1
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Nie X, Cheng R, Hao P, Guo Y, Chen G, Ji L, Jia L. MicroRNA-128-3p Affects Neuronal Apoptosis and Neurobehavior in Cerebral Palsy Rats by Targeting E3 Ubiquitin-Linking Enzyme Smurf2 and Regulating YY1 Expression. Mol Neurobiol 2025; 62:2277-2291. [PMID: 39102109 DOI: 10.1007/s12035-024-04362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
This study was dedicated to investigating the effects of microRNA-128-3p (miR-128-3p) on neuronal apoptosis and neurobehavior in cerebral palsy (CP) rats via the Smurf2/YY1 axis.In vivo modeling of hypoxic-ischemic (HI) CP was established in neonatal rats. Neurobehavioral tests (geotaxis reflex, cliff avoidance reaction, and grip test) were measured after HI induction. The HI-induced neurological injury was evaluated by HE staining, Nissl staining, TUNEL staining, immunohistochemical staining, and RT-qPCR. The expression of miR-128-3p, Smurf2, and YY1 was determined by RT-qPCR and western blot techniques. Moreover, primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro, cell viability was detected by CCK-8 assay, neuronal apoptosis was assessed by flow cytometry and western blot, and the underlying mechanism between miR-128-3p, Smurf2 and YY1 was verified by bioinformatics analysis, dual luciferase reporter assay, RIP, Co-IP, ubiquitination assay, western blot, and RT-qPCR.In vivo, miR-128-3p and YY1 expression was elevated, and Smurf2 expression was decreased in brain tissues of hypoxic-ischemic CP rats. Downregulation of miR-128-3p or overexpression of Smurf2 improved neurobehavioral performance, reduced neuronal apoptosis, and elevated Nestin and NGF expression in hypoxic-ischemic CP rats, and downregulation of Smurf2 reversed the effects of downregulation of miR-128-3p on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats, while overexpression of YY1 reversed the effects of Smurf2 on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats. In vitro, downregulation of miR-128-3p effectively promoted the neuronal survival, reduced the apoptosis rate, and decreased caspase3 protein expression after OGD, and overexpression of YY1 reversed the ameliorative effect of downregulation of miR-128-3p on OGD-induced neuronal injury. miR-128-3p targeted to suppress Smurf2 to lower YY1 ubiquitination degradation and decrease its expression.Inhibition of miR-128-3p improves neuronal apoptosis and neurobehavioral changes in hypoxic-ischemic CP rats by promoting Smurf2 to promote YY1 ubiquitination degradation and reduce YY1 expression.
Collapse
Affiliation(s)
- Xiaoqi Nie
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Rui Cheng
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Pengfei Hao
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
- Shanxi Medical University, Taiyuan, 030607, Shanxi, China
| | - Yuhong Guo
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Gang Chen
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Lei Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Lu Jia
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
3
|
Fan L, Tang Y, Liu J, Liu Y, Xu Y, Liu J, Liu H, Pang W, Guo Y, Yao W, Zhang T, Peng Q, Zhou J. Mechanical Activation of cPLA2 Impedes Fatty Acid β-Oxidation in Vein Grafts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411559. [PMID: 39587975 PMCID: PMC11744522 DOI: 10.1002/advs.202411559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Indexed: 11/27/2024]
Abstract
High-magnitude cyclic stretch from arterial blood pressure significantly contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMCs), leading to neointima formation in vein grafts. However, the molecular mechanisms remain unclear. This study highlights the critical role of cytosolic Phospholipase A2 (cPLA2)/ Yin Yang 1 (YY1)/ carnitine palmitoyltransferase 1b (CPT1B) signaling in coordinating VSMC mechanical activation by inhibiting fatty acid β-oxidation. Metabolomic analysis showed that a 15%-1 Hz arterial cyclic stretch, compared to a 5%-1 Hz venous stretch, increased long-chain fatty acids in VSMCs. cPLA2, identified as a mechanoresponsive molecule, produces excessive arachidonic acid (ArAc) under the 15%-1 Hz stretch, inhibiting CPT1B expression, a key enzyme in fatty acid β-oxidation. ArAc promotes transcription factor YY1 degradation, downregulating CPT1B. Inadequate fatty acid oxidation caused by knockdown of CPT1B or YY1, or etomoxir treatment, increased nuclear membrane tension, orchestrating the activation of cPLA2. Overexpressing CPT1B or inhibiting cPLA2 reduced VSMC proliferation and migration in vein grafts, decreasing neointimal hyperplasia. This study uncovers a novel mechanism in lipid metabolic reprogramming in vein grafts, suggesting a new therapeutic target for vein graft hyperplasia.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jian Liu
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yiwei Xu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jiayu Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuxuan Guo
- Institute of Cardiovascular SciencesSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044China
| | - Qin Peng
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| |
Collapse
|
4
|
Bakinowska E, Olejnik-Wojciechowska J, Kiełbowski K, Skoryk A, Pawlik A. Pathogenesis of Sarcopenia in Chronic Kidney Disease-The Role of Inflammation, Metabolic Dysregulation, Gut Dysbiosis, and microRNA. Int J Mol Sci 2024; 25:8474. [PMID: 39126043 PMCID: PMC11313360 DOI: 10.3390/ijms25158474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive disorder associated with a decline in kidney function. Consequently, patients with advanced stages of CKD require renal replacement therapies, such as dialysis and kidney transplantation. Various conditions lead to the development of CKD, including diabetes mellitus, hypertension, and glomerulonephritis, among others. The disease is associated with metabolic and hormonal dysregulation, including uraemia and hyperparathyroidism, as well as with low-grade systemic inflammation. Altered homeostasis increases the risk of developing severe comorbidities, such as cardiovascular diseases or sarcopenia, which increase mortality. Sarcopenia is defined as a progressive decline in muscle mass and function. However, the precise mechanisms that link CKD and the development of sarcopenia are poorly understood. Knowledge about these linking mechanisms might lead to the introduction of precise treatment strategies that could prevent muscle wasting. This review discusses inflammatory mediators, metabolic and hormonal dysregulation, gut microbiota dysbiosis, and non-coding RNA alterations that could link CKD and sarcopenia.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
