1
|
Hraoui G, Grondin M, Breton S, Averill-Bates DA. Nrf2 mediates mitochondrial and NADPH oxidase-derived ROS during mild heat stress at 40 °C. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119897. [PMID: 39800224 DOI: 10.1016/j.bbamcr.2025.119897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses. However, the mechanisms of activation remain unclear. When HeLa cells were exposed to mild heat shock at 40 °C for 3 h, levels of superoxide and peroxides increased. Cells were treated with mitochondrial antioxidant MitoQ and NADPH oxidase (NOX) inhibitor apocynin to characterize the contribution of these two sources to the total reactive oxygen species (ROS) pool. We found that both mitochondria and NOX are sources of ROS during mild heat shock at 40 °C. Heat-derived ROS are thought to activate the adaptive survival response at 40 °C. Nrf2, the master regulator of the cellular antioxidant response, is thought to play a pivotal role in establishing the adaptive survival response. Nrf2 was overexpressed or knocked down to assess its role. Moreover, Nrf2 levels correlate with the cellular redox state, and do so via scavenging of mitochondria- and NOX-derived ROS. Knockdown of Nrf2 markedly increased levels of ROS that were scavenged by either apocynin or MitoQ. Finally, critical defense proteins such as DJ-1 and PGAM5 seemed to require a two-key activation system mediated by Nrf2 and mitochondrial ROS. Our study characterized mitochondrial and NOX-derived ROS as being essential in activating cellular defenses alongside Nrf2 and underlines potential therapeutic targets that may contribute to the acquisition of thermotolerance.
Collapse
Affiliation(s)
- Georges Hraoui
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Mélanie Grondin
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Diana A Averill-Bates
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
2
|
Fu S, Gong X, Liang K, Ding K, Qiu L, Cen H, Du H. KLF3 impacts insulin sensitivity and glucose uptake in skeletal muscle. Am J Physiol Cell Physiol 2024; 327:C1219-C1235. [PMID: 39250818 DOI: 10.1152/ajpcell.00085.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Skeletal muscle is one of the predominant sites involved in glucose disposal, accounting for ∼80% of postprandial glucose uptake, and plays a critical role in maintaining glycemic homeostasis. Dysregulation of energy metabolism in skeletal muscle is involved in developing insulin resistance and type 2 diabetes (T2D). Transcriptomic responses of skeletal muscle to exercise found that the expression of Klf3 was increased in T2D Goto-Kakizaki (GK) rats and decreased after exercise with improved hyperglycemia and insulin resistance, implying that Klf3 might be associated with insulin sensitivity and glucose metabolism. We also found that knockdown of Klf3 promoted basal and insulin-stimulated glucose uptake in L6 myotubes, whereas overexpression of Klf3 resulted in the opposite. Through pairwise comparisons of L6 myotubes transcriptome, we identified 2,256 and 1,988 differentially expressed genes in Klf3 knockdown and overexpression groups, respectively. In insulin signaling, the expression of Slc2a4, Akt2, Insr, and Sorbs1 was significantly increased by Klf3 knockdown and decreased with Klf3 overexpression; Ptprf and Fasn were markedly downregulated in Klf3 reduced group and upregulated in Klf3 overexpressed group. Moreover, downregulation of Klf3 promoted the expression of glucose transporter 4 (GLUT4) and protein kinase B (AKT) proteins, as well as the translocation of GLUT4 to the cell membrane in the basal situation, and enhanced insulin sensitivity, characterized by increased insulin-stimulated GLUT4 translocation and AKT, TBC1 domain family member 1 (TBC1D1) and TBC1 domain family member 4 (TBC1D4) phosphorylation, whereas overexpression of Klf3 showed contrary results. These results suggest that Klf3 affects glucose uptake and insulin sensitivity via insulin signal transduction and intracellular metabolism, offering a novel potential treatment strategy for T2D.NEW & NOTEWORTHY The knockdown of Klf3 increased glucose uptake and improved insulin sensitivity in L6 myotubes, whereas its overexpression had the opposite effect. To explore the underlying mechanisms, we evaluated the transcriptional profiles of L6 myotubes after Klf3 knockdown and overexpression and revealed that metabolism and insulin-related pathways were significantly impacted. Klf3 also influenced the expression or modification of glucose transporter 4 (GLUT4), protein kinase B (AKT), TBC1 domain family member 1 (TBC1D1), and TBC1 domain family member 4 (TBC1D4) in the insulin signaling pathway, affecting insulin sensitivity and glucose uptake.
