mohanan Nair
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Ruozhi Zhao
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Xueping Xie
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Garry X Shen
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
16
|
Construction of a Biocompatible Decellularized Porcine Hepatic Lobe for Liver Bioengineering. Int J Artif Organs 2015; 38:96-104. [DOI: 10.5301/ijao.5000394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/20/2022]
Abstract
Objective One of the major obstacles in applying decellularized organs for clinical use is the recellularization step, during which huge numbers of cells are required to develop whole livers. We established a simple protocol for constructing a bioartificial hepatic lobe and investigated its biocompatibility. Methods The right lateral lobe of porcine liver was decellularized using 0.1% sodium dodecyl sulfate through the right branch of the portal vein. Decellularized lobes were evaluated by histological and biochemical analyses. DNA content was quantified to validate the decellularization protocol. The presence of immunogenic and pathogenic antigens was checked to exclude potential rejection and thrombosis after xenotransplantation. Xeno-reactivity of decellularized tissue against human peripheral blood mononuclear cells was examined. Cytotoxicity was evaluated against hepatocarcinoma cells. Finally, scaffolds were incubated in collagenase for biodegradation testing. Results The decellularized lobe preserved the three-dimensional architecture, ultrastructure, extracellular matrix components, and vasculature. Scaffolds were almost depleted of DNA in addition to antigenic and pathogenic antigens, which are considered barriers to xenotransplantation. The human immune response against scaffolds was considered non-significant. Our matrices were biocompatible and biodegradable. Conclusions We successfully developed a non-cytotoxic, non-immunogenic, and biodegradable porcine hepatic lobe for future liver regeneration and bioengineering.
Collapse
|
17
|
Nitric oxide production by monocytes in children with OSA and endothelial dysfunction. Clin Sci (Lond) 2014; 127:323-30. [DOI: 10.1042/cs20130679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial dysfunction in the context of paediatric sleep apnoea is associated with distinctive alterations in circulating monocyte subsets and reduced NO production by monocytes.
Collapse
|
18
|
Plant mitochondria: source and target for nitric oxide. Mitochondrion 2014; 19 Pt B:329-33. [PMID: 24561220 DOI: 10.1016/j.mito.2014.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/23/2022]
Abstract
Plant mitochondria generate nitric oxide (NO) under anoxia through the action of cytochrome c oxidase and other electron transport chain components on nitrite. This reductive mechanism operates under aerobic conditions at high electron transport rates. Indirect evidence also indicates that the oxidative pathway of NO production may be associated with mitochondria. We review the consequences of mitochondrial NO production, including the inhibition of oxygen uptake by cytochrome c oxidase, the inhibition of aconitase and succinate dehydrogenase, the induction of alternative oxidase, and the nitrosylation of several proteins, including glycine decarboxylase. The importance of these events in adaptation to abiotic and biotic stresses is discussed.
Collapse
|
19
|
Iakubets' OI, Fafula RV, Vorobets' DZ, Vorobets' ZD. [Arginase and NO-synthase pathways of L-arginine metabolism in peripheral blood lymphocytes of patients with ovarian cancer]. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 85:105-13. [PMID: 24479328 DOI: 10.15407/ubj85.05.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The peculiarities ofarginase and NO-synthase pathways of L-arginine metabolism in peripheral blood lymphocytes of patients with ovarian cancer were studied. It was shown that the development of cancer pathology is associated with an imbalance in the NO synthesis in blood lymphocytes. The reason for such imbalance is the activation of arginase and inducible isoform of NO-synthase (iNOS) and significant inhibition of its constitutive isoform. The analysis of the kinetic properties of NOS of blood lymphocytes of patients with ovarian cancer was carried out. It was shown that the affinity constant of iNOS affinity for L-arginine is 5.4-fold lower than for eNOS of blood lymphocytes of persons in the control group. The inhibition of eNOS occurs via non-competitive type and is related to the reduction of maximum reaction rate.
Collapse
|
20
|
Jyoti A, Singh AK, Dubey M, Kumar S, Saluja R, Keshari RS, Verma A, Chandra T, Kumar A, Bajpai VK, Barthwal MK, Dikshit M. Interaction of inducible nitric oxide synthase with rac2 regulates reactive oxygen and nitrogen species generation in the human neutrophil phagosomes: implication in microbial killing. Antioxid Redox Signal 2014; 20:417-31. [PMID: 23875749 DOI: 10.1089/ars.2012.4970] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Present study explores importance of inducible nitric oxide synthase (iNOS) and its interaction with Rac2 in reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation, protein-nitration and in microbial killing by neutrophils. RESULTS The iNOS transcript and protein were constitutively present in human as well as in mice neutrophils. iNOS protein was found in cytosol, granules containing elastase and gelatinase, and in other subcellular organelles in resting human neutrophils. After phagocytosis of bovine serum albumin (BSA) coated beads, both human and mice neutrophils showed significant elevation in superoxide radicals, nitric oxide (NO), ROS/RNS and consequent BSA nitration. These responses were significantly reduced in presence of iNOS, NADPH oxidase (NOX), myeloperoxidase or Rac inhibitors, as well as in iNOS, Nox2 and Rac2 silenced human or iNOS-knockout mice neutrophils. Complex formed on interaction of iNOS with Rac2 coprecipitated with anti-Rac2, predominantly in cytosol in resting human neutrophils, while iNOS-Rac2 complex translocated to phagosomes after phagocytosis. This was accompanied by generation of superoxide radicals, NO, ROS/RNS and consequent BSA-nitration. Importance of Rac2 in iNOS mediated NO formation and microbial killing was confirmed by pretreatment of mice with Rac inhibitor, NSC23766 that significantly abrogated NO release and microbial killing in vivo. INNOVATION Present study highlights previously undefined role of Rac2-iNOS interaction, in translocation of iNOS to phagosomal compartment and consequent NO, superoxide radicals, ROS/RNS generation, BSA nitration and microbial killing. CONCLUSIONS Altogether results obtained demonstrate the role of iNOS in NO and ROS/RNS generation, after phagocytosis of coated latex beads by human polymorphonuclear neutrophils. These studies imply functional importance of iNOS and its interaction with Rac2 in pathogen killing by the neutrophils.
