1
|
Rodrigues ML, Janbon G, O'Connell RJ, Chu TTH, May RC, Jin H, Reis FCG, Alves LR, Puccia R, Fill TP, Rizzo J, Zamith-Miranda D, Miranda K, Gonçalves T, Ene IV, Kabani M, Anderson M, Gow NAR, Andes DR, Casadevall A, Nosanchuk JD, Nimrichter L. Characterizing extracellular vesicles of human fungal pathogens. Nat Microbiol 2025; 10:825-835. [PMID: 40148564 DOI: 10.1038/s41564-025-01962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Since their discovery in 2007, there has been growing awareness of the importance of fungal extracellular vesicles (EVs) for fungal physiology, host-pathogen interactions and virulence. Fungal EVs are nanostructures comprising bilayered membranes and molecules of various types that participate in several pathophysiological processes in fungal biology, including secretion, cellular communication, immunopathogenesis and drug resistance. However, many questions remain regarding the classification of EVs, their cellular origin, passage across the cell wall, experimental models for functional and compositional analyses, production in vitro and in vivo and biomarkers for EVs. Here, we discuss gaps in the literature of fungal EVs and identify key questions for the field. We present the history of fungal EV discovery, discuss five major unanswered questions in fungal EV biology and provide future perspectives for fungal EV research. We primarily focus our discussion on human fungal pathogens, but also extend it to include knowledge of other fungi, such as plant pathogens. With this Perspective we hope to stimulate new approaches and expand studies to understand the biology of fungal EVs.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil.
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Guilhem Janbon
- RNA Biology of Fungal Pathogens Unit, Department of Mycology, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Thi-Thu-Huyen Chu
- BIOGER Research Unit, INRAE, Université Paris-Saclay, Paris, France
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24 and CNRS UMS3633, Paris, France
| | - Robin C May
- Institute of Microbiology and Infection and School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | | | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Taicia P Fill
- Institute of Chemistry, State University of Campinas, São Paulo, Brazil
| | - Juliana Rizzo
- Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Departments of Medicine (Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Kildare Miranda
- Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teresa Gonçalves
- Center for Neuroscience and Cell Biology and Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, University Coimbra, Coimbra, Portugal
| | - Iuliana V Ene
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mehdi Kabani
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CNRS and CEA, Paris, France
| | - Marilyn Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Joshua D Nosanchuk
- Departments of Medicine (Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Chen X, Duan HD, Hoy MJ, Koteva K, Spitzer M, Guitor AK, Puumala E, Hu G, Yiu B, Chou S, Bian Z, Guo ABY, Sun S, Robbins N, Cook MA, Truant R, MacNeil LT, Brown ED, Kronstad JW, Cowen LE, Heitman J, Li H, Wright GD. Butyrolactol A is a phospholipid flippase inhibitor that potentiates the bioactivity of caspofungin against resistant fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.630955. [PMID: 39829750 PMCID: PMC11741340 DOI: 10.1101/2025.01.06.630955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Fungal infections cause millions of deaths annually and are challenging to treat due to limited antifungal options and increasing drug resistance. Cryptococci are intrinsically resistant to the latest generation of antifungals, echinocandins, while Candida auris , a notorious global threat, is also increasingly resistant. We performed a natural product extract screen for rescue of the activity of the echinocandin caspofungin against Cryptococcus neoformans H99, identifying butyrolactol A, which restores echinocandin efficacy against resistant fungal pathogens, including C. auris . Mode of action studies revealed that butyrolactol A inhibits the phospholipid flippase Apt1-Cdc50, blocking phospholipid transport. Cryoelectron-microscopy analysis of the Apt1●butyrolactol A complex revealed that the flippase is locked in a dead-end state. Apt1 inhibition disrupts membrane asymmetry, vesicular trafficking, and cytoskeletal organization, thereby enhancing echinocandin uptake and potency. This study identifies flippases as promising antifungal targets and demonstrates the potential of revisiting natural products to expand the antifungal arsenal and combat resistance.
