1
|
Hanaki S, Habara M, Tomiyasu H, Sato Y, Miki Y, Masaki T, Shibutani S, Shimada M. NFAT activation by FKBP52 promotes cancer cell proliferation by suppressing p53. Life Sci Alliance 2024; 7:e202302426. [PMID: 38803221 PMCID: PMC11109481 DOI: 10.26508/lsa.202302426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
FK506-binding protein 52 (FKBP52) is a member of the FKBP family of proline isomerases. FKBP52 is up-regulated in various cancers and functions as a positive regulator of steroid hormone receptors. Depletion of FKBP52 is known to inhibit cell proliferation; however, the detailed mechanism remains poorly understood. In this study, we found that FKBP52 depletion decreased MDM2 transcription, leading to stabilization of p53, and suppressed cell proliferation. We identified NFATc1 and NFATc3 as transcription factors that regulate MDM2 We also found that FKBP52 associated with NFATc3 and facilitated its nuclear translocation. In addition, calcineurin, a well-known Ca2+ phosphatase essential for activation of NFAT, plays a role in MDM2 transcription. Supporting this notion, MDM2 expression was found to be regulated by intracellular Ca2+ Taken together, these findings reveal a new role of FKBP52 in promoting cell proliferation via the NFAT-MDM2-p53 axis, and indicate that inhibition of FKBP52 could be a new therapeutic tool to activate p53 and inhibit cell proliferation.
Collapse
Affiliation(s)
- Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Takahiro Masaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Shusaku Shibutani
- Department of Veterinary Hygiene, Yamaguchi University, Yamaguchi, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
- Department of Molecular Biology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Im JY, Kim SJ, Park JL, Han TH, Kim WI, Kim I, Ko B, Chun SY, Kang MJ, Kim BK, Jeon SA, Kim SK, Ryu I, Kim SY, Nam KH, Hwang I, Ban HS, Won M. CYB5R3 functions as a tumor suppressor by inducing ER stress-mediated apoptosis in lung cancer cells via the PERK-ATF4 and IRE1α-JNK pathways. Exp Mol Med 2024; 56:235-249. [PMID: 38253797 PMCID: PMC10834511 DOI: 10.1038/s12276-024-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/04/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
Cytochrome b5 reductase 3 (CYB5R3) is involved in various cellular metabolic processes, including fatty acid synthesis and drug metabolism. However, the role of CYB5R3 in cancer development remains poorly understood. Here, we show that CYB5R3 expression is downregulated in human lung cancer cell lines and tissues. Adenoviral overexpression of CYB5R3 suppresses lung cancer cell growth in vitro and in vivo. However, CYB5R3 deficiency promotes tumorigenesis and metastasis in mouse models. Transcriptome analysis revealed that apoptosis- and endoplasmic reticulum (ER) stress-related genes are upregulated in CYB5R3-overexpressing lung cancer cells. Metabolomic analysis revealed that CYB5R3 overexpression increased the production of nicotinamide adenine dinucleotide (NAD+) and oxidized glutathione (GSSG). Ectopic CYB5R3 is mainly localized in the ER, where CYB5R3-dependent ER stress signaling is induced via activation of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme 1 alpha (IRE1α). Moreover, NAD+ activates poly (ADP-ribose) polymerase16 (PARP16), an ER-resident protein, to promote ADP-ribosylation of PERK and IRE1α and induce ER stress. In addition, CYB5R3 induces the generation of reactive oxygen species and caspase-9-dependent intrinsic cell death. Our findings highlight the importance of CYB5R3 as a tumor suppressor for the development of CYB5R3-based therapeutics for lung cancer.
Collapse
Affiliation(s)
- Joo-Young Im
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Soo Jin Kim
- Chungnam National University Sejong Hospital (CNUSH), Sejong, 30099, Republic of Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Aging Convergence Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Tae-Hee Han
- Biotherapeutics Translational Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Woo-Il Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Inhyub Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Bomin Ko
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - So-Young Chun
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- R&D Center, OneCureGEN Co., Ltd., Daejeon, 34141, Republic of Korea
| | - Sol A Jeon
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Aging Convergence Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Incheol Ryu
- YD Global Life Science Co., Ltd., Seongnam-si, Gyeonggi-do, 13207, Republic of Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource & Research Center, KRIBB, Cheongju, Chungbuk, Republic of Korea
| | - Inah Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
- R&D Center, OneCureGEN Co., Ltd., Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
4
|
Im JY, Kang MJ, Kim BK, Won M. DDIAS, DNA damage-induced apoptosis suppressor, is a potential therapeutic target in cancer. Exp Mol Med 2023:10.1038/s12276-023-00974-6. [PMID: 37121974 DOI: 10.1038/s12276-023-00974-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 05/02/2023] Open
Abstract
Increasing evidence indicates that DNA damage-induced apoptosis suppressor (DDIAS) is an oncogenic protein that is highly expressed in a variety of cancers, including colorectal cancer, lung cancer, breast cancer, and hepatocellular carcinoma (HCC). The discovery of DDIAS as a novel therapeutic target and its role in human cancer biology is fascinating and noteworthy. Recent studies have shown that DDIAS is involved in tumorigenesis, metastasis, DNA repair and synthesis, and drug resistance and that it plays multiple roles with distinct binding partners in several human cancers. This review focuses on the function of DDIAS and its regulatory proteins in human cancer as potential targets for cancer therapy, as well as the development and future prospects of DDIAS inhibitors.
Collapse
Affiliation(s)
- Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- R&D Center, OneCureGEN Co., Ltd., Daejeon, 34141, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- R&D Center, OneCureGEN Co., Ltd., Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Influence of the Extraction Solvent and of the Altitude on the Anticancer Activity of Lebanese Eucalyptus camaldulensis Extract Alone or in Combination with Low Dose of Cisplatin in A549 Human Lung Adenocarcinoma Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10081461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Lung cancer is the second most common cancer worldwide. Eucalyptus plant extract has been shown to have anti-neoplastic effects. We investigated the antitumor effect of ethanolic and aqueous extracts of Eucalyptus camaldulensis collected at different altitudes on A549. In addition, we evaluated the additive effect of its combination with low-dose cisplatin (CDDP). Methods: Qualitative and quantitative analyses of secondary metabolites present in the plants were carried out. The antioxidant and cytotoxic activities of the different extracts on A549 were evaluated using the 2.2-diphenyl-1-picrylhydrazyl radical scavenging activity and neutral red assay, respectively. The cytotoxic effect of the combination of certain extract concentrations with low-dose CDDP on A549 cells was studied. Results: In the Ethanoic extract, a higher number of active substances and antioxidant activities were observed. The four E. camaldulensis extracts showed cytotoxic activity on A549 cells, with a higher cytotoxicity for the Ethanoic extract and the sea-level altitude species. Moreover, the dual exposure of cells to both E. camaldulensis extracts and a low dose of Cisplatin showed an additional cytotoxic effect on A549 cells in certain concentrations. Conclusions: This study opens novel therapeutic options in combinational therapies of Eucalyptus camaldulensis with low-dose CDDP for the treatment of adenocarcinoma cells of human lungs.
