1
|
Hanna DA, Chen B, Shah YM, Khalimonchuk O, Cunniff B, Banerjee R. H 2S remodels mitochondrial ultrastructure and destabilizes respiratory supercomplexes. J Biol Chem 2025; 301:108433. [PMID: 40120684 PMCID: PMC12022479 DOI: 10.1016/j.jbc.2025.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Mitochondrial form and function are intimately interconnected, responding to cellular stresses and changes in energy demand. Hydrogen sulfide, a product of amino acid metabolism, has dual roles as an electron transport chain substrate and complex IV (CIV) inhibitor, leading to a reductive shift, which has pleiotropic metabolic consequences. Luminal sulfide concentration in the colon is high due to microbial activity, and in this study, we demonstrate that chronic sulfide exposure of colonocyte-derived cells leads to lower Mic60 and Mic19 expression that is correlated with a profound loss of cristae and lower mitochondrial networking. Sulfide-induced depolarization of the inner mitochondrial membrane activates Oma1-dependent cleavage of Opa1 and is associated with a profound loss of CI and CIV activities associated with respirasomes. Our study reveals a potential role for sulfide as an endogenous modulator of mitochondrial dynamics and suggests that this regulation is corrupted in hereditary or acquired diseases associated with elevated sulfide.
Collapse
Affiliation(s)
- David A Hanna
- Department of Biological Chemistry, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Brandon Chen
- Department of Molecular and Integrative Physiology, Michigan Medicine, Ann Arbor, Michigan, USA; Department of Cellular and Molecular Biology Program, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, Michigan Medicine, Ann Arbor, Michigan, USA; Department of internal Medicine (Division of Gastroenterology), Michigan Medicine, Ann Arbor, Michigan, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, Michigan Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
2
|
Hanna DA, Chen B, Shah YM, Khalimonchuk O, Cunniff B, Banerjee R. H 2 S remodels mitochondrial ultrastructure and destabilizes respiratory supercomplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621162. [PMID: 39553932 PMCID: PMC11565962 DOI: 10.1101/2024.10.30.621162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitochondrial form and function are intimately interconnected, responding to cellular stresses and changes in energy demand. Hydrogen sulfide, a product of amino acid metabolism, has dual roles as an electron transport chain substrate and complex IV (CIV) inhibitor, leading to a reductive shift, which has pleiotropic metabolic consequences. Luminal sulfide concentration in colon is high due to microbial activity, and in this study, we demonstrate that chronic sulfide exposure of colonocyte-derived cells leads to lower Mic60 and Mic19 expression that is correlated with a profound loss of cristae and lower mitochondrial networking. Sulfide-induced depolarization of the inner mitochondrial membrane activates Oma1-dependent cleavage of Opa1 and is associated with a profound loss of CI and CIV activities associated with respirasomes. Our study reveals a potential role for sulfide as an endogenous modulator of mitochondrial dynamics and suggests that this regulation is corrupted in hereditary or acquired diseases associated with elevated sulfide. Significance Statement Hydrogen sulfide is a product of host as well as gut microbial metabolism and has the dual capacity for activating respiration as a substrate, and inhibiting it at the level of complex IV. In this study, we report that chronic albeit low-level sulfide exposure elicits profound changes in mitochondrial architecture in cultured human cells. Disruption of mitochondrial networks is reversed upon removal of sulfide from the growth chamber atmosphere. Sulfide-dependent depolarization of the inner mitochondrial membrane is associated with loss of cristae and respiratory supercomplexes. Our study reveals the potential for sulfide to be an endogenous regulator of mitochondrial ultrastructure and function via modulation of electron flux and for this process to be corrupted in sulfide dysregulated diseases.
