1
|
Abbiati F, Orlandi I, Pagliari S, Campone L, Vai M. Glucosinolates from Seed-Press Cake of Camelina sativa (L.) Crantz Extend Yeast Chronological Lifespan by Modulating Carbon Metabolism and Respiration. Antioxidants (Basel) 2025; 14:80. [PMID: 39857414 PMCID: PMC11759863 DOI: 10.3390/antiox14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina (Camelina sativa (L.) Crantz) is an oilseed plant belonging to this family. Its seeds, in addition to a distinctive fatty acid composition, contain three aliphatic GSLs: glucoarabin, glucocamelinin, and homoglucocamelinin. Our study explored the impact of these GSLs purified from Camelina press cake, a by-product of Camelina oil production, on yeast chronological aging, which is the established model for simulating the aging of post-mitotic quiescent mammalian cells. Supplementing yeast cells with GSLs extends the chronological lifespan (CLS) in a dose-dependent manner. This enhancement relies on an improved mitochondrial respiration efficiency, resulting in a drastic decrease of superoxide anion levels and an increase in ATP production. Furthermore, GSL supplementation affects carbon metabolism. In particular, GSLs support the pro-longevity preservation of TCA cycle enzymatic activities and enhanced glycerol catabolism. These changes contribute positively to the phosphorylating respiration and to an increase in trehalose storage: both of which are longevity-promoting prerequisites.
Collapse
Affiliation(s)
- Francesco Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
- SYSBIO Centre of Systems Biology, 20126 Milano, Italy
| | - Stefania Pagliari
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Luca Campone
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
- SYSBIO Centre of Systems Biology, 20126 Milano, Italy
| |
Collapse
|
2
|
Abbiati F, Garagnani SA, Orlandi I, Vai M. Sir2 and Glycerol Underlie the Pro-Longevity Effect of Quercetin during Yeast Chronological Aging. Int J Mol Sci 2023; 24:12223. [PMID: 37569599 PMCID: PMC10419316 DOI: 10.3390/ijms241512223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Quercetin (QUER) is a natural polyphenolic compound endowed with beneficial properties for human health, with anti-aging effects. However, although this flavonoid is commercially available as a nutraceutical, target molecules/pathways underlying its pro-longevity potential have yet to be fully clarified. Here, we investigated QUER activity in yeast chronological aging, the established model for simulating the aging of postmitotic quiescent mammalian cells. We found that QUER supplementation at the onset of chronological aging, namely at the diauxic shift, significantly increases chronological lifespan (CLS). Consistent with the antioxidant properties of QUER, this extension takes place in concert with a decrease in oxidative stress. In addition, QUER triggers substantial changes in carbon metabolism. Specifically, it promotes an enhancement of a pro-longevity anabolic metabolism toward gluconeogenesis due to improved catabolism of C2 by-products of yeast fermentation and glycerol. The former is attributable to the Sir2-dependent activity of phosphoenolpyruvate carboxykinase and the latter to the L-glycerol 3-phosphate pathway. Such a combined increased supply of gluconeogenesis leads to an increase in the reserve carbohydrate trehalose, ensuring CLS extension. Moreover, QUER supplementation to chronologically aging cells in water alone amplifies their long-lived phenotype. This is associated with intracellular glycerol catabolism and trehalose increase, further indicating a QUER-specific influence on carbon metabolism that results in CLS extension.
Collapse
Affiliation(s)
- Francesco Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
| | - Stefano Angelo Garagnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
| | - Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
- SYSBIO Centre for Systems Biology, 20126 Milano, Italy
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (S.A.G.); (I.O.)
- SYSBIO Centre for Systems Biology, 20126 Milano, Italy
| |
Collapse
|
3
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Vega M, Castillo D, de Cubas L, Wang Y, Huang Y, Hidalgo E, Cabrera M. Antagonistic effects of mitochondrial matrix and intermembrane space proteases on yeast aging. BMC Biol 2022; 20:160. [PMID: 35820914 PMCID: PMC9277893 DOI: 10.1186/s12915-022-01352-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Background In many organisms, aging is characterized by a loss of mitochondrial homeostasis. Multiple factors such as respiratory metabolism, mitochondrial fusion/fission, or mitophagy have been linked to cell longevity, but the exact impact of each one on the aging process is still unclear. Results Using the deletion mutant collection of the fission yeast Schizosaccharomyces pombe, we have developed a genome-wide screening for mutants with altered chronological lifespan. We have identified four mutants associated with proteolysis at the mitochondria that exhibit opposite effects on longevity. The analysis of the respiratory activity of these mutants revealed a positive correlation between increased respiration rate and prolonged lifespan. We also found that the phenotype of the long-lived protease mutants could not be explained by impaired mitochondrial fusion/fission activities, but it was dependent on mitophagy induction. The anti-aging role of mitophagy was supported by the effect of a mutant defective in degradation of mitochondria, which shortened lifespan of the long-lived mutants. Conclusions Our characterization of the mitochondrial protease mutants demonstrates that mitophagy sustains the lifespan extension of long-lived mutants displaying a higher respiration potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01352-w.