Collapse
Affiliation(s)
- Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
- School of Life Sciences, Zhaoqing University, Zhaoqing, People's Republic of China
| | - Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Huice Cen
- School of Life Sciences, Zhaoqing University, Zhaoqing, People's Republic of China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Grondin M, Chabrol C, Averill-Bates DA. Mild heat shock at 40 °C increases levels of autophagy: Role of Nrf2. Cell Stress Chaperones 2024; 29:567-588. [PMID: 38880164 PMCID: PMC11268186 DOI: 10.1016/j.cstres.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
The exposure to low doses of stress induces an adaptive survival response that involves the upregulation of cellular defense systems such as heat shock proteins (Hsps), anti-apoptosis proteins, and antioxidants. Exposure of cells to elevated, non-lethal temperatures (39-41 °C) is an adaptive survival response known as thermotolerance, which protects cells against subsequent lethal stress such as heat shock (>41.5 °C). However, the initiating factors in this adaptive survival response are not understood. This study aims to determine whether autophagy can be activated by heat shock at 40 °C and if this response is mediated by the transcription factor Nrf2. Thermotolerant cells, which were developed during 3 h at 40 °C, were resistant to caspase activation at 42 °C. Autophagy was activated when cells were heated from 5 to 60 min at 40 °C. Levels of acidic vesicular organelles (AVOs) and autophagy proteins Beclin-1, LC3-II/LC3-I, Atg7, Atg5, Atg12-Atg5, and p62 were increased. When Nrf2 was overexpressed or depleted in cells, levels of AVOs and autophagy proteins were higher in unstressed cells, compared to the wild type. Stress induced by mild heat shock at 40 °C further increased levels of most autophagy proteins in cells with overexpression or depletion of Nrf2. Colocalization of p62 and Keap1 occurred. When Nrf2 levels are low, activation of autophagy would likely compensate as a defense mechanism to protect cells against stress. An improved understanding of autophagy in the context of cellular responses to physiological heat shock could be useful for cancer treatment by hyperthermia and the protective role of adaptive responses against environmental stresses.
Collapse
Affiliation(s)
- Mélanie Grondin
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Claire Chabrol
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Diana A Averill-Bates
- Département des Sciences Biologiques, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Peralta-Ruiz Y, Molina Hernandez JB, Grande-Tovar CD, Serio A, Valbonetti L, Chaves-López C. Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides. Molecules 2024; 29:3516. [PMID: 39124920 PMCID: PMC11314608 DOI: 10.3390/molecules29153516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, β-galactosidase, β-glucosidase, and N-acetyl-β-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.
Collapse
Affiliation(s)
- Yeimmy Peralta-Ruiz
- Programa de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Junior Bernardo Molina Hernandez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| | - Luca Valbonetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| | - Clemencia Chaves-López
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| |
Collapse
|
5
|
Vaseghi G, Shariati L, Bahri Najafi M, Malakootikhah Z, Naji Esfahani H, Haghjooy Javanmard S. Evaluation of IP3R3 Gene Silencing Effect on Pyruvate Dehydrogenase (PDH) Enzyme Activity in Breast Cancer Cells with and Without Estrogen Receptor. Adv Biomed Res 2024; 13:24. [PMID: 38808320 PMCID: PMC11132195 DOI: 10.4103/abr.abr_413_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 05/30/2024] Open
Abstract
Background Inositol 1,4,5-trisphosphate receptor (IP3R), a critical calcium ion (Ca2+) regulator, plays a vital role in breast cancer (BC) metabolism. Dysregulated IP3R in BC cells can drive abnormal growth or cell death. Estradiol increases IP3R type 3 (IP3R3) levels in BC, promoting cell proliferation and metabolic changes, including enhanced pyruvate dehydrogenase (PDH) activity, which, when reduced, leads to cell apoptosis. The study silenced IP3R3 to assess its impact on PDH. Materials and Methods The study used IP3R3 small interfering RNA (siRNA) to target Michigan Cancer Foundation-7 (MCF-7) and MDA-MB-231 cell lines. Transfection success was confirmed by flow cytometry. Cell viability and gene silencing were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and real-time quantitative polymerase chain reaction (PCR) assays. Protein expression and cellular activity were analyzed through western blotting and PDH activity measurement. Results Transfecting MCF-7 and MDA-MB-231 cells with IP3R3 siRNA achieved a 65% transfection rate without significant toxicity. IP3R3 gene silencing effectively reduced IP3R3 messenger RNA (mRNA) and protein levels in both cell lines, leading to decreased PDH enzyme activity, especially in MDA-MB-231 cells. Conclusion The study highlights a link between high IP3R3 gene silencing and reduced PDH activity, with higher IP3R3 expression in estrogen-independent (MDA-MB-231) compared to estrogen-dependent (MCF-7) cell lines. This suggests a potential impact on BC metabolism and tumor growth via regulation of PDH activity.