Collapse
|
3
|
Marada A, Walter C, Suhm T, Shankar S, Nandy A, Brummer T, Dhaouadi I, Vögtle FN, Meisinger C. DYRK1A signalling synchronizes the mitochondrial import pathways for metabolic rewiring. Nat Commun 2024; 15:5265. [PMID: 38902238 PMCID: PMC11189921 DOI: 10.1038/s41467-024-49611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria require an extensive proteome to maintain a variety of metabolic reactions, and changes in cellular demand depend on rapid adaptation of the mitochondrial protein composition. The TOM complex, the organellar entry gate for mitochondrial precursors in the outer membrane, is a target for cytosolic kinases to modulate protein influx. DYRK1A phosphorylation of the carrier import receptor TOM70 at Ser91 enables its efficient docking and thus transfer of precursor proteins to the TOM complex. Here, we probe TOM70 phosphorylation in molecular detail and find that TOM70 is not a CK2 target nor import receptor for MIC19 as previously suggested. Instead, we identify TOM20 as a MIC19 import receptor and show off-target inhibition of the DYRK1A-TOM70 axis with the clinically used CK2 inhibitor CX4945 which activates TOM20-dependent import pathways. Taken together, modulation of DYRK1A signalling adapts the central mitochondrial protein entry gate via synchronization of TOM70- and TOM20-dependent import pathways for metabolic rewiring. Thus, DYRK1A emerges as a cytosolic surveillance kinase to regulate and fine-tune mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tamara Suhm
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sahana Shankar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
5
|
Rixen S, Indorf PM, Kubitza C, Struwe MA, Klopp C, Scheidig AJ, Kunze T, Clement B. Reduction of Hydrogen Peroxide by Human Mitochondrial Amidoxime Reducing Component Enzymes. Molecules 2023; 28:6384. [PMID: 37687214 PMCID: PMC10489706 DOI: 10.3390/molecules28176384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The mitochondrial amidoxime reducing component (mARC) is a human molybdoenzyme known to catalyze the reduction of various N-oxygenated substrates. The physiological function of mARC enzymes, however, remains unknown. In this study, we examine the reduction of hydrogen peroxide (H2O2) by the human mARC1 and mARC2 enzymes. Furthermore, we demonstrate an increased sensitivity toward H2O2 for HEK-293T cells with an MTARC1 knockout, which implies a role of mARC enzymes in the cellular response to oxidative stress. H2O2 is a reactive oxygen species (ROS) formed in all living cells involved in many physiological processes. Furthermore, H2O2 constitutes the first mARC substrate without a nitrogen-oxygen bond, implying that mARC enzymes may have a substrate spectrum going beyond the previously examined N-oxygenated compounds.
Collapse
Affiliation(s)
- Sophia Rixen
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Kiel University, 24118 Kiel, Germany; (S.R.); (P.M.I.); (M.A.S.); (C.K.); (T.K.)
| | - Patrick M. Indorf
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Kiel University, 24118 Kiel, Germany; (S.R.); (P.M.I.); (M.A.S.); (C.K.); (T.K.)
| | - Christian Kubitza
- Department of Structural Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany; (C.K.); (A.J.S.)
| | - Michel A. Struwe
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Kiel University, 24118 Kiel, Germany; (S.R.); (P.M.I.); (M.A.S.); (C.K.); (T.K.)
- Department of Structural Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany; (C.K.); (A.J.S.)
| | - Cathrin Klopp
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Kiel University, 24118 Kiel, Germany; (S.R.); (P.M.I.); (M.A.S.); (C.K.); (T.K.)
- Department of Structural Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany; (C.K.); (A.J.S.)
| | - Axel J. Scheidig
- Department of Structural Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany; (C.K.); (A.J.S.)
| | - Thomas Kunze
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Kiel University, 24118 Kiel, Germany; (S.R.); (P.M.I.); (M.A.S.); (C.K.); (T.K.)
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Kiel University, 24118 Kiel, Germany; (S.R.); (P.M.I.); (M.A.S.); (C.K.); (T.K.)