Collapse
|
3
|
Tancer R, Pawar S, Wang Y, Ventura CR, Wiedman G, Xue C. Improved Broad Spectrum Antifungal Drug Synergies with Cryptomycin, a Cdc50-Inspired Antifungal Peptide. ACS Infect Dis 2024; 10:3973-3993. [PMID: 39475550 PMCID: PMC11555678 DOI: 10.1021/acsinfecdis.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/09/2024]
Abstract
Fungal infections in humans are difficult to treat, with very limited drug options. Due to a confluence of factors, there is an urgent need for innovation in the antifungal drug space, particularly to combat increasing antifungal drug resistance. Our previous studies showed that Cdc50, a subunit of fungal lipid translocase (flippase), is essential for Cryptococcus neoformans virulence and required for antifungal drug resistance, suggesting that fungal lipid flippase could be a novel drug target. Here, we characterized an antifungal peptide, Cryptomycinamide (KKOO-NH2), derived from a 9-amino acid segment of the C. neoformans Cdc50 protein. A fungal killing assay indicated that KKOO-NH2 is fungicidal against C. neoformans. The peptide has antifungal activity against multiple major fungal pathogens with a minimum inhibitory concentration (MIC) of 8 μg/mL against C. neoformans and Candida glabrata, 16 μg/mL against Candida albicans and C. auris, and 32 μg/mL against Aspergillus fumigatus. The peptide has low cytotoxicity against host cells based on our hemolysis assays and vesicle leakage assays. Strikingly, the peptide exhibits strong drug synergy with multiple antifungal drugs, including amphotericin B, itraconazole, and caspofungin, depending on the specific species on which the combinations were assayed. The fluorescently labeled peptide was detected to localize to the plasma membrane, likely inhibiting key interactions of Cdc50 with membrane proteins such as P4 ATPases. Cryptococcus cells exposed to sub-MIC of peptide showed increased reactive oxygen species production and intracellular calcium levels, indicating a peptide-induced stress response. Decreased intracellular proliferation within macrophages was observed after 30 min of peptide exposure and 24 h coincubation with macrophages, providing a potential translational mechanism to explore further in vivo. In aggregate, the synergistic activity of our KKOO-NH2 peptide may offer a potential novel candidate for combination therapy with existing antifungal drugs.
Collapse
Affiliation(s)
- Robert
J. Tancer
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Siddhi Pawar
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Yina Wang
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Cristina R. Ventura
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Gregory Wiedman
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Chaoyang Xue
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| |
Collapse
|
4
|
Lee CWJ, Brisland A, Qu X, Horianopoulos LC, Hu G, Mayer FL, Kronstad JW. Loss of Opi3 causes a lipid imbalance that influences the virulence traits of Cryptococcus neoformans but not cryptococcosis. Front Cell Infect Microbiol 2024; 14:1448229. [PMID: 39193507 PMCID: PMC11347413 DOI: 10.3389/fcimb.2024.1448229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The basidiomycete fungus Cryptococcus neoformans is a useful model for investigating mechanisms of fungal pathogenesis in mammalian hosts. This pathogen is the causative agent of cryptococcal meningitis in immunocompromised patients and is in the critical priority group of the World Health Organization fungal priority pathogens list. In this study, we employed a mutant lacking the OPI3 gene encoding a methylene-fatty-acyl-phospholipid synthase to characterize the role of phosphatidylcholine (PC) and lipid homeostasis in the virulence of C. neoformans. We first confirmed that OPI3 was required for growth in nutrient limiting conditions, a phenotype that could be rescued with exogenous choline and PC. Additionally, we established that loss of Opi3 and the lack of PC lead to an accumulation of neutral lipids in lipid droplets and alterations in major lipid classes. The growth defect of the opi3Δ mutant was also rescued by sorbitol and polyethylene glycol (PEG), a result consistent with protection of ER function from the stress caused by lipid imbalance. We then examined the impact of Opi3 on virulence and found that the dependence of PC synthesis on Opi3 caused reduced capsule size and this was accompanied by an increase in shed capsule polysaccharide and changes in cell wall composition. Further tests of virulence demonstrated that survival in alveolar macrophages and the ability to cause disease in mice were not impacted by loss of Opi3 despite the choline auxotrophy of the mutant in vitro. Overall, this work establishes the contribution of lipid balance to virulence factor elaboration by C. neoformans and suggests that host choline is sufficient to support proliferation during disease.