Collapse
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakootikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajar Naji Esfahani
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Vodovotz Y, Arciero J, Verschure PF, Katz DL. A multiscale inflammatory map: linking individual stress to societal dysfunction. FRONTIERS IN SCIENCE 2024; 1:1239462. [PMID: 39398282 PMCID: PMC11469639 DOI: 10.3389/fsci.2023.1239462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
As populations worldwide show increasing levels of stress, understanding emerging links among stress, inflammation, cognition, and behavior is vital to human and planetary health. We hypothesize that inflammation is a multiscale driver connecting stressors that affect individuals to large-scale societal dysfunction and, ultimately, to planetary-scale environmental impacts. We propose a 'central inflammation map' hypothesis to explain how the brain regulates inflammation and how inflammation impairs cognition, emotion, and action. According to our hypothesis, these interdependent inflammatory and neural processes, and the inter-individual transmission of environmental, infectious, and behavioral stressors - amplified via high-throughput digital global communications - can culminate in a multiscale, runaway, feed-forward process that could detrimentally affect human decision-making and behavior at scale, ultimately impairing the ability to address these same stressors. This perspective could provide non-intuitive explanations for behaviors and relationships among cells, organisms, and communities of organisms, potentially including population-level responses to stressors as diverse as global climate change, conflicts, and the COVID-19 pandemic. To illustrate our hypothesis and elucidate its mechanistic underpinnings, we present a mathematical model applicable to the individual and societal levels to test the links among stress, inflammation, control, and healing, including the implications of transmission, intervention (e.g., via lifestyle modification or medication), and resilience. Future research is needed to validate the model's assumptions, expand the factors/variables employed, and validate it against empirical benchmarks. Our model illustrates the need for multilayered, multiscale stress mitigation interventions, including lifestyle measures, precision therapeutics, and human ecosystem design. Our analysis shows the need for a coordinated, interdisciplinary, international research effort to understand the multiscale nature of stress. Doing so would inform the creation of interventions that improve individuals' lives and communities' resilience to stress and mitigate its adverse effects on the world.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julia Arciero
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Paul Fmj Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Donders Centre of Neuroscience, Donders Centre for Brain, Cognition and Behaviour, Faculty of Science and Engineering, Radboud University, Netherlands
| | - David L Katz
- Founder, True Health Initiative, The Health Sciences Academy, London, United Kingdom
- Tangelo Services, Auckland, United States
| |
Collapse
|
7
|
Obsilova V, Obsil T. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Front Mol Biosci 2024; 11:1327014. [PMID: 38328397 PMCID: PMC10847541 DOI: 10.3389/fmolb.2024.1327014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division, BIOCEV, Vestec, Czechia
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Li Z, Zhang M, Chen S, Dong W, Zong R, Wang Y, Fan S. BTN3A3 inhibits clear cell renal cell carcinoma progression by regulating the ROS/MAPK pathway via interacting with RPS3A. Cell Signal 2023; 112:110914. [PMID: 37806541 DOI: 10.1016/j.cellsig.2023.110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Butyrophilin subfamily 3 member A3 (BTN3A3) is a member of the immunoglobulin superfamily and functions as a tumor suppressor in multiple cancer types. Our study has revealed that in clear cell renal cell carcinoma (ccRCC), patients who express high levels of BTN3A3 experience longer survival times than those with lower expression. Further, we have observed that BTN3A3 inhibits the proliferation, migration, and invasion of ccRCC cells. Through the utilization of an immunoprecipitation assay followed by mass spectrometry, we have discovered that BTN3A3 binds directly to RPS3A. Knockdown of BTN3A3 led to increased cell proliferation, migration, and invasion. However, this effect was significantly reduced when RPS3A was simultaneously overexpressed. Previous reports have demonstrated that RPS3A positively regulates mitochondrial function and reactive oxygen species (ROS) levels. Our study has shown that overexpression of both BTN3A3 and RPS3A can increase cellular oxygen consumption rate (OCR) and ROS levels. Furthermore, we have observed that the addition of H2O2 can reverse the effects of BTN3A3 knockdown on cell proliferation and migration by increasing the cellular ROS level. ROS play a crucial role in regulating the MAPK pathway and tumor cell growth. To further explore this relationship, we examined RNA-Seq and immunoblotting data and found that BTN3A3 can negatively regulate the degree of activation of the MAPK signaling pathway. This finding suggests that the BTN3A3/RPS3A complex may regulate ccRCC progression by modulating MAPK pathways. Therefore, BTN3A3 could serve as both a prognostic marker and a potential therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Mengmeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Sihan Chen