| |
Collapse
|
6
|
Qiu Y, Wang H, Fan M, Pan H, Guan J, Jiang Y, Jia Z, Wu K, Zhou H, Zhuang Q, Lei Z, Ding X, Cai H, Dong Y, Yan L, Lin A, Fu Y, Zhang D, Yan Q, Wang Q. Impaired AIF-CHCHD4 interaction and mitochondrial calcium overload contribute to auditory neuropathy spectrum disorder in patient-iPSC-derived neurons with AIFM1 variant. Cell Death Dis 2023; 14:375. [PMID: 37365177 PMCID: PMC10293272 DOI: 10.1038/s41419-023-05899-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment caused by dysfunction of inner hair cells, ribbon synapses, spiral ganglion neurons and/or the auditory nerve itself. Approximately 1/7000 newborns have abnormal auditory nerve function, accounting for 10%-14% of cases of permanent hearing loss in children. Although we previously identified the AIFM1 c.1265 G > A variant to be associated with ANSD, the mechanism by which ANSD is associated with AIFM1 is poorly understood. We generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) via nucleofection with episomal plasmids. The patient-specific iPSCs were edited via CRISPR/Cas9 technology to generate gene-corrected isogenic iPSCs. These iPSCs were further differentiated into neurons via neural stem cells (NSCs). The pathogenic mechanism was explored in these neurons. In patient cells (PBMCs, iPSCs, and neurons), the AIFM1 c.1265 G > A variant caused a novel splicing variant (c.1267-1305del), resulting in AIF p.R422Q and p.423-435del proteins, which impaired AIF dimerization. Such impaired AIF dimerization then weakened the interaction between AIF and coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4). On the one hand, the mitochondrial import of ETC complex subunits was inhibited, subsequently leading to an increased ADP/ATP ratio and elevated ROS levels. On the other hand, MICU1-MICU2 heterodimerization was impaired, leading to mCa2+ overload. Calpain was activated by mCa2+ and subsequently cleaved AIF for its translocation into the nucleus, ultimately resulting in caspase-independent apoptosis. Interestingly, correction of the AIFM1 variant significantly restored the structure and function of AIF, further improving the physiological state of patient-specific iPSC-derived neurons. This study demonstrates that the AIFM1 variant is one of the molecular bases of ANSD. Mitochondrial dysfunction, especially mCa2+ overload, plays a prominent role in ANSD associated with AIFM1. Our findings help elucidate the mechanism of ANSD and may lead to the provision of novel therapies.
Collapse
Affiliation(s)
- Yue Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongyang Wang
- Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mingjie Fan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Huaye Pan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Guan
- Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yangwei Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zexiao Jia
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kaiwen Wu
- Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hui Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qianqian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhaoying Lei
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xue Ding
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huajian Cai
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yufei Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lei Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yong Fu
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China
| | - Dong Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
| | - Qiuju Wang
- Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
7
|
Zhou Y, Zhao Y, Ma W, Zhang L, Jiang Y, Dong W. USF1-CHCHD4 axis promotes lung adenocarcinoma progression partially via activating the MYC pathway. Discov Oncol 2022; 13:136. [PMID: 36482116 PMCID: PMC9732179 DOI: 10.1007/s12672-022-00600-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to identify genes related to lung adenocarcinoma (LUAD) and investigate the effects and molecular mechanisms of coiled-coil-helix-coiled-coil-helix domain containing 4 (CHCHD4) in the progression of LUAD. METHODS The GEPIA database was used to evaluate the differential expression of CHCHD4 and the survival data of LUAD patients compared to controls. TCGA-LUAD database, JASPAR website, and GSEA were used to analyse the relationship between CHCHD4 and the upstream stimulating factor 1 (USF1) or MYC pathways. The proliferation, apoptosis, migration, and invasion of LUAD cells were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, colony formation, flow cytometry, wound healing, and transwell assays. qRT-PCR, western blotting, and immunohistochemistry were used to detect the mRNA and protein expression, respectively. Furthermore, xenograft tumours from nude mice were used to verify the effect of CHCHD4 on LUAD in vivo. RESULTS CHCHD4 overexpression was found in LUAD tumor tissues and cells, and high CHCHD4 was associated with a poor prognosis. Interestingly, CHCHD4 knockdown suppressed the malignant phenotype of the LUAD cells. Moreover, we found that USF1 upregulated CHCHD4 and promoted LUAD progression. CHCHD4 knockdown also inhibited the progression of LUAD. In addition, CHCHD4 knockdown suppressed xenograft tumour growth. CONCLUSION USF1-CHCHD4 axis can promote LUAD progress, which may be through activating MYC pathway.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yunxia Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Wei Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yuanzhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China.