Collapse
Affiliation(s)
- Christopher W. J. Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Anna Brisland
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Xianya Qu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Linda C. Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - François L. Mayer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
6
|
Ullah A, Huang Y, Zhao K, Hua Y, Ullah S, Rahman MU, Wang J, Wang Q, Hu X, Zheng L. Characteristics and potential clinical applications of the extracellular vesicles of human pathogenic Fungi. BMC Microbiol 2023; 23:227. [PMID: 37598156 PMCID: PMC10439556 DOI: 10.1186/s12866-023-02945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Collapse
Affiliation(s)
- Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kening Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shafi Ullah
- Department of pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
7
|
Fabri JHTM, Rocha MC, Fernandes CM, Campanella JEM, da Cunha AF, Del Poeta M, Malavazi I. The Heat Shock Transcription Factor HsfA Plays a Role in Membrane Lipids Biosynthesis Connecting Thermotolerance and Unsaturated Fatty Acid Metabolism in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0162723. [PMID: 37195179 PMCID: PMC10269545 DOI: 10.1128/spectrum.01627-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Thermotolerance is a remarkable virulence attribute of Aspergillus fumigatus, but the consequences of heat shock (HS) to the cell membrane of this fungus are unknown, although this structure is one of the first to detect changes in ambient temperature that imposes on the cell a prompt adaptative response. Under high-temperature stress, fungi trigger the HS response controlled by heat shock transcription factors, such as HsfA, which regulates the expression of heat shock proteins. In yeast, smaller amounts of phospholipids with unsaturated fatty acid (FA) chains are synthesized in response to HS, directly affecting plasma membrane composition. The addition of double bonds in saturated FA is catalyzed by Δ9-fatty acid desaturases, whose expression is temperature-modulated. However, the relationship between HS and saturated/unsaturated FA balance in membrane lipids of A. fumigatus in response to HS has not been investigated. Here, we found that HsfA responds to plasma membrane stress and has a role in sphingolipid and phospholipid unsaturated biosynthesis. In addition, we studied the A. fumigatus Δ9-fatty acid desaturase sdeA and discovered that this gene is essential and required for unsaturated FA biosynthesis, although it did not directly affect the total levels of phospholipids and sphingolipids. sdeA depletion significantly sensitizes mature A. fumigatus biofilms to caspofungin. Also, we demonstrate that hsfA controls sdeA expression, while SdeA and Hsp90 physically interact. Our results suggest that HsfA is required for the adaptation of the fungal plasma membrane to HS and point out a sharp relationship between thermotolerance and FA metabolism in A. fumigatus. IMPORTANCE Aspergillus fumigatus causes invasive pulmonary aspergillosis, a life-threatening infection accounting for high mortality rates in immunocompromised patients. The ability of this organism to grow at elevated temperatures is long recognized as an essential attribute for this mold to cause disease. A. fumigatus responds to heat stress by activating heat shock transcription factors and chaperones to orchestrate cellular responses that protect the fungus against damage caused by heat. Concomitantly, the cell membrane must adapt to heat and maintain physical and chemical properties such as the balance between saturated/unsaturated fatty acids. However, how A. fumigatus connects these two physiological responses is unclear. Here, we explain that HsfA affects the synthesis of complex membrane lipids such as phospholipids and sphingolipids and controls the enzyme SdeA, which produces monounsaturated fatty acids, raw material for membrane lipids. These findings suggest that forced dysregulation of saturated/unsaturated fatty acid balance might represent novel strategies for antifungal therapy.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jonatas Erick Maimoni Campanella
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Fernández-López MG, Batista-García RA, Aréchiga-Carvajal ET. Alkaliphilic/Alkali-Tolerant Fungi: Molecular, Biochemical, and Biotechnological Aspects. J Fungi (Basel) 2023; 9:652. [PMID: 37367588 DOI: 10.3390/jof9060652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Biotechnologist interest in extremophile microorganisms has increased in recent years. Alkaliphilic and alkali-tolerant fungi that resist alkaline pH are among these. Alkaline environments, both terrestrial and aquatic, can be created by nature or by human activities. Aspergillus nidulans and Saccharomyces cerevisiae are the two eukaryotic organisms whose pH-dependent gene regulation has received the most study. In both biological models, the PacC transcription factor activates the Pal/Rim pathway through two successive proteolytic mechanisms. PacC is a repressor of acid-expressed genes and an activator of alkaline-expressed genes when it is in an active state. It appears, however, that these are not the only mechanisms associated with pH adaptations in alkali-tolerant fungi. These fungi produce enzymes that are resistant to harsh conditions, i.e., alkaline pH, and can be used in technological processes, such as in the textile, paper, detergent, food, pharmaceutical, and leather tanning industries, as well as in bioremediation of pollutants. Consequently, it is essential to understand how these fungi maintain intracellular homeostasis and the signaling pathways that activate the physiological mechanisms of alkali resistance in fungi.