- Independent Laboratory of Community Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Anastasiia Skoryk
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| |
Collapse
|
5
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
6
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
8
|
Wu T, Zhao B, Cai C, Chen Y, Miao Y, Chu J, Sui Y, Li F, Chen W, Cai Y, Wang F, Jin J. The Males Absent on the First (MOF) Mediated Acetylation Alters the Protein Stability and Transcriptional Activity of YY1 in HCT116 Cells. Int J Mol Sci 2023; 24:ijms24108719. [PMID: 37240065 DOI: 10.3390/ijms24108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Yin Yang 1 (YY1) is a well-known transcription factor that controls the expression of many genes and plays an important role in the occurrence and development of various cancers. We previously found that the human males absent on the first (MOF)-containing histone acetyltransferase (HAT) complex may be involved in regulating YY1 transcriptional activity; however, the precise interaction between MOF-HAT and YY1, as well as whether the acetylation activity of MOF impacts the function of YY1, has not been reported. Here, we present evidence that the MOF-containing male-specific lethal (MSL) HAT complex regulates YY1 stability and transcriptional activity in an acetylation-dependent manner. First, the MOF/MSL HAT complex was bound to and acetylated YY1, and this acetylation further promoted the ubiquitin-proteasome degradation pathway of YY1. The MOF-mediated degradation of YY1 was mainly related to the 146-270 amino acid residues of YY1. Further research clarified that acetylation-mediated ubiquitin degradation of YY1 mainly occurred through lysine 183. A mutation at the YY1K183 site was sufficient to alter the expression level of p53-mediated downstream target genes, such as CDKN1A (encoding p21), and it also suppressed the transactivation of YY1 on CDC6. Furthermore, a YY1K183R mutant and MOF remarkably antagonized the clone-forming ability of HCT116 and SW480 cells facilitated by YY1, suggesting that the acetylation-ubiquitin mode of YY1 plays an important role in tumor cell proliferation. These data may provide new strategies for the development of therapeutic drugs for tumors with high expression of YY1.
Collapse
Affiliation(s)
- Tingting Wu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bingxin Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chengyu Cai
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuyang Chen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yujuan Miao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jinmeng Chu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yi Sui
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fuqiang Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fei Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
9
|
Liu HJ, Du H, Khabibullin D, Zarei M, Wei K, Freeman GJ, Kwiatkowski DJ, Henske EP. mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion. Nat Commun 2023; 14:1214. [PMID: 36869048 PMCID: PMC9984496 DOI: 10.1038/s41467-023-36881-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Identifying the mechanisms underlying the regulation of immune checkpoint molecules and the therapeutic impact of targeting them in cancer is critical. Here we show that high expression of the immune checkpoint B7-H3 (CD276) and high mTORC1 activity correlate with immunosuppressive phenotypes and worse clinical outcomes in 11,060 TCGA human tumors. We find that mTORC1 upregulates B7-H3 expression via direct phosphorylation of the transcription factor YY2 by p70 S6 kinase. Inhibition of B7-H3 suppresses mTORC1-hyperactive tumor growth via an immune-mediated mechanism involving increased T-cell activity and IFN-γ responses coupled with increased tumor cell expression of MHC-II. CITE-seq reveals strikingly increased cytotoxic CD38+CD39+CD4+ T cells in B7-H3-deficient tumors. In pan-human cancers, a high cytotoxic CD38+CD39+CD4+ T-cell gene signature correlates with better clinical prognosis. These results show that mTORC1-hyperactivity, present in many human tumors including tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), drives B7-H3 expression leading to suppression of cytotoxic CD4+ T cells.
Collapse
Affiliation(s)
- Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA.
| | - Heng Du
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Mahsa Zarei
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843, TX, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - David J Kwiatkowski
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA.
| |
Collapse
|
10
|
Gao Q, Wang S, Zhang Z. E3 ubiquitin ligase SMURF2 prevents colorectal cancer by reducing the stability of the YY1 protein and inhibiting the SENP1/c-myc axis. Gene Ther 2023; 30:51-63. [PMID: 34545207 DOI: 10.1038/s41434-021-00289-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023]
Abstract
Genetic association between E3 ubiquitin ligase SMURF2 and colorectal cancer (CRC) has been identified, while the mechanism remains undefined. Tumor-promoting gene YY1 represents a downstream factor of SMURF2. The study was designed to evaluate the effect of SMURF2 on the malignant phenotypes of CRC cells and the underlying mechanism. The expression pattern of SMURF2 and YY1 in CRC clinical tissues and cells was characterized by immunohistochemistry (IHC) and Western blot. Gain- and loss-of-function experiments were conducted to assess the effect of SMURF2 and YY1 on the behaviors of CRC cells. After bioinformatics analysis, the relationship between YY1 and SENP1 as well as between SENP1 and c-myc was determined by luciferase reporter and ChIP assays. Rescue experiments were performed to show their involvement during CRC progression. Finally, in vivo models of tumor growth were established for validation. SMURF2 was lowly expressed and YY1 was highly expressed in CRC tissues and cells. YY1 overexpression resulted in promotion of CRC cell proliferation, migration, and invasion, which could be reversed by SMURF2. Furthermore, SMURF2 could induce ubiquitination-mediated degradation of YY1, which bound to the SENP1 promoter and upregulated SENP1 expression, leading to enhancement of c-myc expression. The in vivo data revealed the suppressive role of SMURF2 gain-of-function in tumor growth through downregulation of YY1, SENP1, or c-myc. Altogether, our data demonstrate the antitumor activity of SMURF2 in CRC and the anti-tumor mechanism associated with degradation of YY1 and downregulation of SENP1/c-myc.