Collapse
|
6
|
Mieczkowska IK, Pantelaiou-Prokaki G, Prokakis E, Schmidt GE, Müller-Kirschbaum LC, Werner M, Sen M, Velychko T, Jannasch K, Dullin C, Napp J, Pantel K, Wikman H, Wiese M, Kramm CM, Alves F, Wegwitz F. Decreased PRC2 activity supports the survival of basal-like breast cancer cells to cytotoxic treatments. Cell Death Dis 2021; 12:1118. [PMID: 34845197 PMCID: PMC8630036 DOI: 10.1038/s41419-021-04407-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is the most common cancer occurring in women but also rarely develops in men. Recent advances in early diagnosis and development of targeted therapies have greatly improved the survival rate of BC patients. However, the basal-like BC subtype (BLBC), largely overlapping with the triple-negative BC subtype (TNBC), lacks such drug targets and conventional cytotoxic chemotherapies often remain the only treatment option. Thus, the development of resistance to cytotoxic therapies has fatal consequences. To assess the involvement of epigenetic mechanisms and their therapeutic potential increasing cytotoxic drug efficiency, we combined high-throughput RNA- and ChIP-sequencing analyses in BLBC cells. Tumor cells surviving chemotherapy upregulated transcriptional programs of epithelial-to-mesenchymal transition (EMT) and stemness. To our surprise, the same cells showed a pronounced reduction of polycomb repressive complex 2 (PRC2) activity via downregulation of its subunits Ezh2, Suz12, Rbbp7 and Mtf2. Mechanistically, loss of PRC2 activity leads to the de-repression of a set of genes through an epigenetic switch from repressive H3K27me3 to activating H3K27ac mark at regulatory regions. We identified Nfatc1 as an upregulated gene upon loss of PRC2 activity and directly implicated in the transcriptional changes happening upon survival to chemotherapy. Blocking NFATc1 activation reduced epithelial-to-mesenchymal transition, aggressiveness, and therapy resistance of BLBC cells. Our data demonstrate a previously unknown function of PRC2 maintaining low Nfatc1 expression levels and thereby repressing aggressiveness and therapy resistance in BLBC.
Collapse
Affiliation(s)
- Iga K. Mieczkowska
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Garyfallia Pantelaiou-Prokaki
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany ,grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Evangelos Prokakis
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Geske E. Schmidt
- grid.411984.10000 0001 0482 5331Department of Gastroenterology, GI-Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas C. Müller-Kirschbaum
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marcel Werner
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Madhobi Sen
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Taras Velychko
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Jannasch
- grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Joanna Napp
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus Pantel
- grid.13648.380000 0001 2180 3484Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- grid.13648.380000 0001 2180 3484Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Wiese
- grid.411984.10000 0001 0482 5331Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof M. Kramm
- grid.411984.10000 0001 0482 5331Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany. .,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2021; 118:2110758118. [PMID: 34413196 PMCID: PMC8403940 DOI: 10.1073/pnas.2110758118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy in need of novel targeted therapies to prevent relapse and lessen treatment toxicity. We reveal frequent (∼88%) transcriptional silencing or repression of the tumor suppressor TET2 in T-ALL. We show that loss of TET2 in T-ALL is correlated with hypermethylation of the TET2 promoter and that TET2 expression can be rescued by treatment with the DNA demethylating agent, 5-azacytidine (5-aza). We further reveal that the TET2 cofactor vitamin C exerts a strong synergistic effect on global transcriptional changes when added to 5-aza treatment. Importantly, 5-aza treatment results in increased cell death, specifically in T-ALL cells lacking TET2. Thus, we clearly identify 5-aza as a potentially targeted therapy for TET2-silenced T-ALL. Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy resulting from overproduction of immature T-cells in the thymus and is typified by widespread alterations in DNA methylation. As survival rates for relapsed T-ALL remain dismal (10 to 25%), development of targeted therapies to prevent relapse is key to improving prognosis. Whereas mutations in the DNA demethylating enzyme TET2 are frequent in adult T-cell malignancies, TET2 mutations in T-ALL are rare. Here, we analyzed RNA-sequencing data of 321 primary T-ALLs, 20 T-ALL cell lines, and 25 normal human tissues, revealing that TET2 is transcriptionally repressed or silenced in 71% and 17% of T-ALL, respectively. Furthermore, we show that TET2 silencing is often associated with hypermethylation of the TET2 promoter in primary T-ALL. Importantly, treatment with the DNA demethylating agent, 5-azacytidine (5-aza), was significantly more toxic to TET2-silenced T-ALL cells and resulted in stable re-expression of the TET2 gene. Additionally, 5-aza led to up-regulation of methylated genes and human endogenous retroviruses (HERVs), which was further enhanced by the addition of physiological levels of vitamin C, a potent enhancer of TET activity. Together, our results clearly identify 5-aza as a potential targeted therapy for TET2-silenced T-ALL.