Collapse
Affiliation(s)
- Maikel Gilberto Fernández-López
- Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Mexico
| |
Collapse
|
9
|
Functional Analysis of the P-Type ATPases Apt2-4 from Cryptococcus neoformans by Heterologous Expression in Saccharomyces cerevisiae. J Fungi (Basel) 2023; 9:jof9020202. [PMID: 36836316 PMCID: PMC9966271 DOI: 10.3390/jof9020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Lipid flippases of the P4-ATPase family actively transport phospholipids across cell membranes, an activity essential for key cellular processes such as vesicle budding and membrane trafficking. Members of this transporter family have also been implicated in the development of drug resistance in fungi. The encapsulated fungal pathogen Cryptococcus neoformans contains four P4-ATPases, among which Apt2-4p are poorly characterized. Using heterologous expression in the flippase-deficient S. cerevisiae strain dnf1Δdnf2Δdrs2Δ, we tested their lipid flippase activity in comparison to Apt1p using complementation tests and fluorescent lipid uptake assays. Apt2p and Apt3p required the co-expression of the C. neoformans Cdc50 protein for activity. Apt2p/Cdc50p displayed a narrow substrate specificity, limited to phosphatidylethanolamine and -choline. Despite its inability to transport fluorescent lipids, the Apt3p/Cdc50p complex still rescued the cold-sensitive phenotype of dnf1Δdnf2Δdrs2Δ, suggesting a functional role for the flippase in the secretory pathway. Apt4p, the closest homolog to Saccharomyces Neo1p, which does not require a Cdc50 protein, was unable to complement several flippase-deficient mutant phenotypes, neither in the presence nor absence of a β-subunit. These results identify C. neoformans Cdc50 as an essential subunit for Apt1-3p and provide a first insight into the molecular mechanisms underlying their physiological functions.
Collapse
|
10
|
Jain BK, Wagner AS, Reynolds TB, Graham TR. Lipid Transport by Candida albicans Dnf2 Is Required for Hyphal Growth and Virulence. Infect Immun 2022; 90:e0041622. [PMID: 36214556 PMCID: PMC9670988 DOI: 10.1128/iai.00416-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a common cause of human mucosal yeast infections, and invasive candidiasis can be fatal. Antifungal medications are limited, but those targeting the pathogen cell wall or plasma membrane have been effective. Therefore, virulence factors controlling membrane biogenesis are potential targets for drug development. P4-ATPases contribute to membrane biogenesis by selecting and transporting specific lipids from the extracellular leaflet to the cytoplasmic leaflet of the bilayer to generate lipid asymmetry. A subset of heterodimeric P4-ATPases, including Dnf1-Lem3 and Dnf2-Lem3 from Saccharomyces cerevisiae, transport phosphatidylcholine (PC), phosphatidylethanolamine (PE), and the sphingolipid glucosylceramide (GlcCer). GlcCer is a critical lipid for Candida albicans polarized growth and virulence, but the role of GlcCer transporters in virulence has not been explored. Here, we show that the Candida albicans Dnf2 (CaDnf2) requires association with CaLem3 to form a functional transporter and flip fluorescent derivatives of GlcCer, PC, and PE across the plasma membrane. Mutation of conserved substrate-selective residues in the membrane domain strongly abrogates GlcCer transport and partially disrupts PC transport by CaDnf2. Candida strains harboring dnf2-null alleles (dnf2ΔΔ) or point mutations that disrupt substrate recognition exhibit defects in yeast-to-hypha growth transition, filamentous growth, and virulence in systemically infected mice. The influence of CaDNF1 deletion on the morphological phenotypes is negligible, although the dnf1ΔΔ dnf2ΔΔ strain was less virulent than the dnf2ΔΔ strain. These results indicate that the transport of GlcCer and/or PC by plasma membrane P4-ATPases is important for the pathogenicity of Candida albicans.