Collapse
Affiliation(s)
- Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain. .,Department of Biology, Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
5
|
Azizidoost S, Ghaedrahmati F, Anbiyaee O, Ahmad Ali R, Cheraghzadeh M, Farzaneh M. Emerging roles for lncRNA-NEAT1 in colorectal cancer. Cancer Cell Int 2022; 22:209. [PMID: 35676702 PMCID: PMC9178824 DOI: 10.1186/s12935-022-02627-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the third cause of cancer death in the world that arises from the glandular and epithelial cells of the large intestine, during a series of genetic or epigenetic alternations. Recently, long non-coding RNAs (lncRNAs) has opened a separate window of research in molecular and translational medicine. Emerging evidence has supported that lncRNAs can regulate cell cycle of CRC cells. LncRNA NEAT1 has been verified to participate in colon cancer development and progression. NEAT1 as a competing endogenous RNA could suppress the expression of miRNAs, and then regulate molecules downstream of these miRNAs. In this review, we summarized emerging roles of NEAT1 in CRC cells.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Riyadh Ahmad Ali
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Maryam Cheraghzadeh
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Zhao G, Rusche LN. Sirtuins in Epigenetic Silencing and Control of Gene Expression in Model and Pathogenic Fungi. Annu Rev Microbiol 2022; 76:157-178. [PMID: 35609947 DOI: 10.1146/annurev-micro-041020-100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi, including yeasts, molds, and mushrooms, proliferate on decaying matter and then adopt quiescent forms once nutrients are depleted. This review explores how fungi use sirtuin deacetylases to sense and respond appropriately to changing nutrients. Because sirtuins are NAD+-dependent deacetylases, their activity is sensitive to intracellular NAD+ availability. This allows them to transmit information about a cell's metabolic state on to the biological processes they influence. Fungal sirtuins are primarily known to deacetylate histones, repressing transcription and modulating genome stability. Their target genes include those involved in NAD+ homeostasis, metabolism, sporulation, secondary metabolite production, and virulence traits of pathogenic fungi. By targeting different genes over evolutionary time, sirtuins serve as rewiring points that allow organisms to evolve novel responses to low NAD+ stress by bringing relevant biological processes under the control of sirtuins. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guolei Zhao
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| | - Laura N Rusche
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| |
Collapse
|
7
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
8
|
Kato T, Azegami J, Kano M, El Enshasy HA, Park EY. Effects of sirtuins on the riboflavin production in Ashbya gossypii. Appl Microbiol Biotechnol 2021; 105:7813-7823. [PMID: 34559286 DOI: 10.1007/s00253-021-11595-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
This study focuses on sirtuins, which catalyze the reaction of NAD+-dependent protein deacetylase, for riboflavin production in A. gossypii. Nicotinamide, a known inhibitor of sirtuin, made the color of A. gossypii colonies appear a deeper yellow at 5 mM. A. gossypii has 4 sirtuin genes (AgHST1, AgHST2, AgHST3, AgHST4) and these were disrupted to investigate the role of sirtuins in riboflavin production in A. gossypii. AgHST1∆, AgHST3∆, and AgHST4∆ strains were obtained, but AgHST2∆ was not. The AgHST1∆ and AgHST3∆ strains produced approximately 4.3- and 2.9-fold higher amounts of riboflavin than the WT strain. The AgHST3∆ strain showed a lower human sirtuin 6 (SIRT6)-like activity than the WT strain and only in the AgHST3∆ strain was a higher amount of acetylation of histone H3 K9 and K56 (H3K9ac and H3K56ac) observed compared to the WT strain. These results indicate that AgHst3 is SIRT6-like sirtuin in A. gossypii and the activity has an influence on the riboflavin production in A. gossypii. In the presence of 5 mM hydroxyurea and 50 µM camptothecin, which causes DNA damage, especially double-strand DNA breaks, the color of the WT strain colonies turned a deeper yellow. Additionally, hydroxyurea significantly led to the production of approximately 1.5 higher amounts of riboflavin and camptothecin also enhanced the riboflavin production even through the significant difference was not detected. Camptothecin tended to increase the amount of H3K56ac, but the amount of H3K56ac was not increased by hydroxyurea treatment. This study revealed that AgHst1 and AgHst3 are involved in the riboflavin production in A. gossypii through NAD metabolism and the acetylation of H3, respectively. This new finding is a step toward clarifying the role of sirtuins in riboflavin over-production by A. gossypii.Key points• Nicotinamide enhanced the riboflavin production in Ashbya gossypii.• Disruption of AgHST1 or AgHST3 gene also enhanced the riboflavin production in Ashbya gossypii.• Acetylation of H3K56 led to the enhancement of the riboflavin production in Ashbya gossypii.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan. .,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan. .,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Mai Kano
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
9
|
Doughty TW, Yu R, Chao LFI, Qin Z, Siewers V, Nielsen J. A single chromosome strain of S. cerevisiae exhibits diminished ethanol metabolism and tolerance. BMC Genomics 2021; 22:688. [PMID: 34551706 PMCID: PMC8456624 DOI: 10.1186/s12864-021-07947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eukaryotic organisms, like the model yeast S. cerevisiae, have linear chromosomes that facilitate organization and protection of nuclear DNA. A recent work described a stepwise break/repair method that enabled fusion of the 16 chromosomes of S. cerevisiae into a single large chromosome. Construction of this strain resulted in the removal of 30 of 32 telomeres, over 300 kb of subtelomeric DNA, and 107 subtelomeric ORFs. Despite these changes, characterization of the single chromosome strain uncovered modest phenotypes compared to a reference strain. RESULTS This study further characterized the single chromosome strain and found that it exhibited a longer lag phase, increased doubling time, and lower final biomass concentration compared with a reference strain when grown on YPD. These phenotypes were amplified when ethanol was added to the medium or used as the sole carbon source. RNAseq analysis showed poor induction of genes involved in diauxic shift, ethanol metabolism, and fatty-acid ß-oxidation during growth on ethanol compared to the reference strain. Enzyme-constrained metabolic modeling identified decreased flux through the enzymes that are encoded by these poorly induced genes as a likely cause of diminished biomass accumulation. The diminished growth on ethanol for the single chromosome strain was rescued by nicotinamide, an inhibitor of sirtuin family deacetylases, which have been shown to silence gene expression in heterochromatic regions. CONCLUSIONS Our results indicate that sirtuin-mediated silencing in the single chromosome strain interferes with growth on non-fermentable carbon sources. We propose that the removal of subtelomeric DNA that would otherwise be bound by sirtuins leads to silencing at other loci in the single chromosome strain. Further, we hypothesize that the poorly induced genes in the single chromosome strain during ethanol growth could be silenced by sirtuins in wildtype S. cerevisiae during growth on glucose.
