1
|
Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J, Xie Z. The Role of the Fox Gene in Breast Cancer Progression. Int J Mol Sci 2025; 26:1415. [PMID: 40003882 PMCID: PMC11855465 DOI: 10.3390/ijms26041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Forkhead box (FOX) genes are a family of transcription factors that participate in many biological activities, from early embryogenesis to the formation of organs, and from regulation of glucose metabolism to regulation of longevity. Given the extensive influence in the multicellular process, FOX family proteins are responsible for the progression of many types of cancers, especially lung cancer, breast cancer, prostate cancer, and other cancers. Breast cancer is the most common cancer among women, and 2.3 million women were diagnosed in 2020. So, various drugs targeting the FOX signaling pathway have been developed to inhibit breast cancer progression. While the role of the FOX family gene in cancer development has not received enough attention, discovering more potential drugs targeting the FOX signaling pathway is urgently demanded. Here, we review the main members in the FOX gene family and summarize their signaling pathway, including the regulation of the FOX genes and their effects on breast cancer progression. We hope this review will emphasize the understanding of the role of the FOX gene in breast cancer and inspire the discovery of effective anti-breast cancer medicines targeting the FOX gene in the future.
Collapse
Affiliation(s)
- Shaoxuan Pei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Dechun Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Ziyi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
| |
Collapse
|
2
|
Sieberer H, Luciano M, Amend D, Blöchl C, Eglseer A, Steinkellner A, Rieser S, Andosch A, Steiner P, Hummer L, Krenn PW, Dang HH, Huber CG, Aberger F, Neuper T, Horejs-Hoeck J. Inhibition of NLRP3 enhances pro-apoptotic effects of FLT3 inhibition in AML. Cell Commun Signal 2025; 23:53. [PMID: 39875995 PMCID: PMC11773904 DOI: 10.1186/s12964-025-02046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
FLT3 mutations occur in approximately 25% of all acute myeloid leukemia (AML) patients. While several FLT3 inhibitors have received FDA approval, their use is currently limited to combination therapies with chemotherapy, as resistance occurs, and efficacy decreases when the inhibitors are used alone. Given the highly heterogeneous nature of AML, there is an urgent need for novel targeted therapies that address the disease from multiple angles. Recent research has identified the NLRP3 inflammasome as a potential new driver in AML. Here, we investigated the efficacy of different NLRP3 inhibitors in targeting AML cells in vitro. Our findings reveal that NLRP3 inhibition induces cell cycle arrest as well as signs of senescence in multiple AML cell lines. In contrast, NLRP3 inhibition selectively induced apoptosis in FLT3 mutant AML cell lines, but not in FLT3 wild-type AML cells. Moreover, we show that NLRP3 inhibition impairs FLT3 signaling by reducing both FLT3 expression as well as downstream signaling in FLT3 mutant cells. A database analysis revealed a strong positive correlation between FLT3 and NLRP3 in cancer, which was particularly evident in AML patients. Strikingly, the simultaneous inhibition of NLRP3 and FLT3 markedly enhanced apoptosis in FLT3-ITD mutant AML cells, but not in FLT3 wild-type cells. In summary, this study reveals a promising combined therapeutic strategy specifically targeting NLRP3/FLT3-ITD positive AML blasts in vitro, highlighting a potential new avenue for AML treatment.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Apoptosis/drug effects
- Cell Line, Tumor
- Signal Transduction/drug effects
- Mutation
Collapse
Affiliation(s)
- Helene Sieberer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Michela Luciano
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Diana Amend
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Constantin Blöchl
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Anna Eglseer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Alina Steinkellner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Sebastian Rieser
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Ancuela Andosch
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Philip Steiner
- Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Laura Hummer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Peter W Krenn
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria.