Collapse
Affiliation(s)
- Bhawik K. Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Stanchev LD, Rizzo J, Peschel R, Pazurek LA, Bredegaard L, Veit S, Laerbusch S, Rodrigues ML, López-Marqués RL, Günther Pomorski T. P-Type ATPase Apt1 of the Fungal Pathogen Cryptococcus neoformans Is a Lipid Flippase of Broad Substrate Specificity. J Fungi (Basel) 2021; 7:jof7100843. [PMID: 34682264 PMCID: PMC8537059 DOI: 10.3390/jof7100843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Lipid flippases of the P4-ATPase family are ATP-driven transporters that translocate lipids from the exoplasmic to the cytosolic leaflet of biological membranes. In the encapsulated fungal pathogen Cryptococcus neoformans, the P4-ATPase Apt1p is an important regulator of polysaccharide secretion and pathogenesis, but its biochemical characterization is lacking. Phylogenetic analysis revealed that Apt1p belongs to the subclade of P4A-ATPases characterized by the common requirement for a β-subunit. Using heterologous expression in S. cerevisiae, we demonstrate that Apt1p forms a heterodimeric complex with the C. neoformans Cdc50 protein. This association is required for both localization and activity of the transporter complex. Lipid flippase activity of the heterodimeric complex was assessed by complementation tests and uptake assays employing fluorescent lipids and revealed a broad substrate specificity, including several phospholipids, the alkylphospholipid miltefosine, and the glycolipids glucosyl- and galactosylceramide. Our results suggest that transbilayer lipid transport in C. neoformans is finely regulated to promote fungal virulence, which reinforces the potential of Apt1p as a target for antifungal drug development.
Collapse
Affiliation(s)
- Lyubomir Dimitrov Stanchev
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; (L.B.); (R.L.L.-M.)
| | - Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.R.); (M.L.R.)
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 75015 Paris, France
| | - Rebecca Peschel
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
| | - Lilli A. Pazurek
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
| | - Lasse Bredegaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; (L.B.); (R.L.L.-M.)
| | - Sarina Veit
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
| | - Sabine Laerbusch
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.R.); (M.L.R.)
- Instituto Carlos Chagas, Fiocruz, Curitiba 81310-020, Brazil
| | - Rosa L. López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; (L.B.); (R.L.L.-M.)
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.D.S.); (R.P.); (L.A.P.); (S.V.); (S.L.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; (L.B.); (R.L.L.-M.)
- Correspondence: ; Tel.: +49-234-32-24430
| |
Collapse
|
12
|
Stotz HU, Brotherton D, Inal J. Communication is key: Extracellular vesicles as mediators of infection and defence during host-microbe interactions in animals and plants. FEMS Microbiol Rev 2021; 46:6358524. [PMID: 34448857 PMCID: PMC8767456 DOI: 10.1093/femsre/fuab044] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are now understood to be ubiquitous mediators of cellular communication. In this review, we suggest that EVs have evolved into a highly regulated system of communication with complex functions including export of wastes, toxins and nutrients, targeted delivery of immune effectors and vectors of RNA silencing. Eukaryotic EVs come in different shapes and sizes and have been classified according to their biogenesis and size distributions. Small EVs (or exosomes) are released through fusion of endosome-derived multivesicular bodies with the plasma membrane. Medium EVs (or microvesicles) bud off the plasma membrane as a form of exocytosis. Finally, large EVs (or apoptotic bodies) are produced as a result of the apoptotic process. This review considers EV secretion and uptake in four eukaryotic kingdoms, three of which produce cell walls. The impacts cell walls have on EVs in plants and fungi are discussed, as are roles of fungal EVs in virulence. Contributions of plant EVs to development and innate immunity are presented. Compelling cases are sporophytic self-incompatibility and cellular invasion by haustorium-forming filamentous pathogens. The involvement of EVs in all of these eukaryotic processes is reconciled considering their evolutionary history.
Collapse
Affiliation(s)
- Henrik U Stotz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Dominik Brotherton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jameel Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.,School of Human Sciences, London Metropolitan University, London, N7 8DB, UK
| |
Collapse
|
13
|
Extracellular Vesicles in the Fungi Kingdom. Int J Mol Sci 2021; 22:ijms22137221. [PMID: 34281276 PMCID: PMC8269022 DOI: 10.3390/ijms22137221] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous, rounded vesicles released by prokaryotic and eukaryotic cells in their normal and pathophysiological states. These vesicles form a network of intercellular communication as they can transfer cell- and function-specific information (lipids, proteins and nucleic acids) to different cells and thus alter their function. Fungi are not an exception; they also release EVs to the extracellular space. The vesicles can also be retained in the periplasm as periplasmic vesicles (PVs) and the cell wall. Such fungal vesicles play various specific roles in the lives of these organisms. They are involved in creating wall architecture and maintaining its integrity, supporting cell isolation and defence against the environment. In the case of pathogenic strains, they might take part in the interactions with the host and affect the infection outcomes. The economic importance of fungi in manufacturing high-quality nutritional and pharmaceutical products and in remediation is considerable. The analysis of fungal EVs opens new horizons for diagnosing fungal infections and developing vaccines against mycoses and novel applications of nanotherapy and sensors in industrial processes.