Collapse
Affiliation(s)
- Qianfu Gao
- Anorectal Department, Linyi People's Hospital, Linyi, 276003, PR China
| | - Shanchao Wang
- Anorectal Department, Linyi People's Hospital, Linyi, 276003, PR China
| | - Zeyan Zhang
- Anorectal Department, Linyi People's Hospital, Linyi, 276003, PR China.
| |
Collapse
|
11
|
JAC1 targets YY1 mediated JWA/p38 MAPK signaling to inhibit proliferation and induce apoptosis in TNBC. Cell Death Dis 2022; 8:169. [PMID: 35383155 PMCID: PMC8983694 DOI: 10.1038/s41420-022-00992-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
Abstract
Triple negative breast cancer (TNBC) is a type of breast cancer with poor prognosis, and has no ideal therapeutic target and ideal medicine. Downregulation of JWA is closely related to the poor overall survival in many cancers including TNBC. In this study, we reported at the first time that JWA gene activating compound 1 (JAC1) inhibited the proliferation of TNBC in vitro and in vivo experimental models. JAC1 specifically bound to YY1 and eliminated its transcriptional inhibition of JWA gene. The rescued JWA induced G1 phase arrest and apoptosis in TNBC cells through the p38 MAPK signaling pathway. JAC1 also promoted ubiquitination and degradation of YY1. In addition, JAC1 disrupted the interaction between YY1 and HSF1, and suppressed the oncogenic role of HSF1 in TNBC through p-Akt signaling pathway. In conclusion, JAC1 suppressed the proliferation of TNBC through the JWA/P38 MAPK signaling and YY1/HSF1/p-Akt signaling. JAC1 maybe a potential therapeutic agent for TNBC.
Collapse
|
12
|
Zhang YL, Cao JL, Zhang Y, Liao L, Deng L, Yang SY, Hu SY, Ning Y, Zhang FL, Li DQ. RNF144A exerts tumor suppressor function in breast cancer through targeting YY1 for proteasomal degradation to downregulate GMFG expression. Med Oncol 2022; 39:48. [PMID: 35103856 PMCID: PMC8807444 DOI: 10.1007/s12032-021-01631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Yin-Ling Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin-Ling Cao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ye Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Ning
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Hiraiwa M, Fukasawa K, Iezaki T, Sabit H, Horie T, Tokumura K, Iwahashi S, Murata M, Kobayashi M, Suzuki A, Park G, Kaneda K, Todo T, Hirao A, Nakada M, Hinoi E. SMURF2 phosphorylation at Thr249 modifies glioma stemness and tumorigenicity by regulating TGF-β receptor stability. Commun Biol 2022; 5:22. [PMID: 35017630 PMCID: PMC8752672 DOI: 10.1038/s42003-021-02950-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023] Open
Abstract
Glioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorigenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorigenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-β receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy. Hiraiwa et al. show that phosphorylation of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) at Thr249 mediates ubiquitylation and degradation of the TGF-β receptor TGBR1 leading to loss of glioblastoma stem cell tumorigenic capacity. Their data elucidates a mechanism of regulation of the TGF-β signaling pathway that controls the stem cell status in glioblastoma.
Collapse
Affiliation(s)
- Manami Hiraiwa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kazuya Fukasawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Takashi Iezaki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuhiro Horie
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Sayuki Iwahashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Misato Murata
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Masaki Kobayashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akane Suzuki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Gyujin Park
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Hirao
- Cancer and Stem Cell Research Program, Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.,WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
14
|
Zhao S, El-Deiry WS. Identification of Smurf2 as a HIF-1α degrading E3 ubiquitin ligase. Oncotarget 2021; 12:1970-1979. [PMID: 34611473 PMCID: PMC8487721 DOI: 10.18632/oncotarget.28081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
The major adaptive response to hypoxia involves hypoxia-inducible factor HIF-1α which is regulated by von Hippel Lindau (VHL) E3 ligase. We previously observed a stabilization of HIF-1α by cyclin-dependent kinases CDK1 and CDK4/6 that is independent of VHL, hypoxia or p53, and found that CDK4/6 inhibitors destabilize HIF-1α under normoxia and hypoxia. To further investigate the molecular mechanism of HIF-1α destabilization by CDK1 or CDK4/6 inhibitors, we performed a proteomic screen on immunoprecipitated HIF-1α from hypoxic colorectal cancer cells that were either untreated or treated with CDK1 inhibitor Ro3306 and CDK4/6 inhibitor palbociclib. Our proteomics screen identified a number of candidates that were enriched in palbociclib-treated hypoxic cells including SMAD specific E3 ubiquitin protein ligase 2 (Smurf2). We also identified a HIF-1α peptide that appeared to be differentially phosphorylated after palbociclib treatment. Gene knockdown of SMURF2 increased basal expression of HIF-1α even in the presence of Ro3306 or two different CDK4/6 inhibitors, palbociclib and abemaciclib. Overexpression of Smurf2 inhibited expression of HIF-1α and enhanced HIF-1α ubiquitination in normoxia. Proteasome inhibitor MG-132 partially rescued HIF-1α expression when Smurf2 was overexpressed. Smurf2 overexpression also inhibited HIF-1α expression level in two other cell lines, SW480 and VHL-deficient RCC4. Overexpression of SMURF2 mRNA is correlated with improved disease-free survival and overall survival in clear cell renal cell cancer. Our results unravel a previously unknown mechanism involving Smurf2 for HIF-1α destabilization in CDK4/6 inhibitor-treated cells, thereby shedding light on VHL-independent HIF-1α regulation.
