1
|
Koelink PJ, Gómez-Mellado VE, Duijst S, van Roest M, Meisner S, Ho-Mok KS, Frank S, Appelman BS, Bloemendaal LT, Vogel GF, van de Graaf SFJ, Bosma PJ, Oude Elferink RPJ, Wildenberg ME, Paulusma CC. The Phospholipid Flippase ATP8B1 is Involved in the Pathogenesis of Ulcerative Colitis via Establishment of Intestinal Barrier Function. J Crohns Colitis 2024; 18:1134-1146. [PMID: 38366839 PMCID: PMC11302967 DOI: 10.1093/ecco-jcc/jjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024]
Abstract
AIMS Patients with mutations in ATP8B1 develop progressive familial intrahepatic cholestasis type 1 [PFIC1], a severe liver disease that requires life-saving liver transplantation. PFIC1 patients also present with gastrointestinal problems, including intestinal inflammation and diarrhoea, which are aggravated after liver transplantation. Here we investigate the intestinal function of ATP8B1 in relation to inflammatory bowel diseases. METHODS ATP8B1 expression was investigated in intestinal samples of patients with Crohn's disease [CD] or ulcerative colitis [UC] as well as in murine models of intestinal inflammation. Colitis was induced in ATP8B1-deficient mice with dextran sodium sulphate [DSS] and intestinal permeability was investigated. Epithelial barrier function was assessed in ATP8B1 knockdown Caco2-BBE cells. Co-immunoprecipitation experiments were performed in Caco2-BBE cells overexpressing ATP8B1-eGFP. Expression and localization of ATP8B1 and tight junction proteins were investigated in cells and in biopsies of UC and PFIC1 patients. RESULTS ATP8B1 expression was decreased in UC and DSS-treated mice, and was associated with a decreased tight junctional pathway transcriptional programme. ATP8B1-deficient mice were extremely sensitive to DSS-induced colitis, as evidenced by increased intestinal barrier leakage. ATP8B1 knockdown cells showed delayed barrier establishment that affected Claudin-4 [CLDN4] levels and localization. CLDN4 immunohistochemistry showed a tight junctional staining in control tissue, whereas in UC and intestinal PFIC1 samples, CLDN4 was not properly localized. CONCLUSION ATP8B1 is important in the establishment of the intestinal barrier. Downregulation of ATP8B1 levels in UC, and subsequent altered localization of tight junctional proteins, including CLDN4, might therefore be an important mechanism in UC pathophysiology.
Collapse
Affiliation(s)
- Pim J Koelink
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Valentina E Gómez-Mellado
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Suzanne Duijst
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Manon van Roest
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Sander Meisner
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Kam S Ho-Mok
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Sabrina Frank
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Babette S Appelman
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Lysbeth ten Bloemendaal
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stan F J van de Graaf
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Piter J Bosma
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Knisely AS. Fatherhood after liver transplantation for severe ATP8B1 disease. Pediatr Transplant 2024; 28:e14639. [PMID: 37941322 DOI: 10.1111/petr.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- A S Knisely
- Diagnostik- und Forschungsinstitut für Pathologie, Medizinische Universität Graz, Graz, Austria
| |
Collapse
|
3
|
Salinas EA, Macauley V, Keeling KM, Edwards YJK. Discovery of dysregulated circular RNAs in whole blood transcriptomes from cystic fibrosis patients - implication of a role for cellular senescence in cystic fibrosis. J Cyst Fibros 2023; 22:683-693. [PMID: 37142522 PMCID: PMC10947771 DOI: 10.1016/j.jcf.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND A largely unexplored area of research is the identification and characterization of circular RNA (circRNA) in cystic fibrosis (CF). This study is the first to identify and characterize alterations in circRNA expression in cells lacking CFTR function. The circRNA expression profiles in whole blood transcriptomes from CF patients homozygous for the pathogenetic variant F508delCFTR are compared to healthy controls. METHODS We developed a circRNA pipeline called circRNAFlow utilizing Nextflow. Whole blood transcriptomes from CF patients homozygous for the F508delCFTR-variant and healthy controls were utilized as input to circRNAFlow to discover dysregulated circRNA expression in CF samples compared to wild-type controls. Pathway enrichment analyzes were performed to investigate potential functions of dysregulated circRNAs in whole blood transcriptomes from CF samples compared to wild-type controls. RESULTS A total of 118 dysregulated circRNAs were discovered in whole blood transcriptomes from CF patients homozygous for the F508delCFTR variant compared to healthy controls. 33 circRNAs were up regulated whilst 85 circRNAs were down regulated in CF samples compared to healthy controls. The overrepresented pathways of the host genes harboring dysregulated circRNA in CF samples compared to controls include positive regulation of responses to endoplasmic reticulum stress, intracellular transport, protein serine/threonine kinase activity, phospholipid-translocating ATPase complex, ferroptosis and cellular senescence. These enriched pathways corroborate the role of dysregulated cellular senescence in CF. CONCLUSION This study highlights the underexplored roles of circRNAs in CF with a perspective to provide a more complete molecular characterization of CF.