- Central Laboratory, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Weiyu Dong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Rui Zong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Fu Y, Wang L, Liu W, Yang L, Li L, Wang L, Sun X, Zhang ZR, Lin Q, Zhang L. OX40L blockade cellular nanovesicles for autoimmune diseases therapy. J Control Release 2021; 337:557-570. [PMID: 34371056 DOI: 10.1016/j.jconrel.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022]
Abstract
Current clinical agents for autoimmunity disorders treatment often cause substantial adverse effects and safety concerns, owing to non-specific immune modulation. Due to the prominent contribution of effector T cells in pathogenesis of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), and preferential location of co-stimulatory receptor-ligand pair OX40-OX40L at the inflamed sites, selectively targeting autoaggressive T cells by blockade OX40-OX40L, might represent an alternative strategy. Herein, we developed a new strategy to antagonize OX40-OX40L interaction by engineering a cell membrane derived nanovesicles (NVs) expressing OX40 receptors (OX40 NVs), and explored their potential for autoimmune disorders therapy. OX40 NVs showed specific binding capability to inflamed HUVECs in vitro, it also possessed distinct arthritic-targeting capacity in RA inflamed joints, and preferential accumulation in IBD inflamed colon. OX40 NVs efficiently suppressed the progression of both RA and IBD diseases through reducing CD4+OX40+ T cells population, and proinflammatory cytokines (i.e., TNF-α and IL-1β), while reinforcing Tregs immune-suppressive effect, with superior therapeutic efficacy than anti-OX40L. Additionally, dexamethasone (DEX) loading can further enhance the potential of OX40 NVs for RA treatment. Owing to their preferential localization to inflamed sites, and potent immune-suppression ability, targeting OX40-OX40L blockade by OX40 NVs for autoimmune therapy is highly promising.
Collapse
Affiliation(s)
- Yu Fu
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china; College of Pharmaceutical Sciences, Southwest University, 400715, China
| | - Leilei Wang
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china
| | - Wei Liu
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china
| | - Lan Yang
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china
| | - Lin Li
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china
| | - Luyao Wang
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china
| | - Xun Sun
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china
| | - Zhi-Rong Zhang
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china
| | - Qing Lin
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china.
| | - Ling Zhang
- College of Polymer Science and Engineering, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 640041, china.
| |
Collapse
|
11
|
Xu H, Zhu Y, Du M, Wang Y, Ju S, Ma R, Jiao Z. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. WATER RESEARCH 2021; 188:116513. [PMID: 33091801 DOI: 10.1016/j.watres.2020.116513] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Although the identification of effective reactive oxygen species (ROS) generated by plasma has been extensively studied, yet the subcellular mechanism of microbial inactivation has never been clearly elucidated in plasma disinfection processes. In this study, subcellular mechanism of yeast cell inactivation during plasma-liquid interaction was revealed in terms of comprehensive factors including cell morphology, membrane permeability, lipid peroxidation, membrane potential, intracellular redox homeostasis (intracellular ROS and H2O2, and antioxidant system (SOD, CAT and GSH)), intracellular ionic equilibrium (intracellular H+ and K+) and energy metabolism (mitochondrial membrane potential, intracellular Ca2+ and ATP level). The ROS analysis show that ·OH, 1O2, ·O2-and H2O2 were generated in this plasma-liquid interaction system and ·O2-served as the precursor of 1O2. Additionally, the solution pH was reduced. Plasma can effectively inactivate yeast cells mainly via apoptosis by damaging cell membrane, intracellular redox and ion homeostasis and energy metabolism as well as causing DNA fragmentation. ROS scavengers (l-His, d-Man and SOD) and pH buffer (phosphate buffer solution, PBS) were employed to investigate the role of five antimicrobial factors (·OH, 1O2, ·O2-, H2O2 and low pH) in plasma sterilization. Results show that they have different influences on the aforementioned cell physiological activities. The ·OH and 1O2 contributed most to the yeast inactivation. The ·OH mainly attacked cell membrane and increased cell membrane permeability. The disturb of cell energy metabolism was mainly attributed to 1O2. The damage of cell membrane as well as extracellular low pH could break the intracellular ionic equilibrium and further reduce cell membrane potential. The remarkable increase of intracellular H2O2 was mainly due to the influx of extracellular H2O2 via destroyed cell membrane, which played a little role in yeast inactivation during 10-min plasma treatment. These findings provide comprehensive insights into the antimicrobial mechanism of plasma, which can promote the development of plasma as an alternative water disinfection strategy.