| |
Collapse
|
8
|
Relevance of mitochondrial dysfunction in heart disease associated with insulin resistance conditions. Pflugers Arch 2021; 474:21-31. [PMID: 34807312 DOI: 10.1007/s00424-021-02638-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022]
Abstract
Insulin resistance plays a key role in the development and progression of obesity, diabetes, and their complications. Moreover, insulin resistance is considered the principal link between metabolic diseases and cardiovascular diseases. Heart disease associated with insulin resistance is one of the most important consequences of both obesity and diabetes, and it is characterized by impaired cardiac energetics, diastolic dysfunction, and finally heart failure. Mitochondrion plays a key role in cell energy homeostasis and is the main source of reactive oxygen species. Obesity and diabetes are associated with alterations in mitochondrial function and dynamics. Mitochondrial dysfunction is characterized by changes in mitochondrial respiratory chain with reduced ATP production and elevated reactive oxygen species production. These mitochondrial alterations together with inflammation contribute to the development and progression of heart disease under insulin resistance conditions. Finally, numerous miRNAs participate in the regulation of energy substrate metabolism, reactive oxygen species production, and apoptotic pathways within the mitochondria. This notion supports the relevance of interactions between miRNAs and mitochondrial dysfunction in the pathophysiology of metabolic heart disease.
Collapse
|
9
|
Dimogkioka AR, Lees J, Lacko E, Tokatlidis K. Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. RSC Adv 2021; 11:32476-32493. [PMID: 35495482 PMCID: PMC9041937 DOI: 10.1039/d1ra04497d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/25/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria have a central role in cellular metabolism; they are responsible for the biosynthesis of amino acids, lipids, iron-sulphur clusters and regulate apoptosis. About 99% of mitochondrial proteins are encoded by nuclear genes, so the biogenesis of mitochondria heavily depends on protein import pathways into the organelle. An intricate system of well-studied import machinery facilitates the import of mitochondrial proteins. In addition, folding of the newly synthesized proteins takes place in a busy environment. A system of folding helper proteins, molecular chaperones and co-chaperones, are present to maintain proper conformation and thus avoid protein aggregation and premature damage. The components of the import machinery are well characterised, but the targeting signals and how they are recognised and decoded remains in some cases unclear. Here we provide some detail on the types of targeting signals involved in the protein import process. Furthermore, we discuss the very elaborate chaperone systems of the intermembrane space that are needed to overcome the particular challenges for the folding process in this compartment. The mechanisms that sustain productive folding in the face of aggregation and damage in mitochondria are critical components of the stress response and play an important role in cell homeostasis.
Collapse
Affiliation(s)
- Anna-Roza Dimogkioka
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Jamie Lees
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Erik Lacko
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| |
Collapse
|
10
|
Kit O, Frantsiyants E, Neskubina I, Cheryarina N, Shikhlyarova A, Przhedetskiy Y, Pozdnyakova V, Surikova E, Kaplieva I, Bandovkina V. Influence of standard and stimulated growth of B16/F10 melanoma on AIF levels in mitochondria in cells of the heart and other somatic organs in female mice. CARDIOMETRY 2021. [DOI: 10.18137/cardiometry.2021.18.113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
studying AIF levels in mitochondria in cells of the heart and various organs in female mice with the growth of experimental melanoma B16 / F10 and comorbid pathology
Collapse
|
11
|
Oc S, Eraslan S, Kirdar B. Dynamic transcriptional response of Saccharomyces cerevisiae cells to copper. Sci Rep 2020; 10:18487. [PMID: 33116258 PMCID: PMC7595141 DOI: 10.1038/s41598-020-75511-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Copper is a crucial trace element for all living systems and any deficiency in copper homeostasis leads to the development of severe diseases in humans. The observation of extensive evolutionary conservation in copper homeostatic systems between human and Saccharomyces cerevisiae made this organism a suitable model organism for elucidating molecular mechanisms of copper transport and homeostasis. In this study, the dynamic transcriptional response of both the reference strain and homozygous deletion mutant strain of CCC2, which encodes a Cu2+-transporting P-type ATPase, were investigated following the introduction of copper impulse to reach a copper concentration which was shown to improve the respiration capacity of CCC2 deletion mutants. The analysis of data by using different clustering algorithms revealed significantly affected processes and pathways in response to a switch from copper deficient environment to elevated copper levels. Sulfur compound, methionine and cysteine biosynthetic processes were identified as significantly affected processes for the first time in this study. Stress response, cellular response to DNA damage, iron ion homeostasis, ubiquitin dependent proteolysis, autophagy and regulation of macroautophagy, DNA repair and replication, as well as organization of mitochondrial respiratory chain complex IV, mitochondrial organization and translation were identified as significantly affected processes in only CCC2 deleted strain. The integration of the transcriptomic data with regulome revealed the differences in the extensive re-wiring of dynamic transcriptional organization and regulation in these strains.