Collapse
Affiliation(s)
- Edward A Salinas
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Macauley
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell, Development and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Gómez-Mellado VE, Chang JC, Ho-Mok KS, Bernardino Morcillo C, Kersten RHJ, Oude Elferink RPJ, Verhoeven AJ, Paulusma CC. ATP8B1 Deficiency Results in Elevated Mitochondrial Phosphatidylethanolamine Levels and Increased Mitochondrial Oxidative Phosphorylation in Human Hepatoma Cells. Int J Mol Sci 2022; 23:ijms232012344. [PMID: 36293199 PMCID: PMC9604224 DOI: 10.3390/ijms232012344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
ATP8B1 is a phospholipid flippase that is deficient in patients with progressive familial intrahepatic cholestasis type 1 (PFIC1). PFIC1 patients suffer from severe liver disease but also present with dyslipidemia, including low plasma cholesterol, of yet unknown etiology. Here we show that ATP8B1 knockdown in HepG2 cells leads to a strong increase in the mitochondrial oxidative phosphorylation (OXPHOS) without a change in glycolysis. The enhanced OXPHOS coincides with elevated low-density lipoprotein receptor protein and increased mitochondrial fragmentation and phosphatidylethanolamine levels. Furthermore, expression of phosphatidylethanolamine N-methyltransferase, an enzyme that catalyzes the conversion of mitochondrial-derived phosphatidylethanolamine to phosphatidylcholine, was reduced in ATP8B1 knockdown cells. We conclude that ATP8B1 deficiency results in elevated mitochondrial PE levels that stimulate mitochondrial OXPHOS. The increased OXPHOS leads to elevated LDLR levels, which provides a possible explanation for the reduced plasma cholesterol levels in PFIC1 disease.
Collapse
Affiliation(s)
- Valentina E. Gómez-Mellado
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Jung-Chin Chang
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Kam S. Ho-Mok
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Carmen Bernardino Morcillo
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
| | - Remco H. J. Kersten
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Ronald P. J. Oude Elferink
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Arthur J. Verhoeven
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Coen C. Paulusma
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
Nayagam JS, Foskett P, Strautnieks S, Agarwal K, Miquel R, Joshi D, Thompson RJ. Clinical phenotype of adult-onset liver disease in patients with variants in ABCB4, ABCB11, and ATP8B1. Hepatol Commun 2022; 6:2654-2664. [PMID: 35894240 PMCID: PMC9512461 DOI: 10.1002/hep4.2051] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Variants in ATP8B1, ABCB11, and ABCB4 underlie the most prevalent forms of progressive familial intrahepatic cholestasis. We aim to describe variants in these genes in a cohort of patients with adult-onset liver disease, and explore a genotype-phenotype correlation. Patients with onset of liver disease aged above 18 who underwent sequencing of cholestasis genes for clinical purposes over a 5-year period were identified. Bioinformatic analysis of variants was performed. Liver histology was evaluated in patients with variants. Of the 356 patients tested, at least one variant was identified in 101 (28.4%): 46 ABCB4, 35 ABCB11, and 28 ATP8B1. Patients with ABCB4 variants had chronic liver disease (71.7%) and pregnancy-associated liver dysfunction (75%), with a younger age of onset in more severe genotypes (p = 0.046). ABCB11 variants presented with pregnancy-associated liver dysfunction (82.4%) and acute/episodic cholestasis (40%), with no association between age of onset and genotype severity. ATP8B1 variants were associated with chronic liver disease (75%); however, they were commonly seen in patients with an alternate etiology of liver disease and variants were of low predicted pathogenicity. In adults with suspected genetic cholestasis, variants in cholestasis genes were frequently identified and were likely to contribute to the development of liver disease, particularly ABCB4 and ABCB11. Variants were often in heterozygous state, and they should no longer be considered recessive Mendelian traits. Sequencing cholestasis genes in selected patients with adult-onset disease should be considered, with interpretation in close collaboration with histopathologists and geneticists.