Collapse
Affiliation(s)
- Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Pathobiology Graduate Program, Brown University, Providence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Pathobiology Graduate Program, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Hematology/Oncology Division, Lifespan Cancer Institute, Providence, RI, USA
| |
Collapse
|
15
|
Fu SH, Lai MC, Zheng YY, Sun YW, Qiu JJ, Gui F, Zhang Q, Liu F. MiR-195 inhibits the ubiquitination and degradation of YY1 by Smurf2, and induces EMT and cell permeability of retinal pigment epithelial cells. Cell Death Dis 2021; 12:708. [PMID: 34267179 PMCID: PMC8282777 DOI: 10.1038/s41419-021-03956-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin-eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.
Collapse
Affiliation(s)
- Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Mei-Chen Lai
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Yun-Yao Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Ya-Wen Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Jing-Jing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Qian Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China.
| |
Collapse
|
16
|
Xu L, Zhou J, Che J, Wang H, Yang W, Zhou W, Zhao H. Mitochondrial DNA enables AIM2 inflammasome activation and hepatocyte pyroptosis in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1034-G1044. [PMID: 33728991 DOI: 10.1152/ajpgi.00431.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria damage exacerbates NAFLD through trigerring AIM2 inflammasome activation and hepatocyte pyroptosis. This study provides novel insights into the underlying mechanisms of mitochondrial DNA synthesis in NAFLD and also suggests potential therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Lu Xu
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| | - Jingyang Zhou
- Class 182, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jinhui Che
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| | - Haihong Wang
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| | - Weizhong Yang
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| | - Wuyuan Zhou
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Gulou District, Xuzhou City, Jiangsu, China
| | - Hongying Zhao
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Liu H, Sun S, Liu B. Smurf2 exerts neuroprotective effects on cerebral ischemic injury. J Biol Chem 2021; 297:100537. [PMID: 33722608 PMCID: PMC8363835 DOI: 10.1016/j.jbc.2021.100537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to explore specific mechanisms involved in mediating the neuroprotective effects of Smad ubiquitination regulatory factor 2 (Smurf2) in cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) mouse model and an oxygen–glucose deprivation (OGD)–treated neuron model were developed. The expression of Smurf2, Yin Yang 1 (YY1), hypoxia-inducible factor-1 alpha (HIF1α), and DNA damage–inducible transcript 4 gene (DDIT4) was analyzed. Thereafter, the expression of Smurf2, YY1, HIF1α, and DDIT4 was altered in the MCAO mice and OGD-treated neurons. Apoptosis in tissues and cerebral infarction were assessed. In neurons, the expression of apoptosis-related proteins, viability, and apoptosis were assessed, followed by evaluation of lactate dehydrogenase leakage rate. The interaction between Smurf2 and YY1 was analyzed by coimmunoprecipitation assay and that between YY1 ubiquitination by in vivo ubiquitination experiment. The results showed downregulation of Smurf2 and upregulation of YY1, HIF1α, and DDIT4 in both MCAO mice and OGD-treated neurons. Smurf2 elevated YY1 ubiquitination and degradation, and YY1 increased HIF1α expression to promote DDIT4 in neurons. Overexpressed Smurf2 or downregulated YY1, HIF1α, or DDIT4 reduced the volume of cerebral infarction and apoptosis in MCAO mice, while enhancing cell viability and reducing apoptosis and lactate dehydrogenase leakage in OGD-treated neurons. In summary, our findings elucidated a neuroprotective role of Smurf2 in cerebral ischemic injury via inactivation of the YY1/HIF1α/DDIT4 axis.
Collapse
Affiliation(s)
- Haibin Liu
- Department of Paediatrics, Linyi People's Hospital, Linyi, China
| | - Shengtao Sun
- Department of Paediatrics, Linyi People's Hospital, Linyi, China
| | - Bing Liu
- Department of Paediatrics, Linyi People's Hospital, Linyi, China.
| |
Collapse
|
18
|
Yang L, Zhou W, Lin H. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer. Front Oncol 2021; 10:610663. [PMID: 33718111 PMCID: PMC7950759 DOI: 10.3389/fonc.2020.610663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Smad ubiquitination regulatory factors (Smurfs) belong to the Nedd4 subfamily of HECT-type E3 ubiquitin ligases. Under normal situations, Smurfs are exactly managed by upstream regulators, and thereby strictly control tumor biological processes, including cell growth, differentiation, apoptosis, polarization, epithelial mesenchymal transition (EMT), and invasion. Disruption of Smurf activity has been implicated in cancer progression, and Smurf activity is controlled by a series of posttranslational modifications (PTMs), including phosphorylation, ubiquitination, neddylation, sumoylation, and methylation. The effect and function of Smurfs depend on PTMs and regulate biological processes. Specifically, these modifications regulate the functional expression of Smurfs by affecting protein degradation and protein interactions. In this review, we summarize the complexity and diversity of Smurf PTMs from biochemical and biological perspectives and highlight the understanding of their roles in cancer.
Collapse
Affiliation(s)
- Longtao Yang
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Wenwen Zhou
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Yu L, Dong L, Li H, Liu Z, Luo Z, Duan G, Dai X, Lin Z. Ubiquitination-mediated degradation of SIRT1 by SMURF2 suppresses CRC cell proliferation and tumorigenesis. Oncogene 2020; 39:4450-4464. [PMID: 32361710 DOI: 10.1038/s41388-020-1298-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
The NAD-dependent deacetylase sirtuin 1 (SIRT1), a member of the mammalian sirtuin family, plays a pivotal role in deacetylating histone and nonhistone proteins. Recently, it has been reported that SIRT1 is upregulated in various kinds of tumors and is associated with cell growth and metastasis. However, the factors and molecular mechanism regulating its cellular levels remain to be clarified. Here, we reported that the E3 ubiquitin ligase SMURF2 interacts with SIRT1 and mediates its ubiquitination and degradation. Depletion of SMURF2 leads to SIRT1 upregulation and induces the tumor formation and growth of colorectal cancer in vitro and in vivo. Furthermore, we show a negative correlation between SIRT1 and SMURF2 expression in human colorectal cancer. Thus, we propose a novel mechanism of colorectal tumorigenesis via SIRT1 regulation by SMURF2, which could potentially give rise to a new strategy for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Le Yu
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Ling Dong
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Hui Li
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, 250012, Jinan, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Guangjie Duan
- Department of Pulmonology, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Xiaotian Dai
- Department of Pulmonology, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China.