Collapse
Affiliation(s)
- Anupam Jyoti
- 1 Pharmacology Division, CSIR-Central Drug Research Institute , Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol 2014; 2:251-8. [PMID: 24494200 PMCID: PMC3909820 DOI: 10.1016/j.redox.2013.12.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 02/06/2023] Open
Abstract
Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as "NO sinks", but exert an erythrocrine function - i.e an endocrine function of RBC - by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Wood KC, Cortese-Krott MM, Kovacic JC, Noguchi A, Liu VB, Wang X, Raghavachari N, Boehm M, Kato GJ, Kelm M, Gladwin MT. Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis. Arterioscler Thromb Vasc Biol 2013; 33:1861-71. [PMID: 23702660 PMCID: PMC3864011 DOI: 10.1161/atvbaha.112.301068] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/09/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mice genetically deficient in endothelial nitric oxide synthase (eNOS(-/-)) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. Although the current paradigm holds that this bioactivity derives specifically from the expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. APPROACH AND RESULTS To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted wild-type and eNOS(-/-) mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NG-nitroarginine methyl ester and repristinated by the NOS substrate L-arginine and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert (14)C-arginine into (14)C-citrulline in NOS-dependent fashion. CONCLUSIONS These are the first studies to definitively establish a role for a blood-borne eNOS, using cross-transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect.
Collapse
Affiliation(s)
- Katherine C. Wood
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Miriam M. Cortese-Krott
- Cardiovascular Research Laboratory, Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Jason C. Kovacic
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- Cardiovascular Institute, Mount Sinai Hospital, New York, NY, USA
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Virginia B. Liu
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Xunde Wang
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nalini Raghavachari
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Manfred Boehm
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Gregory J. Kato
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Mark T. Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Padfield GJ, Short A, Mills NL, Samuel K, Turner M, Newby DE, Barclay GR, Tura-Ceide O. The constituents and mechanisms of generation of 'endothelial cell--colony forming units'. Cardiovasc Res 2013; 100:288-96. [PMID: 23867632 DOI: 10.1093/cvr/cvt182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS The formation of endothelial cell-colony forming units (EC-CFUs) is increased by vascular injury, although their function in vivo is unclear. We, therefore, examined the constituents of EC-CFUs and the mechanisms of their generation. METHODS AND RESULTS We performed immunohistochemical characterization of EC-CFUs and their mononuclear precursors. Using fluorescent-activated cell sorting, we evaluated the capacity of mononuclear subpopulations to generate EC-CFUs, and monitored their migratory behaviour when co-incubated with EC-CFUs. Time-lapse microscopy was used to observe colony maturation. Cellular proliferation within EC-CFUs was assessed using bromodeoxyuridine (BrdU) and anti-proliferative agents. EC-CFUs exhibited typical endothelial characteristics; however, several endothelial markers were weakly expressed or absent. Macrophage and lymphocyte antigens were intensely expressed. EC-CFUs readily incorporated BrdU, and failed to develop in the presence of anti-proliferative agents (P < 0.01; n = 12). Time-lapse microscopy demonstrated that the characteristic EC-CFU 'spindle cells' are not EC-CFU progeny, but are mononuclear cells migrating towards, and incorporating into colonies. Only CD14(+) monocytes were necessary for EC-CFU formation. CD14 expression was progressively down-regulated during colony maturation (P < 0.001; n = 6). Although unable to generate EC-CFUs directly, CD34(+) cells could differentiate into CD14(+) cells and potentiate EC-CFU formation. CONCLUSIONS EC-CFUs exhibit endothelial characteristics, but are predominantly CD14(+) derived macrophages and are a potent stimulus for lymphocyte migration. Proliferation is necessary for EC-CFU generation; however, colony growth also occurs as a result of leucocyte migration. Although confirmatory in vivo studies are required, EC-CFU formation likely reflects leucocyte activation as a reparatory response to vascular denudation or tissue ischaemia.
Collapse
Affiliation(s)
- Gareth J Padfield
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SU, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Brain nitric oxide synthases in the interleukin-1β-induced activation of hypothalamic-pituitary-adrenal axis. Pharmacol Rep 2012; 64:1455-65. [DOI: 10.1016/s1734-1140(12)70943-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/25/2012] [Indexed: 12/20/2022]
|