Collapse
Affiliation(s)
- Sebnem Oc
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey. .,Division of Cardiovascular Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey.,Diagnosis Centre for Genetic Disorders, Koç University Hospital, Istanbul, 34010, Turkey
| | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey
| |
Collapse
|
12
|
Habich M, Salscheider SL, Murschall LM, Hoehne MN, Fischer M, Schorn F, Petrungaro C, Ali M, Erdogan AJ, Abou-Eid S, Kashkar H, Dengjel J, Riemer J. Vectorial Import via a Metastable Disulfide-Linked Complex Allows for a Quality Control Step and Import by the Mitochondrial Disulfide Relay. Cell Rep 2020; 26:759-774.e5. [PMID: 30650365 DOI: 10.1016/j.celrep.2018.12.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/31/2023] Open
Abstract
Disulfide formation in the mitochondrial intermembrane space (IMS) is an essential process. It is catalyzed by the disulfide relay machinery, which couples substrate import and oxidation. The machinery relies on the oxidoreductase and chaperone CHCHD4-Mia40. Here, we report on the driving force for IMS import and on a redox quality control mechanism. We demonstrate that unfolded reduced proteins, upon translocation into the IMS, initiate formation of a metastable disulfide-linked complex with CHCHD4. If this interaction does not result in productive oxidation, then substrates are released to the cytosol and degraded by the proteasome. Based on these data, we propose a redox quality control step at the level of the disulfide-linked intermediate that relies on the vectorial nature of IMS import. Our findings also provide the mechanistic framework to explain failures in import of numerous human disease mutants in CHCHD4 substrates.
Collapse
Affiliation(s)
- Markus Habich
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Silja Lucia Salscheider
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Lena Maria Murschall
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Michaela Nicole Hoehne
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Manuel Fischer
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Fabian Schorn
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carmelina Petrungaro
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Muna Ali
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Alican J Erdogan
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Shadi Abou-Eid
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Hamid Kashkar
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Jan Riemer
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany.
| |
Collapse
|
13
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
14
|
Gomez M, Germain D. Cross talk between SOD1 and the mitochondrial UPR in cancer and neurodegeneration. Mol Cell Neurosci 2019; 98:12-18. [PMID: 31028834 DOI: 10.1016/j.mcn.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is rapidly gaining attention. While the CHOP (ATF4/5) axis of the UPRmt was the first to be described, other axes have subsequently been reported. Validation of this complex pathway in C. elegans has been extensively studied. However, validation of the UPRmt in mouse models of disease known to implicate mitochondrial reprogramming or dysfunction, such as cancer and neurodegeneration, respectively, is only beginning to emerge. This review summarizes recent findings and highlights the major role of the superoxide dismutase SOD1 in the communication between the mitochondria and the nucleus in these settings. While SOD1 has mostly been studied in the context of familial amyotrophic lateral sclerosis (fALS), recent studies suggest that SOD1 may be a potentially important mediator of the UPRmt and converge to emphasize an increasingly vital role of SOD1 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Maria Gomez
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/Oncology, New York, 10029, NY, USA
| | - Doris Germain
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/Oncology, New York, 10029, NY, USA.