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
20
|
Sasik MUT, Eravsar ETK, Kinali M, Ergul AA, Adams MM. Expression Levels of SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and its Interacting Partners Show Region-specific Alterations During Brain Aging. Neuroscience 2020; 436:46-73. [PMID: 32278060 DOI: 10.1016/j.neuroscience.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023]
Abstract
Aging occurs due to a combination of several factors, such as telomere attrition, cellular senescence, and stem cell exhaustion. The telomere attrition-dependent cellular senescence is regulated by increased levels of SMAD specific E3 ubiquitin protein ligase 2 (smurf2). With age smurf2 expression increases and Smurf2 protein interacts with several regulatory proteins including, Smad7, Ep300, Yy1, Sirt1, Mdm2, and Tp53, likely affecting its function related to cellular aging. The current study aimed at analyzing smurf2 expression in the aged brain because of its potential regulatory roles in the cellular aging process. Zebrafish were used because like humans they age gradually and their genome has 70% similarity. In the current study, we demonstrated that smurf2 gene and protein expression levels altered in a region-specific manner during the aging process. Also, in both young and old brains, Smurf2 protein was enriched in the cytosol. These results imply that during aging Smurf2 is regulated by several mechanisms including post-translational modifications (PTMs) and complex formation. Also, the expression levels of its interacting partners defined by the STRING database, tp53, mdm2, ep300a, yy1a, smad7, and sirt1, were analyzed. Multivariate analysis indicated that smurf2, ep300a, and sirt1, whose proteins regulate ubiquitination, acetylation, and deacetylation of target proteins including Smad7 and Tp53, showed age- and brain region-dependent patterns. Our data suggest a likely balance between Smurf2- and Mdm2-mediated ubiquitination, and Ep300a-mediated acetylation/Sirt1-mediated deacetylation, which most possibly affects the functionality of other interacting partners in regulating cellular and synaptic aging and ultimately cognitive dysfunction.
Collapse
Affiliation(s)
- Melek Umay Tuz- Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Elif Tugce Karoglu- Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Selcuk University, Konya, Turkey
| | - Meric Kinali
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Ayca Arslan- Ergul
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
21
|
Huang S, Hsu L, Chang N. Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system. FASEB Bioadv 2020; 2:234-253. [PMID: 32259050 PMCID: PMC7133736 DOI: 10.1096/fba.2019-00060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/23/2019] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) governs the protein degradation process and balances proteostasis and cellular homeostasis. It is a well-controlled mechanism, in which removal of the damaged or excessive proteins is essential in driving signal pathways for cell survival or death. Accumulation of damaged proteins and failure in removal may contribute to disease initiation such as in cancers and neurodegenerative diseases. In this notion, specific protein-protein interaction is essential for the recognition of targeted proteins in UPS. WW domain plays an indispensable role in the protein-protein interactions during signaling. Among the 51 WW domain-containing proteins in the human proteomics, near one-quarter of them are involved in the UPS, suggesting that WW domains are crucial modules for driving the protein-protein binding and subsequent ubiquitination and degradation. In this review, we detail a broad spectrum of WW domains in protein-protein recognition, signal transduction, and relevance to diseases. New perspectives in dissecting the molecular interactions are provided.
Collapse
Affiliation(s)
- Shenq‐Shyang Huang
- Graduate Program of Biotechnology in MedicineInstitute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan, ROC
| | - Li‐Jin Hsu
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung University College of MedicineTainanTaiwan, ROC
| | - Nan‐Shan Chang
- Institute of Molecular MedicineNational Cheng Kung University College of MedicineTainanTaiwan, ROC
- Department of NeurochemistryNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNYUSA
- Graduate Institute of Biomedical SciencesCollege of MedicineChina Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
22
|
SMURF2 prevents detrimental changes to chromatin, protecting human dermal fibroblasts from chromosomal instability and tumorigenesis. Oncogene 2020; 39:3396-3410. [PMID: 32103168 DOI: 10.1038/s41388-020-1226-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
E3 ubiquitin ligases (E3s) play essential roles in the maintenance of tissue homeostasis under normal and stress conditions, as well as in disease states, particularly in cancer. However, the role of E3s in the initiation of human tumors is poorly understood. Previously, we reported that genetic ablation of the HECT-type E3 ubiquitin ligase Smurf2 induces carcinogenesis in mice; but whether and how these findings are pertinent to the inception of human cancer remain unknown. Here we show that SMURF2 is essential to protect human dermal fibroblasts (HDFs) from malignant transformation, and its depletion converts HDFs into tumorigenic entity. This phenomenon was associated with the radical changes in chromatin structural and epigenetic landscape, dysregulated gene expression and cell-cycle control, mesenchymal-to-epithelial transition and impaired DNA damage response. Furthermore, we show that SMURF2-mediated tumor suppression is interlinked with SMURF2's ability to regulate the expression of two central chromatin modifiers-an E3 ubiquitin ligase RNF20 and histone methyltransferase EZH2. Silencing these factors significantly reduced the growth and transformation capabilities of SMURF2-depleted cells. Finally, we demonstrate that SMURF2-compromised HDFs are highly tumorigenic in nude mice. These findings suggest the critical role that SMURF2 plays in preventing malignant alterations, chromosomal instability and cancer.