Collapse
|
14
|
Silva VKA, Bhattacharya S, Oliveira NK, Savitt AG, Zamith-Miranda D, Nosanchuk JD, Fries BC. Replicative Aging Remodels the Cell Wall and Is Associated with Increased Intracellular Trafficking in Human Pathogenic Yeasts. mBio 2021; 13:e0019022. [PMID: 35164553 PMCID: PMC8844920 DOI: 10.1128/mbio.00190-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Replicative aging is an underexplored field of research in medical mycology. Cryptococcus neoformans (Cn) and Candida glabrata (Cg) are dreaded fungal pathogens that cause fatal invasive infections. The fungal cell wall is essential for yeast viability and pathogenesis. In this study, we provide data characterizing age-associated modifications to the cell wall of Cn and Cg. Here, we report that old yeast cells upregulate genes of cell wall biosynthesis, leading to cell wall reorganization and increased levels of all major components, including glucan, chitin, and its derivatives, as well as mannan. This results in a significant thickening of the cell wall in aged cells. Old-generation yeast cells exhibited drastic ultrastructural changes, including the presence of abundant vesicle-like particles in the cytoplasm, and enlarged vacuoles with altered pH homeostasis. Our findings suggest that the cell wall modifications could be enabled by augmented intracellular trafficking. This work furthers our understanding of the cell phenotype that emerges during aging. It highlights differences in these two fungal pathogens and elucidates mechanisms that explain the enhanced resistance of old cells to antifungals and phagocytic attacks. IMPORTANCE Cryptococcus neoformans and Candida glabrata are two opportunistic human fungal pathogens that cause life-threatening diseases. During infection, both microorganisms have the ability to persist for long periods, and treatment failure can occur even if standard testing identifies the yeasts to be sensitive to antifungals. Replicative life span is a trait that is measured by the number of divisions a cell undergoes before death. Aging in fungi is associated with enhanced tolerance to antifungals and resistance to phagocytosis, and characterization of old cells may help identify novel antifungal targets. The cell wall remains an attractive target for new therapies because it is essential for fungi and is not present in humans. This study shows that the organization of the fungal cell wall changes remarkably during aging and becomes thicker and is associated with increased intracellular trafficking as well as the alteration of vacuole morphology and pH homeostasis.
Collapse
Affiliation(s)
- Vanessa K. A. Silva
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Anne G. Savitt
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bettina C. Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| |
Collapse
|
15
|
Biogenesis of Fungal Extracellular Vesicles: What Do We Know? Curr Top Microbiol Immunol 2021; 432:1-11. [DOI: 10.1007/978-3-030-83391-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
de Oliveira HC, Castelli RF, Reis FCG, Rizzo J, Rodrigues ML. Pathogenic Delivery: The Biological Roles of Cryptococcal Extracellular Vesicles. Pathogens 2020; 9:pathogens9090754. [PMID: 32948010 PMCID: PMC7557404 DOI: 10.3390/pathogens9090754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by all domains of life. In fungi, these structures were first described in Cryptococcus neoformans and, since then, they were characterized in several pathogenic and non-pathogenic fungal species. Cryptococcal EVs participate in the export of virulence factors that directly impact the Cryptococcus-host interaction. Our knowledge of the biogenesis and pathogenic roles of Cryptococcus EVs is still limited, but recent methodological and scientific advances have improved our understanding of how cryptococcal EVs participate in both physiological and pathogenic events. In this review, we will discuss the importance of cryptococcal EVs, including early historical studies suggesting their existence in Cryptococcus, their putative mechanisms of biogenesis, methods of isolation, and possible roles in the interaction with host cells.
Collapse
Affiliation(s)
- Haroldo C. de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
| | - Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4.365, Pavilhão Arthur Neiva–Manguinhos, Rio de Janeiro 21040-360, Brasil
| | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036–Prédio Da Expansão–8˚ Andar–Sala 814, Rio De Janeiro 21040-361, Brasil
| | - Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France;
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brasil
- Correspondence:
| |
Collapse
|
17
|
Normile TG, McEvoy K, Del Poeta M. Steryl Glycosides in Fungal Pathogenesis: An Understudied Immunomodulatory Adjuvant. J Fungi (Basel) 2020; 6:E25. [PMID: 32102324 PMCID: PMC7151148 DOI: 10.3390/jof6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections pose an increasing threat to human hosts, especially in immunocompromised individuals. In response to the increasing morbidity and mortality of fungal infections, numerous groups have shown great strides in uncovering novel treatment options and potential efficacious vaccine candidates for this increasing threat due to the increase in current antifungal resistance. Steryl glycosides are lipid compounds produced by a wide range of organisms, and are largely understudied in the field of pathogenicity, especially to fungal infections. Published works over the years have shown these compounds positively modulating the host immune response. Recent advances, most notably from our lab, have strongly indicated that steryl glycosides have high efficacy in protecting the host against lethal Cryptococcal infection through acting as an immunoadjuvant. This review will summarize the keystone studies on the role of steryl glycosides in the host immune response, as well as elucidate the remaining unknown characteristics and future perspectives of these compounds for the host-fungal interactions.