Collapse
|
8
|
Im JY, Kim BK, Yoon SH, Cho BC, Baek YM, Kang MJ, Kim N, Gong YD, Won M. DGG-100629 inhibits lung cancer growth by suppressing the NFATc1/DDIAS/STAT3 pathway. Exp Mol Med 2021; 53:643-653. [PMID: 33859351 PMCID: PMC8102629 DOI: 10.1038/s12276-021-00601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) promotes the progression of lung cancer and hepatocellular carcinoma through the regulation of multiple pathways. We screened a chemical library for anticancer agent(s) capable of inhibiting DDIAS transcription. DGG-100629 was found to suppress lung cancer cell growth through the inhibition of DDIAS expression. DGG-100629 induced c-Jun NH(2)-terminal kinase (JNK) activation and inhibited NFATc1 nuclear translocation. Treatment with SP600125 (a JNK inhibitor) or knockdown of JNK1 restored DDIAS expression and reversed DGG-100629-induced cell death. In addition, DGG-100629 suppressed the signal transducer and activator of transcription (STAT3) signaling pathway. DDIAS or STAT3 overexpression restored lung cancer cell growth in the presence of DGG-100629. In a xenograft assay, DGG-100629 inhibited tumor growth by reducing the level of phosphorylated STAT3 and the expression of STAT3 target genes. Moreover, DGG-100629 inhibited the growth of lung cancer patient-derived gefitinib-resistant cells expressing NFATc1 and DDIAS. Our findings emphasize the potential of DDIAS blockade as a therapeutic approach and suggest a novel strategy for the treatment of gefitinib-resistant lung cancer.
Collapse
Affiliation(s)
- Joo-Young Im
- grid.249967.70000 0004 0636 3099Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141 Korea
| | - Bo-Kyung Kim
- grid.249967.70000 0004 0636 3099Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141 Korea
| | - Sung-Hoon Yoon
- grid.418982.e0000 0004 5345 5340National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do 56212 Korea ,grid.412786.e0000 0004 1791 8264Department of Human and Environmental Toxicology, University of Science and Technology (UST), Daejeon, 34113 Korea
| | - Byoung Chul Cho
- grid.15444.300000 0004 0470 5454Division of Medical Oncology, Yonsei University College of Medicine, Seoul, 03722 Korea
| | - Yu Mi Baek
- Therna Therapeutics, Yangcheon-ro, Gangseo-gu, Seoul 05029 Korea
| | - Mi-Jung Kang
- grid.249967.70000 0004 0636 3099Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141 Korea
| | - Nayeon Kim
- grid.255168.d0000 0001 0671 5021Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, Seoul, 04620 Korea
| | - Young-Dae Gong
- grid.255168.d0000 0001 0671 5021Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, Seoul, 04620 Korea
| | - Misun Won
- grid.249967.70000 0004 0636 3099Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141 Korea ,grid.412786.e0000 0004 1791 8264Deparment of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113 Korea
| |
Collapse
|
9
|
Ma J, Du R, Huang Y, Zhong W, Gui H, Mao C, Song X, Lu J. Expression, Prognosis and Gene Regulation Network of NFAT Transcription Factors in Non-Small Cell Lung Cancer. Pathol Oncol Res 2021; 27:529240. [PMID: 34257525 PMCID: PMC8262184 DOI: 10.3389/pore.2021.529240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/26/2021] [Indexed: 12/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. The nuclear factor of activated T cells (NFAT) family is implicated in tumorigenesis and progression in various types of cancer. However, little is known about their expression patterns, distinct prognostic values, and potential regulatory networks in NSCLC. In this study, we comprehensively analyzed the distinct expression and prognostic value of NFATs in NSCLC through various large databases, including the Oncomine, UCSC Xena Browser, UALCAN databases, Kaplan–Meier Plotter, cBioPortal, and Enrichr. In lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), NFAT1/2/4/5 mRNA expression levels were significantly decreased and NFAT3 mRNA expression level was significantly increased. The cBioPortal database analysis showed that the mRNA dysregulation was one of the single most important factors for NFAT alteration in LUAD and LUSC and that both LUAD and LUSC cases with the alterations in the mRNA expression of NFATs had significantly better overall survival (OS). High expression levels of NFAT1/2/4/5 were significantly associated with better OS in LUAD, whereas high NFAT3 expression led to a worse OS. Overexpression of NFAT1/2 predicted better OS in LUSC, whereas high NFAT5 expression led to a worse OS. The networks for NFATs and the 50 most frequently altered neighbor genes in LUAD and LUSC were also constructed. NFATs and genes significantly associated with NFAT mRNA expression in LUAD and LUSC were significantly enriched in the cGMP-dependent protein kinase and Wnt signaling pathways. These results showed that the NFAT family members displayed varying degrees of abnormal expressions, suggesting that NFATs may be therapeutic targets for patients with NSCLC. Aberrant expression of NFATs was found to be associated with OS in the patients with NSCLC; among NFATs, NFAT3/4 may be new biomarkers for the prognosis of LUAD. However, further studies are required to validate our findings.
Collapse
Affiliation(s)
- Jin Ma
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Rao Du
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Huang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Wen Zhong
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Huan Gui
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Chenmei Mao
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Xiudao Song
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jun Lu
- Department of Haematology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Yoon SH, Kim BK, Kang MJ, Im JY, Won M. Miconazole inhibits signal transducer and activator of transcription 3 signaling by preventing its interaction with DNA damage-induced apoptosis suppressor. Cancer Sci 2020; 111:2499-2507. [PMID: 32476221 PMCID: PMC7385363 DOI: 10.1111/cas.14432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) facilitates the survival of lung cancer by suppressing apoptosis. Moreover, DDIAS promotes tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3) via their interaction. Here, we identified miconazole as an inhibitor of DDIAS/STAT3 interaction by screening a chemical library using a yeast two-hybrid assay. Miconazole inhibited growth, migration and invasion of lung cancer cells. Furthermore, miconazole suppressed STAT3 tyrosine Y705 phosphorylation and the expression of its target genes, such as cyclin D1, survivin and snail but had no suppressive effect on the activation of ERK1/2 or AKT, which is involved in the survival of lung cancer. As expected, no interaction between DDIAS and STAT3 occurred in the presence of miconazole, as confirmed by immunoprecipitation assays. Mouse xenograft experiments showed that miconazole significantly suppressed both tumor size and weight in an NCI-H1703 mouse model. Tyrosine phosphorylation of STAT3 at Y705 and expression of its targets, such as cyclin D1, survivin and snail, were decreased in miconazole-treated tumor tissues, as compared with those in vehicle-treated tumor tissues. These data suggest that miconazole exerts an anti-cancer effect by suppressing STAT3 activation through inhibiting DDIAS/STAT3 binding.