Collapse
|
23
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
24
|
A negative feedback mechanism links UBC gene expression to ubiquitin levels by affecting RNA splicing rather than transcription. Sci Rep 2019; 9:18556. [PMID: 31811203 PMCID: PMC6898720 DOI: 10.1038/s41598-019-54973-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
UBC gene plays a critical role in maintaining ubiquitin (Ub) homeostasis. It is upregulated under stress conditions, and herein we report that it is downregulated upon Ub overexpression. Downregulation occurs in a dose-dependent manner, suggesting the existence of a fine-tuned Ub sensing mechanism. This “sensor” requires a conjugation competent ubiquitin to detect Ub levels. Searching the sensor among the transcription factors involved in basal and stress-induced UBC gene expression was unsuccessful. Neither HSF1 and HSF2, nor Sp1 and YY1 are affected by the increased Ub levels. Moreover, mutagenesis of their binding sites in the UBC promoter-driven reporter constructs does not impair the downmodulation effect. Epigenetic studies show that H2A and H2B ubiquitination within the UBC promoter region is unchanged upon ubiquitin overexpression. Noteworthy, quantification of nascent RNA molecules excludes that the downmodulation arises in the transcription initiation step, rather pointing towards a post-transcriptional mechanism. Indeed, a significantly higher fraction of unspliced UBC mRNA is detected in ubiquitin overexpressing cells, compared to empty vector transfected cells. Our findings suggest how increasing cellular ubiquitin levels may control the expression of UBC gene by negatively affecting the splicing of its pre-mRNA, providing a straightforward feedback strategy for the homeostatic control of ubiquitin pools.
Collapse
|
25
|
Emanuelli A, Manikoth Ayyathan D, Koganti P, Shah PA, Apel-Sarid L, Paolini B, Detroja R, Frenkel-Morgenstern M, Blank M. Altered Expression and Localization of Tumor Suppressive E3 Ubiquitin Ligase SMURF2 in Human Prostate and Breast Cancer. Cancers (Basel) 2019; 11:cancers11040556. [PMID: 31003445 PMCID: PMC6521037 DOI: 10.3390/cancers11040556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
SMURF2, an E3 ubiquitin ligase and suggested tumor suppressor, operates in normal cells to prevent genomic instability and carcinogenesis. However, the mechanisms underlying SMURF2 inactivation in human malignancies remain elusive, as SMURF2 is rarely found mutated or deleted in cancers. We hypothesized that SMURF2 might have a distinct molecular biodistribution in cancer versus normal cells and tissues. The expression and localization of SMURF2 were analyzed in 666 human normal and cancer tissues, with primary focus on prostate and breast tumors. These investigations were accompanied by SMURF2 gene expression analyses, subcellular fractionation and biochemical studies, including SMURF2’s interactome analysis. We found that while in normal cells and tissues SMURF2 has a predominantly nuclear localization, in prostate and aggressive breast carcinomas SMURF2 shows a significantly increased cytoplasmic sequestration, associated with the disease progression. Mechanistic studies showed that the nuclear export machinery was not involved in cytoplasmic accumulation of SMURF2, while uncovered that its stability is markedly increased in the cytoplasmic compartment. Subsequent interactome analyses pointed to 14-3-3s as SMURF2 interactors, which could potentially affect its localization. These findings link the distorted expression of SMURF2 to human carcinogenesis and suggest the alterations in SMURF2 localization as a potential mechanism obliterating its tumor suppressor activities.
Collapse
Affiliation(s)
- Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Pooja Anil Shah
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Liat Apel-Sarid
- Department of Pathology, The Galilee Medical Center, 22100 Nahariya, Israel.
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, Anatomic Pathology Unit 1, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Rajesh Detroja
- Laboratory of Cancer Genomics and BioComputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Milana Frenkel-Morgenstern
- Laboratory of Cancer Genomics and BioComputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| |
Collapse
|
26
|
Reversible regulation of SATB1 ubiquitination by USP47 and SMURF2 mediates colon cancer cell proliferation and tumor progression. Cancer Lett 2019; 448:40-51. [DOI: 10.1016/j.canlet.2019.01.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
27
|
Dong S, Liu J, Li L, Wang H, Ma H, Zhao Y, Zhao J. The HECT ubiquitin E3 ligase Smurf2 degrades μ-opioid receptor 1 in the ubiquitin-proteasome system in lung epithelial cells. Am J Physiol Cell Physiol 2019; 316:C632-C640. [PMID: 30758996 DOI: 10.1152/ajpcell.00443.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioids are widely used for relieving clinical acute or chronic pain. The biological effects of opioids are through activating μ-opioid receptor 1 (MOR1). Most studies have focused on the consequences of agonist-induced MOR1 phosphorylation, ubiquitination, and internalization. Agonist-mediated MOR1 degradation, which is crucial for receptor stability and responsiveness, has not been well studied. E3 ubiquitin-protein ligase SMURF2 (Smurf2), a homolog to E6AP carboxy terminus (HECT) ubiquitin E3 ligase, has been shown to regulate MOR1 ubiquitination and internalization; however, its role in MOR1 degradation has not been studied. Here, we demonstrate that Smurf2 mediates [d-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAMGO, an agonist of MOR1)-induced MOR1 ubiquitination and degradation. DAMGO decreased MOR1 levels in the ubiquitin-proteasome system. MOR1 was modified by a Lys48-linked polyubiquitin chain. Overexpression of Smurf2 induced MOR1 ubiquitination and accelerated DAMGO-induced MOR1 degradation, whereas downregulation of Smurf2 attenuated MOR1 degradation. Furthermore, DAMGO increased lung epithelial cell migration and proliferation, and the effect was attenuated by overexpressing Smurf2. Collectively, these data unveil that Smurf2 negatively regulates MOR1 activity by reducing its stability. We also demonstrate an unrevealed biological function of MOR1 in lung epithelial cells. DAMGO-MOR1 promote cell migration and proliferation in lung epithelial cells, suggesting a potential effect of DAMGO in lung repair and remodeling after lung injury.