Collapse
Affiliation(s)
- Hangbo Xu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yupan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Mengru Du
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yuqi Wang
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Siyao Ju
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
12
|
Ismatullah H, Jabeen I, Saeed MT. Biological Regulatory Network (BRN) Analysis and Molecular Docking Simulations to Probe the Modulation of IP 3R Mediated Ca 2+ Signaling in Cancer. Genes (Basel) 2020; 12:34. [PMID: 33383780 PMCID: PMC7823498 DOI: 10.3390/genes12010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Inositol trisphosphate receptor (IP3R) mediated Ca+2 signaling is essential in determining the cell fate by regulating numerous cellular processes, including cell division and cell death. Despite extensive studies about the characterization of IP3R in cancer, the underlying molecular mechanism initiating the cell proliferation and apoptosis remained enigmatic. Moreover, in cancer, the modulation of IP3R in downstream signaling pathways, which control oncogenesis and cancer progression, is not well characterized. Here, we constructed a biological regulatory network (BRN), and describe the remodeling of IP3R mediated Ca2+ signaling as a central key that controls the cellular processes in cancer. Moreover, we summarize how the inhibition of IP3R affects the deregulated cell proliferation and cell death in cancer cells and results in the initiation of pro-survival responses in resistance of cell death in normal cells. Further, we also investigated the role of stereo-specificity of IP3 molecule and its analogs in binding with the IP3 receptor. Molecular docking simulations showed that the hydroxyl group at R6 position along with the phosphate group at R5 position in 'R' conformation is more favorable for IP3 interactions. Additionally, Arg-266 and Arg-510 showed π-π and hydrogen bond interactions and Ser-278 forms hydrogen bond interactions with the IP3 binding site. Thus, they are identified as crucial for the binding of antagonists.
Collapse
Affiliation(s)
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Academic-I Building, H-12 Islamabad 44000, Pakistan; (H.I.); (M.T.S.)
| | | |
Collapse
|
13
|
Heat shock increases levels of reactive oxygen species, autophagy and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118924. [PMID: 33301820 DOI: 10.1016/j.bbamcr.2020.118924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Hyperthermia is a promising anticancer treatment used in combination with radiotherapy and chemotherapy. Temperatures above 41.5 °C are cytotoxic and hyperthermia treatments can target a localized area of the body that has been invaded by a tumor. However, non-lethal temperatures (39-41 °C) can increase cellular defenses, such as heat shock proteins. This adaptive survival response, thermotolerance, can protect cells against subsequent cytotoxic stress such as anticancer treatments and heat shock (>41.5 °C). Autophagy is another survival process that is activated by stress. This study aims to determine whether autophagy can be activated by heat shock at 42 °C, and if this response is mediated by reactive oxygen species (ROS). Autophagy was increased during shorter heating times (<60 min) at 42 °C in cells. Levels of acidic vesicular organelles (AVO) and autophagy proteins Beclin-1, LC3-II/LC-3I, Atg7 and Atg12-Atg5 were increased. Heat shock at 42 °C increased levels of ROS. Increased levels of LC3 and AVOs at 42 °C were inhibited by antioxidants. Therefore, increased autophagy during heat shock at 42 °C (<60 min) was mediated by ROS. Conversely, heat shock at 42 °C for longer times (1-3 h) caused apoptosis and activation of caspases in the mitochondrial, death receptor and endoplasmic reticulum (ER) pathways. Thermotolerant cells, which were developed at 40 °C, were resistant to activation of apoptosis at 42 °C. Autophagy inhibitors 3-methyladenine and bafilomycin sensitized cells to activation of apoptosis by heat shock (42 °C). Improved understanding of autophagy in cellular responses to heat shock could be useful for optimizing the efficacy of hyperthermia in the clinic.