Collapse
Affiliation(s)
- Tyler W Doughty
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Rosemary Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Lucy Fang-I Chao
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
- BioInnovation Institute, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
10
|
The Role of Sch9 and the V-ATPase in the Adaptation Response to Acetic Acid and the Consequences for Growth and Chronological Lifespan. Microorganisms 2021; 9:microorganisms9091871. [PMID: 34576766 PMCID: PMC8472237 DOI: 10.3390/microorganisms9091871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies with Saccharomyces cerevisiae indicated that non-physiologically high levels of acetic acid promote cellular acidification, chronological aging, and programmed cell death. In the current study, we compared the cellular lipid composition, acetic acid uptake, intracellular pH, growth, and chronological lifespan of wild-type cells and mutants lacking the protein kinase Sch9 and/or a functional V-ATPase when grown in medium supplemented with different acetic acid concentrations. Our data show that strains lacking the V-ATPase are especially more susceptible to growth arrest in the presence of high acetic acid concentrations, which is due to a slower adaptation to the acid stress. These V-ATPase mutants also displayed changes in lipid homeostasis, including alterations in their membrane lipid composition that influences the acetic acid diffusion rate and changes in sphingolipid metabolism and the sphingolipid rheostat, which is known to regulate stress tolerance and longevity of yeast cells. However, we provide evidence that the supplementation of 20 mM acetic acid has a cytoprotective and presumable hormesis effect that extends the longevity of all strains tested, including the V-ATPase compromised mutants. We also demonstrate that the long-lived sch9Δ strain itself secretes significant amounts of acetic acid during stationary phase, which in addition to its enhanced accumulation of storage lipids may underlie its increased lifespan.
Collapse
|
11
|
Chen W, Yu X, Wu Y, Tang J, Yu Q, Lv X, Zha Z, Hu B, Li X, Chen J, Ma L, Workman JL, Li S. The SESAME complex regulates cell senescence through the generation of acetyl-CoA. Nat Metab 2021; 3:983-1000. [PMID: 34183849 DOI: 10.1038/s42255-021-00412-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Acetyl-CoA is a central node in carbon metabolism and plays critical roles in regulatory and biosynthetic processes. The acetyl-CoA synthetase Acs2, which catalyses acetyl-CoA production from acetate, is an integral subunit of the serine-responsive SAM-containing metabolic enzyme (SESAME) complex, but the precise function of Acs2 within the SESAME complex remains unclear. Here, using budding yeast, we show that Acs2 within the SESAME complex is required for the regulation of telomere silencing and cellular senescence. Mechanistically, the SESAME complex interacts with the histone acetyltransferase SAS protein complex to promote histone H4K16 acetylation (H4K16ac) enrichment and the occupancy of bromodomain-containing protein, Bdf1, at subtelomeric regions. This interaction maintains telomere silencing by antagonizing the spreading of Sir2 along the telomeres, which is enhanced by acetate. Consequently, dissociation of Sir2 from telomeres by acetate leads to compromised telomere silencing and accelerated chronological ageing. In human endothelial cells, ACSS2, the ortholog of yeast Acs2, also interacts with H4K16 acetyltransferase hMOF and are required for acetate to increase H4K16ac, reduce telomere silencing and induce cell senescence. Altogether, our results reveal a conserved mechanism to connect cell metabolism with telomere silencing and cellular senescence.