Collapse
Affiliation(s)
- Su Dong
- Department of Anesthesia, The First Hospital of Jilin University , Changchun , China.,Department of Physiology and Cell Biology, The Ohio State University , Columbus, Ohio
| | - Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University , Changchun , China.,Department of Physiology and Cell Biology, The Ohio State University , Columbus, Ohio
| | - Lian Li
- Department of Physiology and Cell Biology, The Ohio State University , Columbus, Ohio
| | - Heather Wang
- Department of Physiology and Cell Biology, The Ohio State University , Columbus, Ohio
| | - Haichun Ma
- Department of Anesthesia, The First Hospital of Jilin University , Changchun , China
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University , Columbus, Ohio
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University , Columbus, Ohio
| |
Collapse
|
28
|
Koganti P, Levy-Cohen G, Blank M. Smurfs in Protein Homeostasis, Signaling, and Cancer. Front Oncol 2018; 8:295. [PMID: 30116722 PMCID: PMC6082930 DOI: 10.3389/fonc.2018.00295] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an evolutionary conserved highly-orchestrated enzymatic cascade essential for normal cellular functions and homeostasis maintenance. This pathway relies on a defined set of cellular enzymes, among them, substrate-specific E3 ubiquitin ligases (E3s). These ligases are the most critical players, as they define the spatiotemporal nature of ubiquitination and confer specificity to this cascade. Smurf1 and Smurf2 (Smurfs) are the C2-WW-HECT-domain E3 ubiquitin ligases, which recently emerged as important determinants of pivotal cellular processes. These processes include cell proliferation and differentiation, chromatin organization and dynamics, DNA damage response and genomic integrity maintenance, gene expression, cell stemness, migration, and invasion. All these processes are intimately connected and profoundly altered in cancer. Initially, Smurf proteins were identified as negative regulators of the bone morphogenetic protein (BMP) and the transforming growth factor beta (TGF-β) signaling pathways. However, recent studies have extended the scope of Smurfs' biological functions beyond the BMP/TGF-β signaling regulation. Here, we provide a critical literature overview and updates on the regulatory roles of Smurfs in molecular and cell biology, with an emphasis on cancer. We also highlight the studies demonstrating the impact of Smurf proteins on tumor cell sensitivity to anticancer therapies. Further in-depth analyses of Smurfs' biological functions and influences on molecular pathways could provide novel therapeutic targets and paradigms for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
29
|
Sui Y, Li F, Wu T, Ding J, Lu Z, Wang L, Yang Y, Wang F, Zhao L, Zhu H, Wei T, Jin J, Cai Y. BCCIP binds to and activates its promoter in a YY1-dependent fashion in HCT116 cells. FEBS J 2018; 285:3026-3040. [PMID: 29932276 DOI: 10.1111/febs.14592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023]
Abstract
The restriction of Yin Yang 1 (YY1) at BRCA2 and CDKN1A/p21-interacting protein (BCCIP) transcriptional start site (TSS) proximal region in several human cancer cell lines was found by analyzation of ChIP-Seq database from UCSC Genome Browser (http://genome.ucsc.edu). However, whether the stabilization of YY1 by BCCIP impacts its recruitment in the BCCIP promoter region is unclear. Here, we present evidence that transcriptional regulation of YY1 on BCCIP is closely related to YY1 stability in HCT116 human colon cancer cells. YY1 stabilization was in turn regulated by BCCIP, suggesting the existence of a BCCIP-YY1 feedback loop in regulating BCCIP transcription by the YY1. Overexpression of BCCIP stabilized YY1 while knockdown of BCCIP reduced YY1 protein level. In addition, direct interaction between YY1 and BCCIP was confirmed by coimmunoprecipitation approach. Also, the N-terminus region of BCCIP, including the internal conserved domain (ICD), was responsible for binding with the amino acid 146-270 of YY1. More importantly, YY1 stability was related to the BCCIP/ICD domain-mediated YY1 ubiquitination pathway. Moreover, a limited BCCIP promoter region containing YY1 binding site (CCGCCATC) was tightly associated with the pGL4-BCCIP-Luc luciferase activity. In ChIP assays, shBCCIP lentiviral-mediated YY1 instability decreased recruitment of the YY1 at BCCIP TSS proximal region, which could not be restored by YY1 overexpression. Furthermore, knockdown of YY1 inhibited the binding of BCCIP itself at BCCIP promoter region proximal to TSS, demonstrating that transcriptional regulation of the YY1 on BCCIP can be modulated by BCCIP itself in a YY1-dependent fashion.