Collapse
|
14
|
Chen J, Li Z, Cheng Y, Gao C, Guo L, Wang T, Xu J. Sphinganine-Analog Mycotoxins (SAMs): Chemical Structures, Bioactivities, and Genetic Controls. J Fungi (Basel) 2020; 6:E312. [PMID: 33255427 PMCID: PMC7711896 DOI: 10.3390/jof6040312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022] Open
Abstract
Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp. Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse cytotoxicity and phytotoxicity, causing adverse impacts on plants, animals, and humans, and are a destructive force to crop production worldwide. This review summarizes the structural diversity of SAMs and encapsulates the relationships between their structures and biological activities. The toxicity of SAMs on plants and animals is mainly attributed to their inhibitory activity against the ceramide biosynthesis enzyme, influencing the sphingolipid metabolism and causing programmed cell death. We also reviewed the detoxification methods against SAMs and how plants develop resistance to SAMs. Genetic and evolutionary analyses revealed that the FUM (fumonisins biosynthetic) gene cluster was responsible for fumonisin biosynthesis in Fusarium spp. Sequence comparisons among species within the genus Fusarium suggested that mutations and multiple horizontal gene transfers involving the FUM gene cluster were responsible for the interspecific difference in fumonisin synthesis. We finish by describing methods for monitoring and quantifying SAMs in food and agricultural products.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
15
|
Involvement of Mitochondrial Mechanisms in the Cytostatic Effect of Desethylamiodarone in B16F10 Melanoma Cells. Int J Mol Sci 2020; 21:ijms21197346. [PMID: 33027919 PMCID: PMC7582344 DOI: 10.3390/ijms21197346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
Previously, we showed that desethylamiodarone (DEA), a major metabolite of the widely used antiarrhythmic drug amiodarone, has direct mitochondrial effects. We hypothesized that these effects account for its observed cytotoxic properties and ability to limit in vivo metastasis. Accordingly, we examined DEA’s rapid (3–12 h) cytotoxicity and its early (3–6 h) effects on various mitochondrial processes in B16F10 melanoma cells. DEA did not affect cellular oxygen radical formation, as determined using two fluorescent dyes. However, it did decrease the mitochondrial transmembrane potential, as assessed by JC-1 dye and fluorescence microscopy. It also induced mitochondrial fragmentation, as visualized by confocal fluorescence microscopy. DEA decreased maximal respiration, ATP production, coupling efficiency, glycolysis, and non-mitochondrial oxygen consumption measured by a Seahorse cellular energy metabolism analyzer. In addition, it induced a cyclosporine A–independent mitochondrial permeability transition, as determined by Co2+-mediated calcein fluorescence quenching measured using a high-content imaging system. DEA also caused outer mitochondrial membrane permeabilization, as assessed by the immunoblot analysis of cytochrome C, apoptosis inducing factor, Akt, phospho-Akt, Bad, and phospho-Bad. All of these data supported our initial hypothesis.
Collapse
|
16
|
The Curcumin Analogue, MS13 (1,5-Bis(4-hydroxy-3- methoxyphenyl)-1,4-pentadiene-3-one), Inhibits Cell Proliferation and Induces Apoptosis in Primary and Metastatic Human Colon Cancer Cells. Molecules 2020; 25:molecules25173798. [PMID: 32825505 PMCID: PMC7504349 DOI: 10.3390/molecules25173798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.
Collapse
|
17
|
Liu C, Tanaka K, Katsube T, Varès G, Maruyama K, Ninomiya Y, Fardous Z, Sun C, Fujimori A, Moreno SG, Nenoi M, Wang B. Altered Response to Total Body Irradiation of C57BL/6-Tg (CAG-EGFP) Mice. Dose Response 2020; 18:1559325820951332. [PMID: 32922229 PMCID: PMC7453463 DOI: 10.1177/1559325820951332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Application of green fluorescent protein (GFP) in a variety of biosystems as a unique bioindicator or biomarker has revolutionized biological research and made groundbreaking achievements, while increasing evidence has shown alterations in biological properties and physiological functions of the cells and animals overexpressing transgenic GFP. In this work, response to total body irradiation (TBI) was comparatively studied in GFP transgenic C57BL/6-Tg (CAG-EGFP) mice and C57BL/6 N wild type mice. It was demonstrated that GFP transgenic mice were more sensitive to radiation-induced bone marrow death, and no adaptive response could be induced. In the nucleated bone marrow cells of GFP transgenic mice exposed to a middle dose, there was a significant increase in both the percentage of cells expressing pro-apoptotic gene Bax and apoptotic cell death. While in wild type cells, lower expression of pro-apoptotic gene Bax and higher expression of anti-apoptotic gene Bcl-2, and significant lower induction of apoptosis were observed compared to GFP transgenic cells. Results suggest that presence of GFP could alter response to TBI at whole body, cellular and molecular levels in mice. These findings indicate that there could be a major influence on the interpretation of the results obtained in GFP transgenic mice.
Collapse
Affiliation(s)
- Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Guillaume Varès
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Zeenath Fardous
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, People’s Republic of Bangladesh
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Stéphanie G. Moreno
- LRTS—François Jacob Institute of Biology, Fundamental Research Division, Atomic Energy and Alternative Energies Commission, Inserm, Fontenay-aux-Roses Cedex, France
| | - Mitsuru Nenoi
- Department of Safety Administration, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
18
|
Correcting an instance of synthetic lethality with a pro-survival sequence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118734. [PMID: 32389645 DOI: 10.1016/j.bbamcr.2020.118734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/11/2020] [Accepted: 05/02/2020] [Indexed: 11/21/2022]
Abstract
A human cDNA encoding the LIM domain containing 194 amino acid cysteine and glycine rich protein 3 (CSRP3) was identified as a BAX suppressor in yeast and a pro-survival sequence that abrogated copper mediated regulated cell death (RCD). Yeast lacks a CSRP3 orthologue but it has four LIM sequences, namely RGA1, RGA2, LRG1 and PXL1. These are known regulators of stress responses yet their roles in RCD remain unknown. Given that LIMs interact with other LIMs, we ruled out the possibility that overexpressed yeast LIMs alone could prevent RCD and that CSRP3 functions by acting as a dominant regulator of yeast LIMs. Of interest was the discovery that even though yeast cells lacking the LIM encoding PXL1 had no overt growth defect, it was nevertheless supersensitive to the effects of sublethal levels of copper. Heterologous expression of human CSPR3 as well as the pro-survival 14-3-3 sequence corrected this copper supersensitivity. These results show that the pxl1∆-copper synthetic lethality is likely due to the induction of RCD. This differs from the prevailing model in which synthetic lethality occurs because of specific defects generated by the combined loss of two overlapping but non-essential functions.