Collapse
Affiliation(s)
- Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaodong Lv
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, China
| | - Zitong Zha
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Xin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jianguo Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
12
|
Boulton C. Provocation: all yeast cells are born equal, but some grow to be more equal than others. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Cámara E, Lenitz I, Nygård Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Sci Rep 2020; 10:14605. [PMID: 32884066 PMCID: PMC7471924 DOI: 10.1038/s41598-020-71648-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology-directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fluorescent protein-encoding genes under two different promoters allowing expression alterations up to ~ 2.5-fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design-build-test cycle for developing various industrial production strains.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Ibai Lenitz
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
14
|
Orlandi I, Alberghina L, Vai M. Nicotinamide, Nicotinamide Riboside and Nicotinic Acid-Emerging Roles in Replicative and Chronological Aging in Yeast. Biomolecules 2020; 10:E604. [PMID: 32326437 PMCID: PMC7226615 DOI: 10.3390/biom10040604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide, nicotinic acid and nicotinamide riboside are vitamin B3 precursors of NAD+ in the human diet. NAD+ has a fundamental importance for cellular biology, that derives from its essential role as a cofactor of various metabolic redox reactions, as well as an obligate co-substrate for NAD+-consuming enzymes which are involved in many fundamental cellular processes including aging/longevity. During aging, a systemic decrease in NAD+ levels takes place, exposing the organism to the risk of a progressive inefficiency of those processes in which NAD+ is required and, consequently, contributing to the age-associated physiological/functional decline. In this context, dietary supplementation with NAD+ precursors is considered a promising strategy to prevent NAD+ decrease and attenuate in such a way several metabolic defects common to the aging process. The metabolism of NAD+ precursors and its impact on cell longevity have benefited greatly from studies performed in the yeast Saccharomyces cerevisiae, which is one of the most established model systems used to study the aging processes of both proliferating (replicative aging) and non-proliferating cells (chronological aging). In this review we summarize important aspects of the role played by nicotinamide, nicotinic acid and nicotinamide riboside in NAD+ metabolism and how each of these NAD+ precursors contribute to the different aspects that influence both replicative and chronological aging. Taken as a whole, the findings provided by the studies carried out in S. cerevisiae are informative for the understanding of the complex dynamic flexibility of NAD+ metabolism, which is essential for the maintenance of cellular fitness and for the development of dietary supplements based on NAD+ precursors.
Collapse
Affiliation(s)
- Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 2016 Milan, Italy;
| | | | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 2016 Milan, Italy;
| |
Collapse
|
15
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|
16
|
Vall-Llaura N, Mir N, Garrido L, Vived C, Cabiscol E. Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity. Redox Biol 2019; 24:101229. [PMID: 31153040 PMCID: PMC6543126 DOI: 10.1016/j.redox.2019.101229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 01/07/2023] Open
Abstract
Yeast Sir2 is an NAD-dependent histone deacetylase related to oxidative stress and aging. In a previous study, we showed that Sir2 is regulated by S-glutathionylation of key cysteine residues located at the catalytic domain. Mutation of these residues results in strains with increased resistance to disulfide stress. In the present study, these mutant cells were highly resistant to acetic acid and had an increased chronological life span. Mutant cells had increased acetyl-CoA synthetase activity, which converts acetic acid generated by yeast metabolism to acetyl.CoA. This could explain the acetic acid resistance and lower levels of this toxic acid in the extracellular media during aging. Increased acetyl-CoA levels would raise lipid droplets, a source of energy during aging, and fuel glyoxylate-dependent gluconeogenesis. The key enzyme of this pathway, phosphoenolpyruvate carboxykinase (Pck1), showed increased activity in these Sir2 mutant cells during aging. Sir2 activity decreased when cells shifted to the diauxic phase in the mutant strains, compared to the WT strain. Since Pck1 is inactivated through Sir2-dependent deacetylation, the decline in Sir2 activity explained the rise in Pck1 activity. As a consequence, storage of sugars such as trehalose would increase. We conclude that extended longevity observed in the mutants was a combination of increased lipid droplets and trehalose, and decreased acetic acid in the extracellular media. These results offer a deeper understanding of the redox regulation of Sir2 in acetic acid resistance, which is relevant in some food and industrial biotechnology and also in the metabolism associated to calorie restriction, aging and pathologies such as diabetes.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- Department de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | - Noèlia Mir
- Department de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | - Lourdes Garrido
- Department de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | - Celia Vived
- Department de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | - Elisa Cabiscol
- Department de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| |
Collapse
|
17
|
Simpson-Lavy K, Kupiec M. Carbon Catabolite Repression in Yeast is Not Limited to Glucose. Sci Rep 2019; 9:6491. [PMID: 31019232 PMCID: PMC6482301 DOI: 10.1038/s41598-019-43032-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023] Open
Abstract
Cells adapt their gene expression and their metabolism in response to a changing environment. Glucose represses expression of genes involved in the catabolism of other carbon sources in a process known as (carbon) catabolite repression. However, the relationships between “poor” carbon sources is less characterized. Here we show that in addition to the well-characterized glucose (and galactose) repression of ADH2 (alcohol dehydrogenase 2, required for efficient utilization of ethanol as a carbon source), ADH2 expression is also inhibited by acetate which is produced during ethanol catabolism. Thus, repressive regulation of gene expression occurs also between “poor” carbon sources. Acetate repression of ADH2 expression is via Haa1, independently from the well-characterized mechanism of AMPK (Snf1) activation of Adr1. The response to extracellular acetate is attenuated when all three acetate transporters (Ady2, Fps1 and Jen1) are deleted, but these deletions do not affect the acetate response resulting from growth with glucose or ethanol as the carbon source. Furthermore, genetic manipulation of the ethanol catabolic pathway affects this response. Together, our results show that acetate is sensed intracellularly and that a hierarchical control of carbon sources exists even for “poor” carbon sources.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
18
|