Collapse
Affiliation(s)
- Yi Sui
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Fuqiang Li
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Tingting Wu
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Jian Ding
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Zeming Lu
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Lingyao Wang
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Yang Yang
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Fei Wang
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Linhong Zhao
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Huihui Zhu
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Tao Wei
- School of Life Sciences, Jilin University, Changchun City, Jilin, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun City, Jilin, China.,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun City, Jilin, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun City, Jilin, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun City, Jilin, China.,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun City, Jilin, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun City, Jilin, China
| |
Collapse
|
30
|
Wu XN, Shi TT, He YH, Wang FF, Sang R, Ding JC, Zhang WJ, Shu XY, Shen HF, Yi J, Gao X, Liu W. Methylation of transcription factor YY2 regulates its transcriptional activity and cell proliferation. Cell Discov 2017; 3:17035. [PMID: 29098080 PMCID: PMC5665210 DOI: 10.1038/celldisc.2017.35] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/08/2017] [Indexed: 01/05/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional DNA-binding transcription factor shown to be critical in a variety of biological processes, and its activity and function have been shown to be regulated by multitude of mechanisms, which include but are not limited to post-translational modifications (PTMs), its associated proteins and cellular localization. YY2, the paralog of YY1 in mouse and human, has been proposed to function redundantly or oppositely in a context-specific manner compared with YY1. Despite its functional importance, how YY2’s DNA-binding activity and function are regulated, particularly by PTMs, remains completely unknown. Here we report the first PTM with functional characterization on YY2, namely lysine 247 monomethylation (K247me1), which was found to be dynamically regulated by SET7/9 and LSD1 both in vitro and in cultured cells. Functional study revealed that SET7/9-mediated YY2 methylation regulated its DNA-binding activity in vitro and in association with chromatin examined by chromatin immunoprecipitation coupled with sequencing (ChIP-seq) in cultured cells. Knockout of YY2, SET7/9 or LSD1 by CRISPR (clustered, regularly interspaced, short palindromic repeats)/Cas9-mediated gene editing followed by RNA sequencing (RNA-seq) revealed that a subset of genes was positively regulated by YY2 and SET7/9, but negatively regulated by LSD1, which were enriched with genes involved in cell proliferation regulation. Importantly, YY2-regulated gene transcription, cell proliferation and tumor growth were dependent, at least partially, on YY2 K247 methylation. Finally, somatic mutations on YY2 found in cancer, which are in close proximity to K247, altered its methylation, DNA-binding activity and gene transcription it controls. Our findings revealed the first PTM with functional implications imposed on YY2 protein, and linked YY2 methylation with its biological functions.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Tao-Tao Shi
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Yao-Hui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Fei-Fei Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Rui Sang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Jian-Cheng Ding
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Wen-Juan Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Xing-Yi Shu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Hai-Feng Shen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Jia Yi
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| |
Collapse
|
31
|
Zhang WJ, Wu XN, Shi TT, Xu HT, Yi J, Shen HF, Huang MF, Shu XY, Wang FF, Peng BL, Xiao RQ, Gao WW, Ding JC, Liu W. Regulation of Transcription Factor Yin Yang 1 by SET7/9-mediated Lysine Methylation. Sci Rep 2016; 6:21718. [PMID: 26902152 PMCID: PMC4763200 DOI: 10.1038/srep21718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor shown to be critical in a variety of biological processes. Although it is regulated by multiple types of post-translational modifications (PTMs), whether YY1 is methylated, which enzyme methylates YY1, and hence the functional significance of YY1 methylation remains completely unknown. Here we reported the first methyltransferase, SET7/9 (KMT7), capable of methylating YY1 at two highly conserved lysine (K) residues, K173 and K411, located in two distinct domains, one in the central glycine-rich region and the other in the very carboxyl-terminus. Functional studies revealed that SET7/9-mediated YY1 methylation regulated YY1 DNA-binding activity both in vitro and at specific genomic loci in cultured cells. Consistently, SET7/9-mediated YY1 methylation was shown to involve in YY1-regulated gene transcription and cell proliferation. Our findings revealed a novel regulatory strategy, methylation by lysine methyltransferase, imposed on YY1 protein, and linked YY1 methylation with its biological functions.
Collapse
Affiliation(s)
- Wen-juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xiao-nan Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Tao-tao Shi
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Huan-teng Xu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jia Yi
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-feng Shen
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ming-feng Huang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xing-yi Shu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Fei-fei Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bing-ling Peng
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rong-quan Xiao
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wei-wei Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.,College of Chemistry and Chemical Engineering, Xiamen University, No. 422 Siming South Road, Xiamen, Fujian 361105, China
| | - Jian-cheng Ding
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
32
|
Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer 2015; 138:1577-85. [PMID: 26132471 DOI: 10.1002/ijc.29663] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Donna P Frazier
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| |
Collapse
|
33
|
Nie J, Ge X, Geng Y, Cao H, Zhu W, Jiao Y, Wu J, Zhou J, Cao J. miR-34a inhibits the migration and invasion of esophageal squamous cell carcinoma by targeting Yin Yang-1. Oncol Rep 2015; 34:311-7. [PMID: 25954903 DOI: 10.3892/or.2015.3962] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/16/2015] [Indexed: 01/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most common gastrointestinal tumors, is known for its high mortality rate. microRNAs (miRNAs) have been reported to play important regulatory roles in cancer metastasis and progression. miR-34a has been demonstrated to be associated with the development of and metastasis in certain types of cancer via various target genes, but its function and targets in ESCC are unknown. The aim of this study was to examine whether the expression of miR-34a was significantly decreased in ESCC tissues, compared with normal esophageal tissues using RT-PCR and western blot analysis. The results showed that miR-34a overexpression increased apoptosis and decreased clonogenic formation, but inhibited invasion and migration in ESCC cells by suppressing MMP-2 and -9 expression. Yin Yang-1 (YY1), a widely distributed transcription factor that belongs to the GLI-Kruppel class of zinc finger proteins, was found to be a direct target of miR-34a in ESCC cell lines. Rescue experiments indicated that the suppressive effect of miR-34a on invasion and migration was mediated by activating YY1 expression. Results of the present study showed that miR-34a is associated with ESCC migration and provides a potential therapeutic and diagnostic target for ESCC.
Collapse
Affiliation(s)
- Jihua Nie
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xin Ge
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yangyang Geng
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Han Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Wei Zhu
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yang Jiao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jinchang Wu
- The Core Laboratory of Suzhou Cancer Center and Department of Radiotherapy of Suzhou Municipal Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Jundong Zhou
- The Core Laboratory of Suzhou Cancer Center and Department of Radiotherapy of Suzhou Municipal Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|