Collapse
Affiliation(s)
- Jeremy S. Nayagam
- Institute of Liver StudiesKing's College HospitalLondonUK
- Institute of Liver Studies, Immunology & Microbial SciencesKing's College LondonLondonUK
| | - Pierre Foskett
- Institute of Liver StudiesKing's College HospitalLondonUK
| | | | - Kosh Agarwal
- Institute of Liver StudiesKing's College HospitalLondonUK
| | - Rosa Miquel
- Liver Histopathology LaboratoryInstitute of Liver StudiesKing's College HospitalLondonUK
| | - Deepak Joshi
- Institute of Liver StudiesKing's College HospitalLondonUK
| | - Richard J. Thompson
- Institute of Liver StudiesKing's College HospitalLondonUK
- Institute of Liver Studies, Immunology & Microbial SciencesKing's College LondonLondonUK
| |
Collapse
|
6
|
Matrix Metalloproteinase 7 Expression and Apical Epithelial Defects in Atp8b1 Mutant Mouse Model of Pulmonary Fibrosis. Biomolecules 2022; 12:biom12020283. [PMID: 35204783 PMCID: PMC8961514 DOI: 10.3390/biom12020283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Abnormalities in airway epithelia and lung parenchyma are found in Atp8b1 mutant mice, which develop pulmonary fibrosis after hyperoxic insult. Microarray and ingenuity pathway analysis (IPA) show numerous transcripts involved in ciliogenesis are downregulated in 14-month (14 M) -old Atp8b1 mouse lung compared with wild-type C57BL/6. Lung epithelium of Atp8b1 mice demonstrate apical abnormalities of ciliated and club cells in the bronchial epithelium on transmission electron microscopy (TEM). Matrix metalloproteinase 7 (MMP7) regulates of ciliogenesis and is a biomarker for idiopathic pulmonary fibrosis (IPF) in humans. Mmp7 transcript and protein expression are significantly upregulated in 14 M Atp8b1 mutant mouse lung. MMP7 expression is also increased in bronchoalveolar lavage fluid (BAL). Immunohistochemistry is localized MMP7 to bronchial epithelial cells in the Atp8b1 mutant. In conclusion, MMP7 is upregulated in the aged Atp8b1 mouse model, which displays abnormal ciliated cell and club cell morphology. This mouse model can facilitate the exploration of the role of MMP7 in epithelial integrity and ciliogenesis in IPF. The Atp8b1 mutant mouse is proposed as a model for IPF.
Collapse
|
7
|
Liessi N, Pesce E, Braccia C, Bertozzi SM, Giraudo A, Bandiera T, Pedemonte N, Armirotti A. Distinctive lipid signatures of bronchial epithelial cells associated with cystic fibrosis drugs, including Trikafta. JCI Insight 2020; 5:138722. [PMID: 32673287 PMCID: PMC7455125 DOI: 10.1172/jci.insight.138722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, a number of drugs have been approved for the treatment of cystic fibrosis (CF). Among them, newly released Trikafta, a combination of 3 drugs (VX-661/VX-445/VX-770), holds great promise to radically improve the quality of life for a large portion of patients with CF carrying 1 copy of F508del, the most frequent CF transmembrane conductance regulator (CFTR) mutation. Currently available disease-modifying CF drugs work by rescuing the function of the mutated CFTR anion channel. Recent research has shown that membrane lipids, and the cell lipidome in general, play a significant role in the mechanism of CFTR-defective trafficking and, on the other hand, its rescue. In this paper, by using untargeted lipidomics on CFBE41o- cells, we identified distinctive changes in the bronchial epithelial cell lipidome associated with treatment with Trikafta and other CF drugs. Particularly interesting was the reduction of levels of ceramide, a known molecular player in the induction of apoptosis, which appeared to be associated with a decrease in the susceptibility of cells to undergo apoptosis. This evidence could account for additional beneficial roles of the triple combination of drugs on CF phenotypes.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | - Emanuela Pesce
- L'Unità Operativa Complessa (UOC) Genetica Medica, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Clarissa Braccia
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | - Nicoletta Pedemonte
- L'Unità Operativa Complessa (UOC) Genetica Medica, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
8
|
Disruption of Tmem30a results in cerebellar ataxia and degeneration of Purkinje cells. Cell Death Dis 2018; 9:899. [PMID: 30185775 PMCID: PMC6125289 DOI: 10.1038/s41419-018-0938-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Phospholipids are asymmetrically distributed across mammalian plasma membrane with phosphatidylserine (PS) and phosphatidylethanolamine concentrated in the cytoplasmic leaflet of the membrane bilayer. This asymmetric distribution is dependent on a group of P4-ATPases named PS flippases. The proper transport and function of PS flippases require a β-subunit transmembrane protein 30 A (TMEM30A). Disruption of PS flippases led to several human diseases. However, the roles of TMEM30A in the central nervous system remain elusive. To investigate the role of Tmem30a in the cerebellum, we developed a Tmem30a Purkinje cell (PC)-specific knockout (KO) mouse model. The Tmem30a KO mice displayed early-onset ataxia and progressive PC death. Deficiency in Tmem30a led to an increased expression of Glial fibrillary acidic protein and astrogliosis in regions with PC loss. Elevated C/EBP homologous protein and BiP expression levels indicated the presence of endoplasmic reticulum stress in the PCs prior to visible cell loss. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis suggested that apoptotic cell death occurred in the cerebellum. Our data demonstrate that loss of Tmem30a in PCs results in protein folding and transport defects, a substantial decrease in dendritic spine density, increased astrogliosis and PC death. Taken together, our data demonstrate an essential role of Tmem30a in the cerebellum PCs.
Collapse
|
9
|
Hildebrandt E, Khazanov N, Kappes JC, Dai Q, Senderowitz H, Urbatsch IL. Specific stabilization of CFTR by phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:289-293. [PMID: 27913277 DOI: 10.1016/j.bbamem.2016.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR.
Collapse
Affiliation(s)
- Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA; Birmingham Veterans Medical Center, Research Service, Birmingham, AL 35233, USA.
| | - Qun Dai
- Department of Medicine, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294-0007, USA.
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6540, Lubbock, TX 79430, USA.
| |
Collapse
|