Orlandi I, Stamerra G, Vai M. Altered Expression of Mitochondrial NAD + Carriers Influences Yeast Chronological Lifespan by Modulating Cytosolic and Mitochondrial Metabolism. Front Genet 2018; 9:676. [PMID: 30619489 PMCID: PMC6305841 DOI: 10.3389/fgene.2018.00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) represents an essential cofactor in sustaining cellular bioenergetics and maintaining cellular fitness, and has emerged as a therapeutic target to counteract aging and age-related diseases. Besides NAD+ involvement in multiple redox reactions, it is also required as co-substrate for the activity of Sirtuins, a family of evolutionary conserved NAD+-dependent deacetylases that regulate both metabolism and aging. The founding member of this family is Sir2 of Saccharomyces cerevisiae, a well-established model system for studying aging of post-mitotic mammalian cells. In this context, it refers to chronological aging, in which the chronological lifespan (CLS) is measured. In this paper, we investigated the effects of changes in the cellular content of NAD+ on CLS by altering the expression of mitochondrial NAD+ carriers, namely Ndt1 and Ndt2. We found that the deletion or overexpression of these carriers alters the intracellular levels of NAD+ with opposite outcomes on CLS. In particular, lack of both carriers decreases NAD+ content and extends CLS, whereas NDT1 overexpression increases NAD+ content and reduces CLS. This correlates with opposite cytosolic and mitochondrial metabolic assets shown by the two types of mutants. In the former, an increase in the efficiency of oxidative phosphorylation is observed together with an enhancement of a pro-longevity anabolic metabolism toward gluconeogenesis and trehalose storage. On the contrary, NDT1 overexpression brings about on the one hand, a decrease in the respiratory efficiency generating harmful superoxide anions, and on the other, a decrease in gluconeogenesis and trehalose stores: all this is reflected into a time-dependent loss of mitochondrial functionality during chronological aging.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology, Milan, Italy.,Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Giulia Stamerra
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
19
|
Tracking acetate through a journey of living world: Evolution as alternative cellular fuel with potential for application in cancer therapeutics. Life Sci 2018; 215:86-95. [DOI: 10.1016/j.lfs.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022]
|
20
|
Baccolo G, Stamerra G, Coppola DP, Orlandi I, Vai M. Mitochondrial Metabolism and Aging in Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:1-33. [PMID: 30072089 DOI: 10.1016/bs.ircmb.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial functionality is one of the main factors involved in cell survival, and mitochondrial dysfunctions have been identified as an aging hallmark. In particular, the insurgence of mitochondrial dysfunctions is tightly connected to mitochondrial metabolism. During aging, both mitochondrial oxidative and biosynthetic metabolisms are progressively altered, with the development of malfunctions, in turn affecting mitochondrial functionality. In this context, the relation between mitochondrial pathways and aging is evolutionarily conserved from single-celled organisms, such as yeasts, to complex multicellular organisms, such as humans. Useful information has been provided by the yeast Saccharomyces cerevisiae, which is being increasingly acknowledged as a valuable model system to uncover mechanisms underlying cellular longevity in humans. On this basis, we review the impact of specific aspects of mitochondrial metabolism on aging supported by the contributions brought by numerous studies performed employing yeast. Initially, we will focus on the tricarboxylic acid cycle and oxidative phosphorylation, describing how their modulation has consequences on cellular longevity. Afterward, we will report information regarding the importance of nicotinamide adenine dinucleotide (NAD) metabolism during aging, highlighting its relation with mitochondrial functionality. The comprehension of these key points regarding mitochondrial metabolism and their physiological importance is an essential first step for the development of therapeutic interventions that point to increase life quality during aging, therefore promoting "healthy aging," as well as lifespan itself.
Collapse
Affiliation(s)
- Giacomo Baccolo
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Giulia Stamerra
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | | | - Ivan Orlandi
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology, Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
21
|
Eder M, Sanchez I, Brice C, Camarasa C, Legras JL, Dequin S. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics 2018; 19:166. [PMID: 29490607 PMCID: PMC5831830 DOI: 10.1186/s12864-018-4562-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/20/2018] [Indexed: 01/07/2023] Open
Abstract
Background The volatile metabolites produced by Saccharomyces cerevisiae during alcoholic fermentation, which are mainly esters, higher alcohols and organic acids, play a vital role in the quality and perception of fermented beverages, such as wine. Although the metabolic pathways and genes behind yeast fermentative aroma formation are well described, little is known about the genetic mechanisms underlying variations between strains in the production of these aroma compounds. To increase our knowledge about the links between genetic variation and volatile production, we performed quantitative trait locus (QTL) mapping using 130 F2-meiotic segregants from two S. cerevisiae wine strains. The segregants were individually genotyped by next-generation sequencing and separately phenotyped during wine fermentation. Results Using different QTL mapping strategies, we were able to identify 65 QTLs in the genome, including 55 that influence the formation of 30 volatile secondary metabolites, 14 with an effect on sugar consumption and central carbon metabolite production, and 7 influencing fermentation parameters. For ethyl lactate, ethyl octanoate and propanol formation, we discovered 2 interacting QTLs each. Within 9 of the detected regions, we validated the contribution of 13 genes in the observed phenotypic variation by reciprocal hemizygosity analysis. These genes are involved in nitrogen uptake and metabolism (AGP1, ALP1, ILV6, LEU9), central carbon metabolism (HXT3, MAE1), fatty acid synthesis (FAS1) and regulation (AGP2, IXR1, NRG1, RGS2, RGT1, SIR2) and explain variations in the production of characteristic sensorial esters (e.g., 2-phenylethyl acetate, 2-metyhlpropyl acetate and ethyl hexanoate), higher alcohols and fatty acids. Conclusions The detection of QTLs and their interactions emphasizes the complexity of yeast fermentative aroma formation. The validation of underlying allelic variants increases knowledge about genetic variation impacting metabolic pathways that lead to the synthesis of sensorial important compounds. As a result, this work lays the foundation for tailoring S. cerevisiae strains with optimized volatile metabolite production for fermented beverages and other biotechnological applications. Electronic supplementary material The online version of this article (10.1186/s12864-018-4562-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Eder
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France
| | - Isabelle Sanchez
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France.,MISTEA, INRA, SupAgro, F-34060, Montpellier, France
| | - Claire Brice
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France
| | - Carole Camarasa
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France
| | - Jean-Luc Legras
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France
| | - Sylvie Dequin
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France.