Collapse
Affiliation(s)
- Sung-Hoon Yoon
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Korea.,Department of Human and Environmental Toxicology, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
11
|
DDIAS promotes STAT3 activation by preventing STAT3 recruitment to PTPRM in lung cancer cells. Oncogenesis 2020; 9:1. [PMID: 31900385 PMCID: PMC6949220 DOI: 10.1038/s41389-019-0187-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) regulates cancer cell survival. Here we investigated the involvement of DDIAS in IL-6-mediated signaling to understand the mechanism underlying the role of DDIAS in lung cancer malignancy. We showed that DDIAS promotes tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3), which is constitutively activated in malignant cancers. Interestingly, siRNA protein tyrosine phosphatase (PTP) library screening revealed protein tyrosine phosphatase receptor mu (PTPRM) as a novel STAT3 PTP. PTPRM knockdown rescued the DDIAS-knockdown-mediated decrease in STAT3 Y705 phosphorylation in the presence of IL-6. However, PTPRM overexpression decreased STAT3 Y705 phosphorylation. Moreover, endogenous PTPRM interacted with endogenous STAT3 for dephosphorylation at Y705 following IL-6 treatment. As expected, PTPRM bound to wild-type STAT3 but not the STAT3 Y705F mutant. PTPRM dephosphorylated STAT3 in the absence of DDIAS, suggesting that DDIAS hampers PTPRM/STAT3 interaction. In fact, DDIAS bound to the STAT3 transactivation domain (TAD), which competes with PTPRM to recruit STAT3 for dephosphorylation. Thus we show that DDIAS prevents PTPRM/STAT3 binding and blocks STAT3 Y705 dephosphorylation, thereby sustaining STAT3 activation in lung cancer. DDIAS expression strongly correlates with STAT3 phosphorylation in human lung cancer cell lines and tissues. Thus DDIAS may be considered as a potential biomarker and therapeutic target in malignant lung cancer cells with aberrant STAT3 activation.
Collapse
|
12
|
Liu X, Pan CG, Luo ZQ. High expression of NFAT2 contributes to carboplatin resistance in lung cancer. Exp Mol Pathol 2019; 110:104290. [DOI: 10.1016/j.yexmp.2019.104290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 11/30/2022]
|
13
|
Wang Y, Ma Z, Zheng Y, Liu B, Bao P, Wu X, Yu C, Wen Z, Ma T, Liu J, Liu C, Ma D, Wu H, Li J, Yuan Y, Lu N, Zhao H, Li Y, Yang S, Zhang R, Dai J, Hu M. Establishment of an osteoporosis model in tree shrews by bilateral ovariectomy and comprehensive evaluation. Exp Ther Med 2019; 17:3644-3654. [PMID: 30988748 PMCID: PMC6447825 DOI: 10.3892/etm.2019.7339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis (OP) treatment has always been challenging for elderly menopausal females. An animal model with a closer genetic association to human OP is essential for treatment research. Given its close genetic association to primates, the tree shrew is a suitable candidate for meeting the requirements for such an animal model. In the present study, a tree shrew OP model induced by ovariectomy (OVX), was established. Evaluation by multiple analysis methods, including blood biochemical indicators, uterus coefficients, micro-computed tomography analysis, histochemical analysis and scanning electron microscopic observation indicated that OVX was an appropriate method to establish the OP model in tree shrews. In addition, the biomolecular characteristics of OVX-induced osteoporosis were also assessed by transcriptome sequencing and bioinformatics analysis. The present study provides the methods used to confirm the successful establishment of the OP model in tree shrew, and suggests that the OP model is appropriate for human OP research.
Collapse
Affiliation(s)
- Yaolong Wang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Yuanyuan Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Baoling Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Pengfei Bao
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Xingfei Wu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Congtao Yu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Zhengqi Wen
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Tiekun Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jinxue Liu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Change Liu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Daiping Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Haiying Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ning Lu
- Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Hongbin Zhao
- Department of Orthopaedics, First People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Suping Yang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China.,Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Rongping Zhang
- Department of Pharmacy, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| |
Collapse
|
14
|
Ding N, Geng B, Li Z, Yang Q, Yan L, Wan L, Zhang B, Wang C, Xia Y. Fluid shear stress promotes osteoblast proliferation through the NFATc1-ERK5 pathway. Connect Tissue Res 2019; 60:107-116. [PMID: 29609502 DOI: 10.1080/03008207.2018.1459588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Extracellular-regulated kinase 5 (ERK5) is thought to regulate osteoblast proliferation. To further understand how ERK5 signaling regulates osteoblast proliferation induced by fluid shear stress (FSS), we examined some potential signaling targets associated with ERK5 in MC3T3-E1 cells. METHODS MC3T3-E1 cells were treated with XMD8-92 (an ERK5 inhibitor) or Cyclosporin A (CsA, a nuclear factor of activated T cells (NFAT) c1 inhibitor) and/or exposed to 12 dyn/cm2 FSS. Phosphorylated-ERK5 (p-ERK5) and expression levels of NFATc1, ERK5, E2F2, and cyclin E1 were analyzed by western blot. The mRNA levels of genes associated with cell proliferation were analyzed by Polymerase Chain Reaction (PCR) array. Subcellular localization of p-ERK5 and NFATc1 were determined by immunofluorescence. Cell proliferation was evaluated by MTT assay. RESULTS NFATc1 expression was up-regulated by FSS. XMD8-92 only blocked ERK5 activation; however, CsA decreased NFATc1 and p-ERK5 levels, including after FSS stimulation. Exposure to NFATc1 inhibitor or ERK5 inhibitor resulted in decreased E2F2 and cyclin E1 expression and proliferation by proliferative MC3T3-E1 cells. Furthermore, immunofluorescence results illustrated that NFATc1 induced ERK5 phosphorylation, resulting in p-ERK5 translocation to the nucleus. CONCLUSIONS Our results reveal that NFATc1 acts as an intermediate to promote the phosphorylation of ERK5 induced by FSS. Moreover, activated NFATc1-ERK5 signaling up-regulates the expression of E2F2 and cyclin E1, which promote osteoblast proliferation.