Collapse
Affiliation(s)
- Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, New York, NY 11768, USA
| |
Collapse
|
18
|
Rizzo J, Stanchev LD, da Silva VK, Nimrichter L, Pomorski TG, Rodrigues ML. Role of lipid transporters in fungal physiology and pathogenicity. Comput Struct Biotechnol J 2019; 17:1278-1289. [PMID: 31921394 PMCID: PMC6944739 DOI: 10.1016/j.csbj.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 02/08/2023] Open
Abstract
The fungal cell wall and membrane are the most common targets of antifungal agents, but the potential of membrane lipid organization in regulating drug-target interactions has yet to be investigated. Energy-dependent lipid transporters have been recently associated with virulence and drug resistance in many pathogenic fungi. To illustrate this view, we discuss (i) the structural and biological aspects of ATP-driven lipid transporters, comprising P-type ATPases and ATP-binding cassette transporters, (ii) the role of these transporters in fungal physiology and virulence, and (iii) the potential of lipid transporters as targets for the development of novel antifungals. These recent observations indicate that the lipid-trafficking machinery in fungi is a promising target for studies on physiology, pathogenesis and drug development.
Collapse
Affiliation(s)
- Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lyubomir Dimitrov Stanchev
- Department of Molecular Biochemistry, Ruhr University Bochum, Faculty of Chemistry and Biochemistry, 44780 Bochum, Germany
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C,Denmark
| | - Vanessa K.A. da Silva
- Programa de Pós-Graduação em Biologia Parasitária do Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Ruhr University Bochum, Faculty of Chemistry and Biochemistry, 44780 Bochum, Germany
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C,Denmark
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| |
Collapse
|
19
|
Bielska E, May RC. Extracellular vesicles of human pathogenic fungi. Curr Opin Microbiol 2019; 52:90-99. [PMID: 31280026 DOI: 10.1016/j.mib.2019.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles play a significant role in many aspects of cellular life including cell-to-cell communication, pathogenesis and cancer progression. However very little is known about their role in fungi and we are just at the beginning of understanding their influence on fungal pathophysiology and host-pathogen interactions. Recent findings have revealed a role for fungal vesicles in triggering anti-microbial activities as well as in modulating virulence strategies, suggesting potential new avenues for antifungal therapies. In this review, we summarize our current understanding of fungal extracellular vesicles, including their biogenesis, secretion and size variation, and discuss how they may influence the human immune response and some key questions that remain unanswered.
Collapse
Affiliation(s)
- Ewa Bielska
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Robin C May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
20
|
Nimrichter L, Rodrigues ML, Del Poeta M. Exploiting Lipids to Develop Anticryptococcal Vaccines. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Cryptococcus neoformans Glucuronoxylomannan and Sterylglucoside Are Required for Host Protection in an Animal Vaccination Model. mBio 2019; 10:mBio.02909-18. [PMID: 30940711 PMCID: PMC6445945 DOI: 10.1128/mbio.02909-18] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The number of deaths from cryptococcal meningitis is around 180,000 per year. The disease is the second leading cause of mortality among individuals with AIDS. Antifungal treatment is costly and associated with adverse effects and resistance, evidencing the urgency of development of both therapeutic and prophylactic tools. Here we demonstrate the key roles of polysaccharide- and glycolipid-containing structures in a vaccination model to prevent cryptococcosis. Cryptococcus neoformans is an encapsulated fungal pathogen that causes meningoencephalitis. There are no prophylactic tools for cryptococcosis. Previously, our group showed that a C. neoformans mutant lacking the gene encoding sterylglucosidase (Δsgl1) induced protection in both immunocompetent and immunocompromised murine models of cryptococcosis. Since sterylglucosidase catalyzes degradation of sterylglucosides (SGs), accumulation of this glycolipid could be responsible for protective immunity. In this study, we analyzed whether the activity of SGs is sufficient for the protective effect induced by the Δsgl1 strain. We observed that the accumulation of SGs impacted several properties of the main polysaccharide that composes the fungal capsule, glucuronoxylomannan (GXM). We therefore used genetic manipulation to delete the SGL1 gene in the acapsular mutant Δcap59 to generate a double mutant (strain Δcap59/Δsgl1) that was shown to be nonpathogenic and cleared from the lung of mice within 7 days post-intranasal infection. The inflammatory immune response triggered by the Δcap59/Δsgl1 mutant in the lung differed from the response seen with the other strains. The double mutant did not induce protection in a vaccination model, suggesting that SG-related protection requires the main capsular polysaccharide. Finally, GXM-containing extracellular vesicles (EVs) enriched in SGs delayed the acute lethality of Galleria mellonella against C. neoformans infection. These studies highlighted a key role for GXM and SGs in inducing protection against a secondary cryptococcal infection, and, since EVs notoriously contain GXM, these results suggest the potential use of Δsgl1 EVs as a vaccination strategy for cryptococcosis.