| |
Collapse
|
22
|
Orlandi I, Stamerra G, Strippoli M, Vai M. During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent. Redox Biol 2017; 12:745-754. [PMID: 28412652 PMCID: PMC5397018 DOI: 10.1016/j.redox.2017.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 01/13/2023] Open
Abstract
Resveratrol (RSV) is a naturally occurring polyphenolic compound endowed with interesting biological properties/functions amongst which are its activity as an antioxidant and as Sirtuin activating compound towards SIRT1 in mammals. Sirtuins comprise a family of NAD+-dependent protein deacetylases that are involved in many physiological and pathological processes including aging and age-related diseases. These enzymes are conserved across species and SIRT1 is the closest mammalian orthologue of Sir2 of Saccharomyces cerevisiae. In the field of aging researches, it is well known that Sir2 is a positive regulator of replicative lifespan and, in this context, the RSV effects have been already examined. Here, we analyzed RSV effects during chronological aging, in which Sir2 acts as a negative regulator of chronological lifespan (CLS). Chronological aging refers to quiescent cells in stationary phase; these cells display a survival-based metabolism characterized by an increase in oxidative stress. We found that RSV supplementation at the onset of chronological aging, namely at the diauxic shift, increases oxidative stress and significantly reduces CLS. CLS reduction is dependent on Sir2 presence both in expired medium and in extreme Calorie Restriction. In addition, all data point to an enhancement of Sir2 activity, in particular Sir2-mediated deacetylation of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase (Pck1). This leads to a reduction in the amount of the acetylated active form of Pck1, whose enzymatic activity is essential for gluconeogenesis and CLS extension.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology Milano, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Giulia Stamerra
- SYSBIO Centre for Systems Biology Milano, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Maurizio Strippoli
- SYSBIO Centre for Systems Biology Milano, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Marina Vai
- SYSBIO Centre for Systems Biology Milano, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
23
|
Orlandi I, Pellegrino Coppola D, Strippoli M, Ronzulli R, Vai M. Nicotinamide supplementation phenocopies SIR2 inactivation by modulating carbon metabolism and respiration during yeast chronological aging. Mech Ageing Dev 2016; 161:277-287. [PMID: 27320176 DOI: 10.1016/j.mad.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023]
Abstract
Nicotinamide (NAM), a form of vitamin B3, is a byproduct and noncompetitive inhibitor of the deacetylation reaction catalyzed by Sirtuins. These represent a family of evolutionarily conserved NAD+-dependent deacetylases that are well-known critical regulators of metabolism and aging and whose founding member is Sir2 of Saccharomyces cerevisiae. Here, we investigated the effects of NAM supplementation in the context of yeast chronological aging, the established model for studying aging of postmitotic quiescent mammalian cells. Our data show that NAM supplementation at the diauxic shift results in a phenocopy of chronologically aging sir2Δ cells. In fact, NAM-supplemented cells display the same chronological lifespan extension both in expired medium and extreme Calorie Restriction. Furthermore, NAM allows the cells to push their metabolism toward the same outcomes of sir2Δ cells by elevating the level of the acetylated Pck1. Both these cells have the same metabolic changes that concern not only anabolic pathways such as an increased gluconeogenesis but also respiratory activity in terms both of respiratory rate and state of respiration. In particular, they have a higher respiratory reserve capacity and a lower non-phosphorylating respiration that in concert with a low burden of superoxide anions can affect positively chronological aging.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Damiano Pellegrino Coppola
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Maurizio Strippoli
- SYSBIO Centre for Systems Biology Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Rossella Ronzulli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology Milano, Italy; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
24
|
YU DENGFENG, JIANG SUJUAN, PAN ZHIPENG, CHENG WEIDONG, ZHANG WENJUN, YAO XIAOKUN, LI YUCHENG, LUN YONGZHI. Expression and clinical significance of Sirt1 in colorectal cancer. Oncol Lett 2016; 11:1167-1172. [PMID: 26893713 PMCID: PMC4738140 DOI: 10.3892/ol.2015.3982] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/06/2015] [Indexed: 01/16/2023] Open
Abstract
The objective of the present study was to examine the expression of Silent information regulator 1 (Sirt1) in colorectal cancer and peritumoral normal mucosa tissue, and therefore analyze the role and molecular mechanism of Sirt1 in the pathogenesis of colorectal cancer. Colorectal cancer tissue specimens were employed as the experimental group, and adjacent normal mucosa tissues >5 cm from tumor lesions were used as the control group. The expression of Sirt1 was detected by the immunohistochemical streptavidin peroxidase detection method in paraffin-embedded sections, whilst Sirt1 protein expression was examined by western blot analysis in the fresh tissues. Sirt1 protein was primarily expressed in the nuclei of the tumor cells, and positive staining was brownish-yellow in color. The relative expression quantities of Sirt1 in the peritumoral normal rectal mucosa and rectal carcinoma were 1.15 and 2.62, and the differences between the two groups were statistically significant (P<0.05). The expression level of Sirt1 in colorectal carcinoma was significantly associated with the depth of tumor invasion, differentiation and tumor size (P<0.05). Sirt1 expression was also found to be associated with tumor tissue type, lymph node metastasis, Duke's stage and patient age. These characteristics combined may therefore be used as markers for the early diagnosis of colorectal cancer pathogenesis.