Collapse
Affiliation(s)
- Ning Ding
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Bin Geng
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Zhonghao Li
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Quanzeng Yang
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Liang Yan
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Lang Wan
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Bo Zhang
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Cuifang Wang
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| | - Yayi Xia
- a Department of Orthopaedics , Lanzhou University Second Hospital , Lanzhou , Gansu , China.,b Orthopaedics Key Laboratory of Gansu Province , Lanzhou , Gansu , China
| |
Collapse
|
15
|
Kim BK, Nam SW, Min BS, Ban HS, Paik S, Lee K, Im JY, Lee Y, Park JT, Kim SY, Kim M, Lee H, Won M. Bcl-2-dependent synthetic lethal interaction of the IDF-11774 with the V0 subunit C of vacuolar ATPase (ATP6V0C) in colorectal cancer. Br J Cancer 2018; 119:1347-1357. [PMID: 30420612 PMCID: PMC6265273 DOI: 10.1038/s41416-018-0289-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/22/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022] Open
Abstract
Background The IDF-11774, a novel clinical candidate for cancer therapy, targets HSP70 and inhibits mitochondrial respiration, resulting in the activation of AMPK and reduction in HIF-1α accumulation. Methods To identify genes that have synthetic lethality to IDF-11774, RNA interference screening was conducted, using pooled lentiviruses expressing a short hairpin RNA library. Results We identified ATP6V0C, encoding the V0 subunit C of lysosomal V-ATPase, knockdown of which induced a synergistic growth-inhibitory effect in HCT116 cells in the presence of IDF-11774. The synthetic lethality of IDF-11774 with ATP6V0C possibly correlates with IDF-11774-mediated autolysosome formation. Notably, the synergistic effect of IDF-11774 and the ATP6V0C inhibitor, bafilomycin A1, depended on the PIK3CA genetic status and Bcl-2 expression, which regulates autolysosome formation and apoptosis. Similarly, in an experiment using conditionally reprogramed cells derived from colorectal cancer patients, synergistic growth inhibition was observed in cells with low Bcl-2 expression. Conclusions Bcl-2 is a biomarker for the synthetic lethal interaction of IDF-11774 with ATP6V0C, which is clinically applicable for the treatment of cancer patients with IDF-11774 or autophagy-inducing anti-cancer drugs.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
| | - Soon Woo Nam
- The Catholic University of Korea, Incheon St Mary's Hospital, 56 Dongsuro Bupyunggu, Incheon, 06591, Korea
| | - Byung Soh Min
- Serverance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyun Seung Ban
- Metabolic Regulation Research Center, KRIBB, Daejeon, 34141, Korea
| | - Soonmyung Paik
- Serverance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 410-820, Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
| | - Youngjoo Lee
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
| | - Joon-Tae Park
- Drug Discovery Team, ILDONG Pharmaceutical Co. Ltd., Hwaseong, Hwaseong, 445-811, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
| | - Hongsub Lee
- Drug Discovery Team, ILDONG Pharmaceutical Co. Ltd., Hwaseong, Hwaseong, 445-811, Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea, Daejeon, 34113, Korea.
| |
Collapse
|
16
|
Wan Q, Shen Y, Zhao H, Wang B, Zhao L, Zhang Y, Bu X, Wan M, Shen C. Impaired DNA double‐strand breaks repair by kinesin family member 4A inhibition renders human H1299 non‐small‐cell lung cancer cells sensitive to cisplatin. J Cell Physiol 2018; 234:10360-10371. [DOI: 10.1002/jcp.27703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Qing Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University Nanjing China
| | - Yong Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Huzi Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Bei Wang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Lei Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Yongchen Zhang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Xiaodong Bu
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Meiling Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Chuanlu Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| |
Collapse
|
17
|
Kim Y, Pierce CM, Robinson LA. Impact of viral presence in tumor on gene expression in non-small cell lung cancer. BMC Cancer 2018; 18:843. [PMID: 30134863 PMCID: PMC6106745 DOI: 10.1186/s12885-018-4748-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background In our recent study, most non-small-lung cancer (NSCLC) tumor specimens harbored viral DNA but it was absent in non-neoplastic lung. However, their targets and roles in the tumor cells remain poorly understood. We analyzed gene expression microarrays to identify genes and pathways differentially altered between virus-infected and uninfected NSCLC tumors. Methods Gene expression microarrays of 30 primary and 9 metastatic NSCLC patients were preprocessed through a series of quality control analyses. Linear Models for Microarray Analysis and Gene Set Enrichment Analysis were used to assess differential expression. Results Various genes and gene sets had significantly altered expressions between virus-infected and uninfected NSCLC tumors. Notably, 22 genes on the viral carcinogenesis pathway were significantly overexpressed in virus-infected primary tumors, along with three oncogenic gene sets. A total of 12 genes, as well as seven oncogenic and 133 immunologic gene sets, were differentially altered in squamous cell carcinomas, depending on the virus. In adenocarcinoma, 14 differentially expressed genes (DEGs) were identified, but no oncogenic and immunogenic gene sets were significantly altered. In bronchioloalveolar carcinoma, several genes were highly overexpressed in virus-infected specimens, but not statistically significant. Only five of 69 DEGs (7.2%) from metastatic tumor analysis overlapped with 1527 DEGs from the primary tumor analysis, indicating differences in host cellular targets and the viral impact between primary and metastatic NSCLC. Conclusions The differentially expressed genes and gene sets were distinctive among infected viral types, histological subtypes, and metastatic disease status of NSCLC. These results support the hypothesis that tumor viruses play a role in NSCLC by regulating host genes in tumor cells during NSCLC differentiation and progression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4748-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youngchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.