Collapse
|
19
|
Hajdinák P, Czobor Á, Szarka A. The potential role of acrolein in plant ferroptosis-like cell death. PLoS One 2019; 14:e0227278. [PMID: 31887216 PMCID: PMC6936820 DOI: 10.1371/journal.pone.0227278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/15/2019] [Indexed: 01/22/2023] Open
Abstract
The iron dependent, programmed cell death, ferroptosis was described first in tumour cells. It showed distinct features from the already known cell death forms such as apoptosis, necrosis and autophagy. The caspase independent cell death could be induced by the depletion of glutathione by erastin or by the inhibition of the lipid peroxide scavenger enzyme GPX4 by RSL3 and it was accompanied by the generation of lipid reactive oxygen species. Recently, ferroptosis-like cell death associated to glutathione depletion, lipid peroxidation and iron dependency could also be induced in plant cells by heat treatment. Unfortunately, the mediators and elements of the ferroptotic pathway have not been described yet. Our present results on Arabidopsis thaliana cell cultures suggest that acrolein, a lipid peroxide-derived reactive carbonyl species, is involved in plant ferroptosis-like cell death. The acrolein induced cell death could be mitigated by the known ferroptosis inhibitors such as Ferrostatin-1, Deferoxamine, α-Tocopherol, and glutathione. At the same time acrolein can be a mediator of ferroptosis-like cell death in plant cells since the known ferroptosis inducer RSL3 induced cell death could be mitigated by the acrolein scavenger carnosine. Finally, on the contrary to the caspase independent ferroptosis in human cells, we found that caspase-like activity can be involved in plant ferroptosis-like cell death.
Collapse
Affiliation(s)
- Péter Hajdinák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ádám Czobor
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail:
| |
Collapse
|
20
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells 2019; 8:cells8070728. [PMID: 31315173 PMCID: PMC6678812 DOI: 10.3390/cells8070728] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, mitochondria are involved in a large array of metabolic and bioenergetic processes that are vital for cell survival. Phospholipids are the main building blocks of mitochondrial membranes. Cardiolipin (CL) is a unique phospholipid which is localized and synthesized in the inner mitochondrial membrane (IMM). It is now widely accepted that CL plays a central role in many reactions and processes involved in mitochondrial function and dynamics. Cardiolipin interacts with and is required for optimal activity of several IMM proteins, including the enzyme complexes of the electron transport chain (ETC) and ATP production and for their organization into supercomplexes. Moreover, CL plays an important role in mitochondrial membrane morphology, stability and dynamics, in mitochondrial biogenesis and protein import, in mitophagy, and in different mitochondrial steps of the apoptotic process. It is conceivable that abnormalities in CL content, composition and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of pathophysiological situations and diseases. In this review, we focus on the role played by CL in mitochondrial function and dynamics in health and diseases and on the potential of pharmacological modulation of CL through several agents in attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
| | | | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
21
|
Erukainure OL, Ijomone OM, Oyebode OA, Chukwuma CI, Aschner M, Islam MS. Hyperglycemia-induced oxidative brain injury: Therapeutic effects of Cola nitida infusion against redox imbalance, cerebellar neuronal insults, and upregulated Nrf2 expression in type 2 diabetic rats. Food Chem Toxicol 2019; 127:206-217. [PMID: 30914353 DOI: 10.1016/j.fct.2019.03.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022]
Abstract
The therapeutic effect of the hot water infusion of Cola nitida against hyperglycemia-induced neurotoxicity, cerebellar neurodegeneration and elemental deregulations was investigated in fructose-streptozotocin induced rat model of type 2 diabetes (T2D). A diabetic group was administered drinking water, two other diabetic groups were treated with C. nitida at 150 and 300 mg/kg bodyweight respectively, while another group was administered metformin (200 mg/kg bodyweight). Two other groups consisting of normal rats, were administered drinking water and C. nitida (300 mg/kg bodyweight). After 6 weeks of treatment, their brains were collected. Treatment with C. nitida led to suppression of oxidative stress, significantly elevating reduced glutathione (GSH) levels, superoxide dismutase and catalase activities, concomitant with depletion of malondialdehyde (MDA) levels. Acetylcholinesterase and ATPase activities were significantly inhibited in C. nitida-treated diabetic rats. Histological and microscopic analysis also revealed a restorative effect of C. nitida on T2D-altered distribution of elements, neurons and axonal nodes. Treatment with C. nitida also led to significant inhibition of Nrf2 expression in the cerebellar cortex. These results suggest the therapeutic effects of C. nitida in maintenance of the neuronal integrity and antioxidant status of the brain in T2D. These neuroprotective activities can be attributed to the identified alkaloid, caffeine in the infusion.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa; Nutrition and Toxicology Division, Federal Institute of Industrial Research, Lagos, Nigeria
| | - Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA; Department of Human Anatomy, Federal University of Technology, Akure, Nigeria
| | - Olajumoke A Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa
| | - Chika I Chukwuma
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa; Department of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
22
|
Extrinsic or Intrinsic Apoptosis by Curcumin and Light: Still a Mystery. Int J Mol Sci 2019; 20:ijms20040905. [PMID: 30791477 PMCID: PMC6412849 DOI: 10.3390/ijms20040905] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Curcumin—a rhizomal phytochemical from the plant Curcuma longa—is well known to inhibit cell proliferation and to induce apoptosis in a broad range of cell lines. In previous studies we showed that combining low curcumin concentrations and subsequent ultraviolet A radiation (UVA) or VIS irradiation induced anti-proliferative and pro-apoptotic effects. There is still debate whether curcumin induces apoptosis via the extrinsic or the intrinsic pathway. To address this question, we investigated in three epithelial cell lines (HaCaT, A431, A549) whether the death receptors CD95, tumor necrosis factor (TNF)-receptor I and II are involved in apoptosis induced by light and curcumin. Cells were incubated with 0.25–0.5 µg/mL curcumin followed by irradiation with 1 J/cm2 UVA. This treatment was combined with inhibitors specific for distinct membrane-bound death receptors. After 24 h apoptosis induction was monitored by quantitative determination of cytoplasmic histone-associated-DNA-fragments. Validation of our test system showed that apoptosis induced by CH11 and TNF-α could be completely inhibited by their respective antagonists. Interestingly, apoptosis induced by curcumin/light treatment was reversed by none of the herein examined death receptor antagonists. These results indicate a mechanism of action independent from classical death receptors speaking for intrinsic activation of apoptosis. It could be speculated that a shift in cellular redox balance might prompt the pro-apoptotic processes.
Collapse
|
23
|
Bila I, Dzydzan O, Brodyak I, Sybirna N. Agmatine Prevents Oxidative-nitrative Stress in Blood Leukocytes Under Streptozotocin-induced Diabetes Mellitus. Open Life Sci 2019; 14:299-310. [PMID: 33817163 PMCID: PMC7874780 DOI: 10.1515/biol-2019-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
Changes in cellular metabolism, development of oxidative-nitrative stress and intensification of glycation and lipid peroxidation (LPO), are significant processes that occur during diabetes mellitus (DM)-associated chronic hyperglycemia. These processes contribute to deviations in the structural organization and functional activity of leukocytes. The development of oxidative-nitrative stress in peripheral blood cells during DM can be prevented by agmatine, an endogenous metabolite of L-arginine, which is a nitric oxide synthase (NOS) inhibitor, and possesses hypoglycemic properties. The administration of agmatine to animals with DM lead to the inhibition of both constitutive and inducible NOS in leukocytes, which in turn decreased total nitrite/nitrate (NOx) levels. Additionally, we observed corresponding increases in reduced glutathione content and activity of antioxidant enzymes (SOD, CAT, GPx, GR), along with decreased levels of the thiobarbituric acid reactive substance, advanced oxidation protein products (AOPPs) and advanced glycosylation end-products (AGEs) as compared to the non-treated diabetic group. Our results indicate that treatment of diabetic animals with agmatine restores redox homeostasis and a balances antioxidant defence system enzymes in leukocytes. This corrective effect on the functional capacity of leukocytes is exerted by preventing oxidative-nitrative stress in animals with DM.
Collapse
Affiliation(s)
- Ivanna Bila
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, Ukraine, 4, Hrushevskyi Str, Lviv 79005, Ukraine
| | - Olha Dzydzan
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, Ukraine, 4, Hrushevskyi Str, Lviv 79005, Ukraine
| | - Iryna Brodyak
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, Ukraine, 4, Hrushevskyi Str, Lviv 79005, Ukraine
| | - Natalia Sybirna
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, Ukraine, 4, Hrushevskyi Str, Lviv 79005, Ukraine
| |
Collapse
|