Collapse
Affiliation(s)
- DENG-FENG YU
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
- Department of Anorectal Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - SU-JUAN JIANG
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
- Department of Gynecology and Obstetrics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - ZHI-PENG PAN
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - WEI-DONG CHENG
- Department of Anorectal Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - WEN-JUN ZHANG
- Department of Anorectal Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - XIAO-KUN YAO
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - YU-CHENG LI
- Department of Dermatology, Yuzhou People's Hospital, Xuchang, Henan 461670, P.R. China
| | - YONG-ZHI LUN
- Liaoning Provincial University Key Laboratory of Biophysics, College of Medicine, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
25
|
Guidi M, Ruault M, Marbouty M, Loïodice I, Cournac A, Billaudeau C, Hocher A, Mozziconacci J, Koszul R, Taddei A. Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol 2015; 16:206. [PMID: 26399229 PMCID: PMC4581094 DOI: 10.1186/s13059-015-0766-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022] Open
Abstract
Background The spatiotemporal behavior of chromatin is an important control mechanism of genomic function. Studies in Saccharomyces cerevisiae have broadly contributed to demonstrate the functional importance of nuclear organization. Although in the wild yeast survival depends on their ability to withstand adverse conditions, most of these studies were conducted on cells undergoing exponential growth. In these conditions, as in most eukaryotic cells, silent chromatin that is mainly found at the 32 telomeres accumulates at the nuclear envelope, forming three to five foci. Results Here, combining live microscopy, DNA FISH and chromosome conformation capture (HiC) techniques, we report that chromosomes adopt distinct organizations according to the metabolic status of the cell. In particular, following carbon source exhaustion the genome of long-lived quiescent cells undergoes a major spatial re-organization driven by the grouping of telomeres into a unique focus or hypercluster localized in the center of the nucleus. This change in genome conformation is specific to quiescent cells able to sustain long-term viability. We further show that reactive oxygen species produced by mitochondrial activity during respiration commit the cell to form a hypercluster upon starvation. Importantly, deleting the gene encoding telomere associated silencing factor SIR3 abolishes telomere grouping and decreases longevity, a defect that is rescued by expressing a silencing defective SIR3 allele competent for hypercluster formation. Conclusions Our data show that mitochondrial activity primes cells to group their telomeres into a hypercluster upon starvation, reshaping the genome architecture into a conformation that may contribute to maintain longevity of quiescent cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0766-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Micol Guidi
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Myriam Ruault
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Martial Marbouty
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Isabelle Loïodice
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Axel Cournac
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Cyrille Billaudeau
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Antoine Hocher
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Julien Mozziconacci
- LPTMC, Université Pierre et Marie Curie, UMR 7600, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
| | - Romain Koszul
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Angela Taddei
- Institut Curie, PSL Research University, Paris, F-75248, France. .,CNRS, UMR 3664, Paris, F-75248, France. .,Sorbonne Universités, UPMC Univ, Paris 06, France.
| |
Collapse
|
26
|
Mazzoleni S, Landi C, Cartenì F, de Alteriis E, Giannino F, Paciello L, Parascandola P. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures. Microb Cell Fact 2015; 14:109. [PMID: 26223307 PMCID: PMC4518646 DOI: 10.1186/s12934-015-0295-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. RESULTS A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. CONCLUSIONS The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.
Collapse
Affiliation(s)
- Stefano Mazzoleni
- Dept. di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Carmine Landi
- Dept. di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Fabrizio Cartenì
- Dept. di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Elisabetta de Alteriis
- Dept. di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80100, Naples, Italy.
| | - Francesco Giannino
- Dept. di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Lucia Paciello
- Dept. di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Palma Parascandola
- Dept. di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
27
|
Orlandi I, Coppola DP, Vai M. Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan. ACTA ACUST UNITED AC 2014; 1:393-405. [PMID: 28357219 PMCID: PMC5349135 DOI: 10.15698/mic2014.12.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During growth on fermentable substrates, such as glucose, pyruvate, which is the
end-product of glycolysis, can be used to generate acetyl-CoA in the cytosol via
acetaldehyde and acetate, or in mitochondria by direct oxidative
decarboxylation. In the latter case, the mitochondrial pyruvate carrier (MPC) is
responsible for pyruvate transport into mitochondrial matrix space. During
chronological aging, yeast cells which lack the major structural subunit Mpc1
display a reduced lifespan accompanied by an age-dependent loss of autophagy.