| | - Christine M Pierce
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Division of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida, 33612-9416, USA
| | - Lary A Robinson
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Division of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida, 33612-9416, USA
| |
Collapse
|
18
|
Im JY, Kim BK, Lee JY, Park SH, Ban HS, Jung KE, Won M. DDIAS suppresses TRAIL-mediated apoptosis by inhibiting DISC formation and destabilizing caspase-8 in cancer cells. Oncogene 2017; 37:1251-1262. [DOI: 10.1038/s41388-017-0025-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022]
|
19
|
Zhang X, Zhang Y, Fan C, Wang L, Liu Y, Li A, Jiang G, Zhou H, Cai L, Miao Y. Noxin promotes proliferation of breast cancer cells via P38-ATF2 signaling pathway. Tumour Biol 2017; 39:1010428317705515. [PMID: 28618963 DOI: 10.1177/1010428317705515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noxin (also called chromosome 11 open reading frame 82 or DNA damage-induced apoptosis suppressor) is associated with anti-apoptosis and cell proliferation in response to stress signals. However, to our knowledge, the role of Noxin in regulating cell proliferation is still controversial and there are no reports of the function and clinicopathological association in breast cancer. In this study, immunohistochemistry results showed that Noxin expression was significantly correlated with advanced tumor-node-metastasis stage ( p = 0.027), positive regional lymph node metastasis ( p = 0.002), and poor overall survival ( p = 0.002). Proliferation assay results showed that Noxin obviously promoted the ability of proliferation of normal breast cells. Subsequent western blot results revealed that Cyclin D1 and Cyclin E1 were upregulated by overexpressing Noxin, whereas Cyclin D1 and Cyclin E1 were downregulated after depleting Noxin. The levels of phosphorylated P38 and activating transcription factor 2 were obviously increased after overexpressing Noxin, and their expression was downregulated accordingly by transfecting Noxin-small interfering RNA. Moreover, P38 inhibitor counteracted the elevating expression of phosphorylated activating transcription factor 2, Cyclin D1, and Cyclin E1 induced by Noxin overexpression and thereby reversed the effect of Noxin overexpression on facilitating cell growth. Taken together, our studies indicated that Noxin was overexpressed in breast cancer and its positive expression was significantly correlated with advance tumor-node-metastasis stage, positive lymph node metastasis, and poor prognosis. Noxin facilitated the expression of Cyclin D1 and Cyclin E1 through activating P38-activating transcription factor 2 signaling pathway, thus enhanced cell growth of breast cancer.
Collapse
Affiliation(s)
- Xiupeng Zhang
- 1 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yong Zhang
- 2 Department of Pathology, Cancer Hospital of China Medical University, Shenyang, China
| | - Chuifeng Fan
- 1 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Wang
- 1 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yang Liu
- 1 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ailin Li
- 3 Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guiyang Jiang
- 1 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Haijing Zhou
- 1 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lin Cai
- 1 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yuan Miao
- 1 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Jiang G, Liu J, Ren B, Zhang L, Owusu L, Liu L, Zhang J, Tang Y, Li W. Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:33-40. [PMID: 28456578 DOI: 10.1016/j.jep.2017.04.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cryptotanshinone, a natural compound isolated from the roots of Salvia miltiorrhiza Bge. (Danshen), is a commonly used traditional Chinese medicine to treat high blood pressure in some countries. It has been shown that Cryptotanshinone induces cancer cells apoptosis and impairs cell migration and invasion. However, the antiproliferation and chemosensitization effects of Cryptotanshinone on ovarian cancer and the underlying mechanism are not fully elucidated. AIM OF STUDY In this study, we evaluated the inhibitory effect of Cryptotanshinone on ovarian cancer cells and explored the underlying molecular mechanism. Additionally, the chemosensitization potential of Cryptotanshinone was evaluated in combination with cisplatin. MATERIALS AND METHODS MTT assay was used for cell viability assessment of ovarian cancer A2780 cells treated with Cryptotanshinone and/ or cisplatin. Flow cytometry was used for apoptosis analysis. Wound healing and transwell assays were used for migratory and invasive potential assessment of Cryptotanshinone-treated ovarian cancer cells. Western blot was used to investigate proteins involved in the mechanisms for metastasis and apoptosis. γH2AX immunocytochemistry was used to detect DNA damage in A2780 cells exposed to Cryptotanshinone and/or cisplatin. RESULTS Cryptotanshinone significantly induced ovarian cancer A2780 cells apoptosis by activating caspase cascade. Additionally, wound healing and transwell assays revealed that Cryptotanshinone could suppress migration and invasion of ovarian cancer cells and dramatically inhibited MMP-2 and MMP-9 expression. Furthermore, Cryptotanshinone could sensitize A2780 cells to cisplatin treatment in a dose-dependent manner. CONCLUSION Our data confirmed the anti-tumor effect of Cryptotanshinone on ovarian cancer cells and provided new findings that Cryptotanshinone could sensitize ovarian cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Guoqiang Jiang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Jia Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Baoyin Ren
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Lin Zhang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Lawrence Owusu
- Department of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning, China; Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Likun Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Jing Zhang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian 116044, Liaoning, China
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
21
|
The novel hypoxia-inducible factor-1α inhibitor IDF-11774 regulates cancer metabolism, thereby suppressing tumor growth. Cell Death Dis 2017; 8:e2843. [PMID: 28569777 PMCID: PMC5520894 DOI: 10.1038/cddis.2017.235] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022]
Abstract
HIF-1 is associated with poor prognoses and therapeutic resistance in cancer patients. We previously developed a novel hypoxia-inducible factor (HIF)-1 inhibitor, IDF-11774, a clinical candidate for cancer therapy. We also reported that IDF-1174 inhibited HSP70 chaperone activity and suppressed accumulation of HIF-1α. In this study, IDF-11774 inhibited the accumulation of HIF-1α in vitro and in vivo in colorectal carcinoma HCT116 cells under hypoxic conditions. Moreover, IDF-11774 treatment suppressed angiogenesis of cancer cells by reducing the expression of HIF-1 target genes, reduced glucose uptake, thereby sensitizing cells to growth under low glucose conditions, and decreased the extracellular acidification rate (ECAR) and oxygen consumption rate of cancer cells. Metabolic profiling of IDF-11774-treated cells revealed low levels of NAD+, NADP+, and lactate, as well as of intermediates in glycolysis and the tricarboxylic acid cycle. In addition, we observed elevated AMP and diminished ATP levels, resulting in a high AMP/ATP ratio. The level of AMP-activated protein kinase phosphorylation also increased, leading to inhibition of mTOR signaling in treated cells. In vivo xenograft assays demonstrated that IDF-11774 exhibited substantial anticancer efficacy in mouse models containing KRAS, PTEN, or VHL mutations, which often occur in malignant cancers. Collectively, our data indicate that IDF-11774 suppressed hypoxia-induced HIF-1α accumulation and repressed tumor growth by targeting energy production-related cancer metabolism.