| |
Collapse
|
15
|
Thomas LW, Stephen JM, Esposito C, Hoer S, Antrobus R, Ahmed A, Al-Habib H, Ashcroft M. CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain. Cancer Metab 2019; 7:2. [PMID: 30886710 PMCID: PMC6404347 DOI: 10.1186/s40170-019-0194-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tumour cells rely on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to survive. Thus, mitochondrial OXPHOS has become an increasingly attractive area for therapeutic exploitation in cancer. However, mitochondria are required for intracellular oxygenation and normal physiological processes, and it remains unclear which mitochondrial molecular mechanisms might provide therapeutic benefit. Previously, we discovered that coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4) is critical for regulating intracellular oxygenation and required for the cellular response to hypoxia (low oxygenation) in tumour cells through molecular mechanisms that we do not yet fully understand. Overexpression of CHCHD4 in human cancers correlates with increased tumour progression and poor patient survival. Results Here, we show that elevated CHCHD4 expression provides a proliferative and metabolic advantage to tumour cells in normoxia and hypoxia. Using stable isotope labelling with amino acids in cell culture (SILAC) and analysis of the whole mitochondrial proteome, we show that CHCHD4 dynamically affects the expression of a broad range of mitochondrial respiratory chain subunits from complex I-V, including multiple subunits of complex I (CI) required for complex assembly that are essential for cell survival. We found that loss of CHCHD4 protects tumour cells from respiratory chain inhibition at CI, while elevated CHCHD4 expression in tumour cells leads to significantly increased sensitivity to CI inhibition, in part through the production of mitochondrial reactive oxygen species (ROS). Conclusions Our study highlights an important role for CHCHD4 in regulating tumour cell metabolism and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present address: Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simon Hoer
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Afshan Ahmed
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present address: AstraZeneca Ltd., Cambridge, UK
| | - Hasan Al-Habib
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| |
Collapse
|
16
|
Sokol AM, Uszczynska-Ratajczak B, Collins MM, Bazala M, Topf U, Lundegaard PR, Sugunan S, Guenther S, Kuenne C, Graumann J, Chan SSL, Stainier DYR, Chacinska A. Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish. PLoS Genet 2018; 14:e1007743. [PMID: 30457989 PMCID: PMC6245507 DOI: 10.1371/journal.pgen.1007743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases. Mitochondrial pathologies which result from mutations in the nuclear DNA remain incurable and often lead to death. As mitochondria play various roles in cellular and tissue-specific contexts, the symptoms of mitochondrial pathologies can differ between patients. Thus, diagnosis and treatment of mitochondrial disorders remain challenging. To enhance this, the generation of new models that explore and define the consequences of mitochondria insufficiencies is of central importance. Here, we present a mia40a zebrafish mutant as a model for mitochondrial dysfunction, caused by an imbalance in mitochondrial protein biogenesis. This mutant shares characteristics with existing reports on mitochondria dysfunction, and has led us to identify novel phenotypes such as enlarged mitochondrial clusters in skeletal muscles. In addition, our transcriptomics and proteomics data contribute important findings to the existing knowledge on how faulty mitochondria impinge on vertebrate development in molecular, tissue and organ specific contexts.
Collapse
Affiliation(s)
- Anna M. Sokol
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (AMS); (AC)
| | | | - Michelle M. Collins
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michal Bazala
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ulrike Topf
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Pia R. Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sreedevi Sugunan
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- * E-mail: (AMS); (AC)
| |
Collapse
|
17
|
Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol 2018; 176:514-531. [PMID: 30129023 DOI: 10.1111/bph.14480] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The intermembrane space (IMS) is a very small mitochondrial sub-compartment with critical relevance for many cellular processes. IMS proteins fulfil important functions in transport of proteins, lipids, metabolites and metal ions, in signalling, in metabolism and in defining the mitochondrial ultrastructure. Our understanding of the IMS proteome has become increasingly refined although we still lack information on the identity and function of many of its proteins. One characteristic of many IMS proteins are conserved cysteines. Different post-translational modifications of these cysteine residues can have critical roles in protein function, localization and/or stability. The close localization to different ROS-producing enzyme systems, a dedicated machinery for oxidative protein folding, and a unique equipment with antioxidative systems, render the careful balancing of the redox and modification states of the cysteine residues, a major challenge in the IMS. In this review, we discuss different functions of human IMS proteins, the involvement of cysteine residues in these functions, the consequences of cysteine modifications and the consequences of cysteine mutations or defects in the machinery for disulfide bond formation in terms of human health. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Markus Habich