Collapse
|
22
|
A Novel Protocol for the Isolation of Fungal Extracellular Vesicles Reveals the Participation of a Putative Scramblase in Polysaccharide Export and Capsule Construction in Cryptococcus gattii. mSphere 2019; 4:4/2/e00080-19. [PMID: 30894430 PMCID: PMC6429041 DOI: 10.1128/msphere.00080-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles (EVs) are fundamental components of the physiology of cells from all kingdoms. In pathogenic fungi, they participate in important mechanisms of transfer of antifungal resistance and virulence, as well as in immune stimulation and prion transmission. However, studies on the functions of fungal EVs are still limited by the lack of efficient methods for isolation of these compartments. In this study, we developed an alternative protocol for isolation of fungal EVs and demonstrated an application of this new methodology in the study of the physiology of the fungal pathogen Cryptococcus gattii. Our results describe a fast and reliable method for the study of fungal EVs and reveal the participation of scramblase, a phospholipid-translocating enzyme, in secretory processes of C. gattii. Regular protocols for the isolation of fungal extracellular vesicles (EVs) are time-consuming, hard to reproduce, and produce low yields. In an attempt to improve the protocols used for EV isolation, we explored a model of vesicle production after growth of Cryptococcus gattii and Cryptococcus neoformans on solid media. Nanoparticle tracking analysis in combination with transmission electron microscopy revealed that C. gattii and C. neoformans produced EVs in solid media. The properties of cryptococcal vesicles varied according to the culture medium used and the EV-producing species. EV detection was reproduced with an acapsular mutant of C. neoformans, as well as with isolates of Candida albicans, Histoplasma capsulatum, and Saccharomyces cerevisiae. Cryptococcal EVs produced in solid media were biologically active and contained regular vesicular components, including the major polysaccharide glucuronoxylomannan (GXM) and RNA. Since the protocol had higher yields and was much faster than the regular methods used for the isolation of fungal EVs, we asked if it would be applicable to address fundamental questions related to cryptococcal secretion. On the basis that polysaccharide export in Cryptococcus requires highly organized membrane traffic culminating with EV release, we analyzed the participation of a putative scramblase (Aim25; CNBG_3981) in EV-mediated GXM export and capsule formation in C. gattii. EVs from a C. gattiiaim25Δ strain differed from those obtained from wild-type (WT) cells in physical-chemical properties and cargo. In a model of surface coating of an acapsular cryptococcal strain with vesicular GXM, EVs obtained from the aim25Δ mutant were more efficiently used as a source of capsular polysaccharides. Lack of the Aim25 scramblase resulted in disorganized membranes and increased capsular dimensions. These results associate the description of a novel protocol for the isolation of fungal EVs with the identification of a previously unknown regulator of polysaccharide release. IMPORTANCE Extracellular vesicles (EVs) are fundamental components of the physiology of cells from all kingdoms. In pathogenic fungi, they participate in important mechanisms of transfer of antifungal resistance and virulence, as well as in immune stimulation and prion transmission. However, studies on the functions of fungal EVs are still limited by the lack of efficient methods for isolation of these compartments. In this study, we developed an alternative protocol for isolation of fungal EVs and demonstrated an application of this new methodology in the study of the physiology of the fungal pathogen Cryptococcus gattii. Our results describe a fast and reliable method for the study of fungal EVs and reveal the participation of scramblase, a phospholipid-translocating enzyme, in secretory processes of C. gattii.
Collapse
|