Collapse
|
22
|
Cheng R, Lu C, Zhang G, Zhang G, Zhao G. Overexpression of miR-203 increases the sensitivity of NSCLC A549/H460 cell lines to cisplatin by targeting Dickkopf-1. Oncol Rep 2017; 37:2129-2136. [DOI: 10.3892/or.2017.5505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 11/05/2022] Open
|
23
|
Stability of the cancer target DDIAS is regulated by the CHIP/HSP70 pathway in lung cancer cells. Cell Death Dis 2017; 8:e2554. [PMID: 28079882 PMCID: PMC5386388 DOI: 10.1038/cddis.2016.488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) rescues lung cancer cells from apoptosis in response to DNA damage. DDIAS is transcriptionally activated by NFATc1 and EGF-mediated ERK5/MEF2B, leading to cisplatin resistance and cell invasion. Therefore, DDIAS is suggested as a therapeutic target for lung cancer. Here, we report that DDIAS stability is regulated by E3 U-box ubiquitin ligase carboxyl terminus of HSP70-interacting protein (CHIP)-mediated proteasomal degradation. We first isolated CHIP as an interacting partner of DDIAS by yeast two-hybrid screening. CHIP physically associated with both the N- and C-terminal regions of DDIAS, targeting it for proteasomal degradation and reducing the DDIAS half-life. CHIP overexpression analyses indicated that the tetratrico peptide repeat (TPR) domain and the U-box are required for DDIAS ubiquitination. It is likely that HSP70-bound DDIAS is recruited to the CHIP E3 ligase via the TPR domain, suggesting DDIAS as a client protein of HSP70. In addition, CHIP overexpression in lung cancer cells expressing high DDIAS levels induced significant growth inhibition by enhancing DDIAS degradation. Furthermore, simultaneous CHIP overexpression and DNA damage agent treatment caused a substantial increase in the apoptosis of lung cancer cells. Taken together, these findings indicate that the stability of the DDIAS protein is regulated by CHIP/HSP70-mediated proteasomal degradation and that CHIP overexpression stimulates the apoptosis of lung cancer cells in response to DNA-damaging agents.
Collapse
|
24
|
Xu Z, Mei J, Tan Y. Baicalin attenuates DDP (cisplatin) resistance in lung cancer by downregulating MARK2 and p-Akt. Int J Oncol 2016; 50:93-100. [PMID: 27878245 DOI: 10.3892/ijo.2016.3768] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
DDP (cisplatin) resistance in lung cancer has been widely reported. Baicalin is a flavone glycoside found in genus Scutellaria. However, the effects of baicalin on DDP resistance in lung cancer are unclear. The aim of present study was to investigate effects of combination of baicalin and DDP on proliferation and invasion of human lung cancer cells, and explore possible mechanisms. MTT assay was utilized to evaluate effects of baicalin and DDP on the proliferation of A549 and A549/DPP (DPP-resistant) human lung cancer cells. The probability sum method was used to determine effects of the drug combination. Transwell invasion assay was utilized to detect tumor cell invasion. The mRNA expression of MARK2 in A549 and A549/DPP cells was detected by qPCR. Protein expression of MARK2, p-Akt and Akt was detected by western blot analysis. Baicalin and DPP when used alone inhibited the proliferation of A549 and A549/DDP cells in a dose-dependent manner at 24 and 48 h. For A549 cells, baicalin (8 µg/ml) antagonized DDP (1, 2, 4 and 8 µg/ml) at 24 h. For A549/DDP cells, baicalin and DDP were additive when the concentration of DDP was 4 µg/ml at 24 h. Effects of baicalin and DDP on proliferation inhibition were additive and synergistic when concentrations of DDP were 8 and 4 µg/ml, respectively, at 48 h for both A549 and A549/DDP cells. When baicalin (8 µg/ml) and DDP (4 µg/ml) were combined, the inhibitory rate of tumor cell invasion increased markedly compared to DPP or baicalin alone groups in both A549 and A549/DDP cells. A549/DDP cells had significantly higher MARK2 mRNA levels and protein expression of MARK2 and p-Akt. Baicalin decreased MARK2 mRNA and protein expression of MARK2 and p-Akt in A549/DDP cells dose-dependently. In conclusion, baicalin and DDP were synergistic at inhibiting proliferation and invasion of human lung cancer cells at appropriate dosages and incubation time in the presence or absence of DDP resistance. The attenuation of DDP resistance was associated with downregulation of MARK2 and p-Akt.
Collapse
Affiliation(s)
- Zhiwei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yan Tan
- Department of Intensive Care Unit, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, P.R. China
| |
Collapse
|
25
|
Im JY, Yoon SH, Kim BK, Ban HS, Won KJ, Chung KS, Jung KE, Won M. Data on the transcriptional regulation of DNA damage induced apoptosis suppressor (DDIAS) by ERK5/MEF2B pathway in lung cancer cells. Data Brief 2016; 9:257-61. [PMID: 27660814 PMCID: PMC5021921 DOI: 10.1016/j.dib.2016.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022] Open
Abstract
The data included in this article are associated with the article entitled “DNA-damage-induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes β-catenin-mediated invasion” (J.Y. Im, S.H. Yoon, B.K. Kim, H.S. Ban, K.J. Won, K.S. Chung, K.E. Jung, M. Won) [1]. Quantitative RT-PCR data revealed that genetic or pharmacological inhibition of extracellular signal-regulated kinase 5 (ERK5) suppresses DDIAS transcription in response to epidermal growth factor (EGF) in Hela cells. p300 did not interact with myocyte enhancer factor 2B (MEF2B), a downstream target of ERK5 and affect transcription of DDIAS. Moreover, DDIAS transcription is activated by ERK5/MEF2B signaling on EGF exposure in the non-small cell lung cancer cells (NSCLC) NCI-H1703 and NCI-H1299. DDIAS knockdown suppresses lung cancer cell invasion by decreasing β-catenin protein level on EGF exposure.
Collapse
Affiliation(s)
- Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea
| | - Sung-Hoon Yoon
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea; Functional Genomics, University of Science and Technology, Daejeon 305-701, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea
| | - Hyun Seung Ban
- Biomedical Translational Research Center, KRIBB, Daejeon 305-806, Korea
| | - Kyoung-Jae Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea; Functional Genomics, University of Science and Technology, Daejeon 305-701, Korea
| | - Kyung-Sook Chung
- Biomedical Translational Research Center, KRIBB, Daejeon 305-806, Korea
| | - Kyeong Eun Jung
- ST Pharm. Co., LTD, Sihwa Industrial Complex 1, Kyunggido 429-848, Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea; Functional Genomics, University of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
26
|
Wong CH, Li YJ, Chen YC. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer. World J Gastroenterol 2016; 22:7046-57. [PMID: 27610015 PMCID: PMC4988312 DOI: 10.3748/wjg.v22.i31.7046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.