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Silja Lucia Salscheider
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Télot L, Rousseau E, Lesuisse E, Garcia C, Morlet B, Léger T, Camadro JM, Serre V. Quantitative proteomics in Friedreich's ataxia B-lymphocytes: A valuable approach to decipher the biochemical events responsible for pathogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:997-1009. [DOI: 10.1016/j.bbadis.2018.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
|
19
|
Lahera V, de Las Heras N, López-Farré A, Manucha W, Ferder L. Role of Mitochondrial Dysfunction in Hypertension and Obesity. Curr Hypertens Rep 2017; 19:11. [PMID: 28233236 DOI: 10.1007/s11906-017-0710-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mitochondria are essential for the maintenance of normal physiological function of tissue cells. Mitochondria are subject to dynamic processes in order to establish a control system related to survival or cell death and adaptation to changes in the metabolic environment of cells. Mitochondrial dynamics includes fusion and fission processes, biogenesis, and mitophagy. Modifications of mitochondrial dynamics in organs involved in energy metabolism such as the pancreas, liver, skeletal muscle, and white adipose tissue could be of relevance for the development of insulin resistance, obesity, and type 2 diabetes. Mitochondrial dynamics and the factors involved in its regulation are also critical for neuronal development, survival, and function. Modifications in mitochondrial dynamics in either agouti-related peptide (AgRP) or pro-opiomelanocortin (POMC), circuits which regulates feeding behavior, are related to changes of food intake, energy balance, and obesity development. Activation of the sympathetic nervous system has been considered as a crucial point in the pathogenesis of hypertension among obese individuals and it also plays a key role in cardiac remodeling. Hypertension-related cardiac hypertrophy is associated with changes in metabolic substrate utilization, dysfunction of the electron transport chain, and ATP synthesis. Alterations in both mitochondrial dynamics and ROS production have been associated with endothelial dysfunction, development of hypertension, and cardiac hypertrophy. Finally, it might be postulated that alterations of mitochondrial dynamics in white adipose tissue could contribute to the development and maintenance of hypertension in obesity situations through leptin overproduction. Leptin, together with insulin, will induce activation of sympathetic nervous system with consequences at renal, vascular, and cardiac levels, driving to sodium retention, hypertension, and left ventricular hypertrophy. Moreover, both leptin and insulin will induce mitochondrial alterations into arcuate nucleus leading to signals driving to increased food intake and reduced energy expenditure. This, in turn would perpetuate white adipose tissue excess and its well-known metabolic and cardiovascular consequences.
Collapse
Affiliation(s)
- Vicente Lahera
- Department of Physiology, School of Medicine, Complutense University, 28040, Madrid, Spain.
| | - Natalia de Las Heras
- Department of Physiology, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Antonio López-Farré
- Department of Medicine, School of Medicine, Complutense University, Madrid, Spain
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - León Ferder
- Pediatric Department Nephrology Division, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
20
|
Protein trafficking in the mitochondrial intermembrane space: mechanisms and links to human disease. Biochem J 2017; 474:2533-2545. [PMID: 28701417 PMCID: PMC5509380 DOI: 10.1042/bcj20160627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 01/20/2023]
Abstract
Mitochondria fulfill a diverse range of functions in cells including oxygen metabolism, homeostasis of inorganic ions and execution of apoptosis. Biogenesis of mitochondria relies on protein import pathways that are ensured by dedicated multiprotein translocase complexes localized in all sub-compartments of these organelles. The key components and pathways involved in protein targeting and assembly have been characterized in great detail over the last three decades. This includes the oxidative folding machinery in the intermembrane space, which contributes to the redox-dependent control of proteostasis. Here, we focus on several components of this system and discuss recent evidence suggesting links to human proteopathy.