Here, we show that the impairment of pyruvate import into mitochondria linked to
Mpc1 loss is compensated by a flux redirection of TCA cycle intermediates
through the malic enzyme-dependent alternative route. In such a way, the TCA
cycle operates in a “branched” fashion to generate pyruvate and is depleted of
intermediates. Mutant cells cope with this depletion by increasing the activity
of glyoxylate cycle and of the pathway which provides the nucleocytosolic
acetyl-CoA. Moreover, cellular respiration decreases and ROS accumulate in the
mitochondria which, in turn, undergo severe damage. These acquired traits in
concert with the reduced autophagy restrict cell survival of the mpc1∆ mutant
during chronological aging. Conversely, the activation of the carnitine shuttle
by supplying acetyl-CoA to the mitochondria is sufficient to abrogate the
short-lived phenotype of the mutant.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology Milano, Italy. ; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Damiano Pellegrino Coppola
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology Milano, Italy. ; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
28
|
Landi C, Paciello L, de Alteriis E, Brambilla L, Parascandola P. High cell density culture with S. cerevisiae CEN.PK113-5D for IL-1β production: optimization, modeling, and physiological aspects. Bioprocess Biosyst Eng 2014; 38:251-61. [PMID: 25106469 DOI: 10.1007/s00449-014-1264-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/29/2014] [Indexed: 11/26/2022]
Abstract
Saccharomyces cerevisiae CEN.PK113-5D, a strain auxotrophic for uracil belonging to the CEN.PK family of the yeast S. cerevisiae, was cultured in aerated fed-batch reactor as such and once transformed to express human interleukin-1β (IL-1β), aiming at obtaining high cell densities and optimizing IL-1β production. Three different exponentially increasing glucose feeding profiles were tested, all of them "in theory" promoting respiratory metabolism to obtain high biomass/product yield. A non-structured non-segregated model was developed to describe the performance of S. cerevisiae CEN.PK113-5D during the fed-batch process and, in particular, its capability to metabolize simultaneously glucose and ethanol which derived from the precedent batch growth. Our study showed that the proliferative capacity of the yeast population declined along the fed-batch run, as shown by the exponentially decreasing specific growth rates on glucose. Further, a shift towards fermentative metabolism occurred. This shift took place earlier the higher was the feed rate and was more pronounced in the case of the recombinant strain. Determination of some physiological markers (acetate production, intracellular ROS accumulation, catalase activity and cell viability) showed that neither poor oxygenation nor oxidative stress was responsible for the decreased specific growth rate, nor for the shift to fermentative metabolism.
Collapse
Affiliation(s)
- Carmine Landi
- Dep. Ingegneria Industriale, Università Di Salerno, Via Giovanni Paolo II, 132 Fisciano, 84084, Salerno, Italy
| | | | | | | | | |
Collapse
|
29
|
Wierman MB, Smith JS. Yeast sirtuins and the regulation of aging. FEMS Yeast Res 2014; 14:73-88. [PMID: 24164855 PMCID: PMC4365911 DOI: 10.1111/1567-1364.12115] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/29/2022] Open
Abstract
The sirtuins are a phylogenetically conserved family of NAD(+) -dependent protein deacetylases that consume one molecule of NAD(+) for every deacetylated lysine side chain. Their requirement for NAD(+) potentially makes them prone to regulation by fluctuations in NAD(+) or biosynthesis intermediates, thus linking them to cellular metabolism. The Sir2 protein from Saccharomyces cerevisiae is the founding sirtuin family member and has been well characterized as a histone deacetylase that functions in transcriptional silencing of heterochromatin domains and as a pro-longevity factor for replicative life span (RLS), defined as the number of times a mother cell divides (buds) before senescing. Deleting SIR2 shortens RLS, while increased gene dosage causes extension. Furthermore, Sir2 has been implicated in mediating the beneficial effects of caloric restriction (CR) on life span, not only in yeast, but also in higher eukaryotes. While this paradigm has had its share of disagreements and debate, it has also helped rapidly drive the aging research field forward. S. cerevisiae has four additional sirtuins, Hst1, Hst2, Hst3, and Hst4. This review discusses the function of Sir2 and the Hst homologs in replicative aging and chronological aging, and also addresses how the sirtuins are regulated in response to environmental stresses such as CR.
Collapse
Affiliation(s)
- Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
30
|
Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:678473. [PMID: 24089630 PMCID: PMC3780702 DOI: 10.1155/2013/678473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 01/24/2023]
Abstract
We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.
Collapse
|
31
|
Ethanol and acetate acting as carbon/energy sources negatively affect yeast chronological aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:802870. [PMID: 24062879 PMCID: PMC3767056 DOI: 10.1155/2013/802870] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022]
Abstract
In Saccharomyces cerevisiae, the chronological lifespan (CLS) is defined as the length of time that a population of nondividing cells can survive in stationary phase. In this phase, cells remain metabolically active, albeit at reduced levels, and responsive to environmental signals, thus simulating the postmitotic quiescent state of mammalian cells. Many studies on the main nutrient signaling pathways have uncovered the strong influence of growth conditions, including the composition of culture media, on CLS. In this context, two byproducts of yeast glucose fermentation, ethanol and acetic acid, have been proposed as extrinsic proaging factors. Here, we report that ethanol and acetic acid, at physiological levels released in the exhausted medium, both contribute to chronological aging. Moreover, this combined proaging effect is not due to a toxic environment created by their presence but is mainly mediated by the metabolic pathways required for their utilization as carbon/energy sources. In addition, measurements of key enzymatic activities of the glyoxylate cycle and gluconeogenesis, together with respiration assays performed in extreme calorie restriction, point to a long-term quiescent program favoured by glyoxylate/gluconeogenesis flux contrary to a proaging one based on the oxidative metabolism of ethanol/acetate via TCA and mitochondrial respiration.
Collapse
|