Collapse
|
27
|
Im JY, Yoon SH, Kim BK, Ban HS, Won KJ, Chung KS, Jung KE, Won M. DNA damage induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes β-catenin-mediated invasion. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1449-1458. [PMID: 27412911 DOI: 10.1016/j.bbagrm.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/06/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
DNA damage induced apoptosis suppressor (DDIAS) is an anti-apoptotic protein that promotes cancer cell survival. We previously reported that DDIAS is transcriptionally activated by nuclear factor of activated T cells 2 (NFATc1). However, the upstream regulation of DDIAS expression by growth factors has not been studied. Here, we demonstrate that DDIAS expression is induced by extracellular signal-regulated kinase 5 (ERK5) and myocyte enhancer factor 2B (MEF2B) in response to epidermal growth factor (EGF) and that it positively regulates β-catenin signaling in HeLa cells. The genetic or pharmacological inhibition of ERK5 suppressed DDIAS induction following EGF exposure and the overexpression of constitutively active MEK5 (CA-MEK5) enhanced DDIAS expression. In chromatin immunoprecipitation assays, MEF2B, a downstream target of ERK5, exhibited sequence-specific binding to a MEF2 binding site in the DDIAS promoter following treatment with EGF. The overexpression of MEF2B increased the EGF-mediated induction of DDIAS expression, whereas the knockdown of MEF2B impaired this effect. Furthermore, DDIAS promoted invasion by increasing β-catenin expression at the post-translational level in response to EGF, suggesting that DDIAS plays a crucial role in the metastasis of cancer cells by regulating β-catenin expression. It is unlikely that MEF2B and NFATc1 cooperatively regulate DDIAS transcription in response to EGF. Collectively, EGF activates the ERK5/MEF2 pathway, which in turn induces DDIAS expression to promote cancer cell invasion by activating β-catenin target genes.
Collapse
Affiliation(s)
- Joo-Young Im
- Genomic Personalized Medicine Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Sung-Hoon Yoon
- Genomic Personalized Medicine Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Functional Genomics, University of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Bo-Kyung Kim
- Genomic Personalized Medicine Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Hyun Seung Ban
- Metabolic Regulation Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Kyoung-Jae Won
- Genomic Personalized Medicine Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Functional Genomics, University of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Kyung-Sook Chung
- Metabolic Regulation Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Kyeong Eun Jung
- ST Pharm. Co., LTD, Sihwa Industrial Complex 1, Kyunggido, 429-848, Republic of Korea
| | - Misun Won
- Genomic Personalized Medicine Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Functional Genomics, University of Science and Technology, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
28
|
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016; 7:e2199. [PMID: 27100893 PMCID: PMC4855676 DOI: 10.1038/cddis.2016.97] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.
Collapse
|
29
|
Im JY, Lee KW, Won KJ, Kim BK, Ban HS, Yoon SH, Lee YJ, Kim YJ, Song KB, Won M. NFATc1 regulates the transcription of DNA damage-induced apoptosis suppressor. Data Brief 2016; 5:975-80. [PMID: 26740967 PMCID: PMC4675896 DOI: 10.1016/j.dib.2015.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 11/25/2022] Open
Abstract
DNA damage induced apoptosis suppressor (DDIAS), or human Noxin (hNoxin), is strongly expressed in lung cancers. DDIAS knockdown induced apoptosis in non-small cell lung carcinoma A549 cells in response to DNA damage, indicating DDIAS as a potential therapeutic target in lung cancer. To understand the transcriptional regulation of DDIAS, we determined the transcription start site, promoter region, and transcription factor. We found that DDIAS transcription begins at nucleotide 212 upstream of the DDIAS translation start site. We cloned the DDIAS promoter region and identified NFAT2 as a major transcription factor (Im et al., 2016 [1]). We demonstrated that NFATc1 regulates DDIAS expression in both pancreatic cancer Panc-1 cells and lung cancer cells.
Collapse
Affiliation(s)
- Joo-Young Im
- Genome Structure Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Kang-Woo Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Kyoung-Jae Won
- Genome Structure Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Functional Genomics, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Bo-Kyung Kim
- Genome Structure Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Hyun Seung Ban
- Biomedical Translational Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Sung-Hoon Yoon
- Genome Structure Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Functional Genomics, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Young-Ju Lee
- Genome Structure Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Young-Joo Kim
- Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Kyung-Bin Song
- Department of Food Science and Technology, Chungnam National University, Daejon 305-764, Republic of Korea
| | - Misun Won
- Genome Structure Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Functional Genomics, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| |
Collapse
|
30
|
DNA damage-induced apoptosis suppressor (DDIAS), a novel target of NFATc1, is associated with cisplatin resistance in lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:40-9. [PMID: 26493727 DOI: 10.1016/j.bbamcr.2015.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 02/07/2023]
Abstract
In a previous study, we reported that DNA damage induced apoptosis suppressor (DDIAS; hNoxin), a human homolog of mouse Noxin, functions as an anti-apoptotic protein in response to DNA repair. Here we reveal that DDIAS is a target gene of nuclear factor of activated T cells 2 (NFATc1) and is associated with cisplatin resistance in lung cancer cells. In the DDIAS promoter analysis, we found that NFATc1 activated the transcription of DDIAS through binding to NFAT consensus sequences in the DDIAS promoter. In addition, tissue array immunostaining revealed a correlation between DDIAS and NFATc1 expression in human lung tumors. NFATc1 knockdown or treatment with the NFAT inhibitor cyclosporine A induced apoptosis and led to growth inhibition of lung cancer cells, indicating the functional relevance of both the proteins. In contrast, DDIAS overexpression overcame this NFATc1 knockdown-induced growth inhibition, supporting the cancer-specific role of DDIAS as a target gene of NFATc1. NFATc1 or DDIAS inhibition clearly enhanced apoptosis induced by cisplatin in NCI-H1703 and A549 cells. Conversely, DDIAS overexpression rescued NCI-H1703 cells from cisplatin-mediated cell death and caspase-3/7 activation. These results suggest that NFATc1-induced DDIAS expression contributes to cisplatin resistance, and targeting DDIAS or NFATc1 impairs the mechanism regulating cisplatin resistance in lung cancer cells. Taken together, DDIAS is a target of NFATc1 and is associated with cisplatin resistance in lung cancer cells.
Collapse
|