Collapse
|
21
|
Nalesnik MA, Gandhi CR, Starzl TE. Augmenter of liver regeneration: A fundamental life protein. Hepatology 2017; 66:266-270. [PMID: 28085209 PMCID: PMC5682950 DOI: 10.1002/hep.29047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Michael A. Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA,Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Chandrashekhar R. Gandhi
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Thomas E. Starzl
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
22
|
Sun Y, Li T, Xie C, Xu Y, Zhou K, Rodriguez J, Han W, Wang X, Kroemer G, Modjtahedi N, Blomgren K, Zhu C. Haploinsufficiency in the mitochondrial protein CHCHD4 reduces brain injury in a mouse model of neonatal hypoxia-ischemia. Cell Death Dis 2017; 8:e2781. [PMID: 28492551 PMCID: PMC5520716 DOI: 10.1038/cddis.2017.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Abstract
Mitochondria contribute to neonatal hypoxic-ischemic brain injury by releasing potentially toxic proteins into the cytosol. CHCHD4 is a mitochondrial intermembrane space protein that plays a major role in the import of intermembrane proteins and physically interacts with apoptosis-inducing factor (AIF). The purpose of this study was to investigate the impact of CHCHD4 haploinsufficiency on mitochondrial function and brain injury after cerebral hypoxia-ischemia (HI) in neonatal mice. CHCHD4+/- and wild-type littermate mouse pups were subjected to unilateral cerebral HI on postnatal day 9. CHCHD4 haploinsufficiency reduced insult-related AIF and superoxide dismutase 2 release from the mitochondria and reduced neuronal cell death. The total brain injury volume was reduced by 21.5% at 3 days and by 31.3% at 4 weeks after HI in CHCHD4+/- mice. However, CHCHD4 haploinsufficiency had no influence on mitochondrial biogenesis, fusion, or fission; neural stem cell proliferation; or neural progenitor cell differentiation. There were no significant changes in the expression or distribution of p53 protein or p53 pathway-related genes under physiological conditions or after HI. These results suggest that CHCHD4 haploinsufficiency afforded persistent neuroprotection related to reduced release of mitochondrial intermembrane space proteins. The CHCHD4-dependent import pathway might thus be a potential therapeutic target for preventing or treating neonatal brain injury.
Collapse
Affiliation(s)
- Yanyan Sun
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tao Li
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Cuicui Xie
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kai Zhou
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Juan Rodriguez
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wei Han
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guido Kroemer
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nazanine Modjtahedi
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, Villejuif F-94805, France
- Gustave Roussy, Villejuif F-94805, France
- Department of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Klas Blomgren
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Ji Y, Qiao H, He J, Li W, Chen R, Wang J, Wu L, Hu R, Duan J, Chen Z. Functional oligopeptide as a novel strategy for drug delivery. J Drug Target 2017; 25:597-607. [DOI: 10.1080/1061186x.2017.1309044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yujie Ji
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Hongzhi Qiao
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jiayu He
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Weidong Li
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Rui Chen
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jingjing Wang
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Li Wu
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Rongfeng Hu
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, PR China
| | - Jinao Duan
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zhipeng Chen
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
24
|
Abstract
Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| |
Collapse
|
25
|
Valle C, Carrì MT. Cysteine Modifications in the Pathogenesis of ALS. Front Mol Neurosci 2017; 10:5. [PMID: 28167899 PMCID: PMC5253364 DOI: 10.3389/fnmol.2017.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.
Collapse
Affiliation(s)
- Cristiana Valle
- Institute for Cell Biology and Neurobiology, CNRRome, Italy
- Fondazione Santa Lucia IRCCSRome, Italy
| | - Maria Teresa Carrì
- Fondazione Santa Lucia IRCCSRome, Italy
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
26
|
Dimmer KS, Rapaport D. Mitochondrial contact sites as platforms for phospholipid exchange. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:69-80. [PMID: 27477677 DOI: 10.1016/j.bbalip.2016.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Mitochondria are unique organelles that contain their own - although strongly reduced - genome, and are surrounded by two membranes. While most cellular phospholipid biosynthesis takes place in the ER, mitochondria harbor the whole spectrum of glycerophospholipids common to biological membranes. Mitochondria also contribute to overall phospholipid biosynthesis in cells by producing phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Considering these features, it is not surprising that mitochondria maintain highly active exchange of phospholipids with other cellular compartments. In this contribution we describe the transport of phospholipids between mitochondria and other organelles, and discuss recent developments in our understanding of the molecular functions of the protein complexes that mediate these processes. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|