- Cancer Cluster Salzburg, Salzburg, 5020, Austria.
| |
Collapse
|
3
|
Filipczak N, Rajmalani BA, Ataide JA, Yalamarty SSK, Luther E, Torchilin VP. Disulfiram-containing polymeric nanocapsules with anticancer activity for cancer treatment. Int J Pharm 2025; 669:125059. [PMID: 39662857 DOI: 10.1016/j.ijpharm.2024.125059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Disulfiram, a medication traditionally used to treat alcohol addiction, has gained attention as a potential cancer treatment in recent years. Disulfiram works by inhibiting the enzyme aldehyde dehydrogenase, involved in the breakdown of acetaldehyde, a by-product of alcohol metabolism. This results in the build up of acetaldehyde in the body leading to unpleasant side effects such as nausea and vomiting when alcohol is consumed while taking the drug. With cancer treatment, disulfiram has been found to have several mechanisms of action. It has been shown to inhibit cancer cell growth and metastasis and to induce apoptosis in cancer cells. Additionally, disulfiram has been found to sensitize cancer cells to other treatments, including chemotherapy and radiation therapy, by increasing their susceptibility to these treatments. Disulfiram treatment is effective against a variety of cancers, including breast cancer, prostate cancer, and glioblastoma. Overall, disulfiram holds promise as a potentially effective and inexpensive cancer treatment. Thus, researchers are exploring various delivery systems for disulfiram in cancer treatment to improve its effectiveness and reduce its side effects. Among delivery systems nanoparticles and liposomes have been used to deliver disulfiram. Our study demonstrates the efficacy of polycaprolactone-based nanocapsules for encapsulating DSF, maintaining stable size distribution (∼250 nm) and long-term stability. These nanocapsules exhibit sustained, controlled DSF release, effectively addressing the drug's instability in the bloodstream and showing promising therapeutic potential. Notably, DSF-loaded nanocapsules exhibited a twofold increase in cytotoxicity against certain tumors compared to free DSF, attributed to their extended-release profile. These findings highlight the potential of nanocapsules to improve therapeutic efficacy while reducing side effects.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Janaina Artem Ataide
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| | | | - Ed Luther
- Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Flores-López LA, De la Mora-De la Mora I, Malagón-Reyes CM, García-Torres I, Martínez-Pérez Y, López-Herrera G, Hernández-Alcántara G, León-Avila G, López-Velázquez G, Olaya-Vargas A, Gómez-Manzo S, Enríquez-Flores S. Selective Inhibition of Deamidated Triosephosphate Isomerase by Disulfiram, Curcumin, and Sodium Dichloroacetate: Synergistic Therapeutic Strategies for T-Cell Acute Lymphoblastic Leukemia in Jurkat Cells. Biomolecules 2024; 14:1295. [PMID: 39456228 PMCID: PMC11506356 DOI: 10.3390/biom14101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging childhood cancer to treat, with limited therapeutic options and high relapse rates. This study explores deamidated triosephosphate isomerase (dTPI) as a novel therapeutic target. We hypothesized that selectively inhibiting dTPI could reduce T-ALL cell viability without affecting normal T lymphocytes. Computational modeling and recombinant enzyme assays revealed that disulfiram (DS) and curcumin (CU) selectively bind and inhibit dTPI activity without affecting the non-deamidated enzyme. At the cellular level, treatment with DS and CU significantly reduced Jurkat T-ALL cell viability and endogenous TPI enzymatic activity, with no effect on normal T lymphocytes, whereas the combination of sodium dichloroacetate (DCA) with DS or CU showed synergistic effects. Furthermore, we demonstrated that dTPI was present and accumulated only in Jurkat cells, confirming our hypothesis. Finally, flow cytometry confirmed apoptosis in Jurkat cells after treatment with DS and CU or their combination with DCA. These findings strongly suggest that targeting dTPI represents a promising and selective target for T-ALL therapy.
Collapse
Affiliation(s)
- Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, CONAHCYT-Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Claudia M. Malagón-Reyes
- Posgrado en Ciencias Biológicas, (Maestría), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Yoalli Martínez-Pérez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico;
| | - Gabriela López-Herrera
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Gloria Hernández-Alcántara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Mexico City 04510, Mexico;
| | - Gloria León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| | - Alberto Olaya-Vargas
- Trasplante de Células Madre y Terapia Celular, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.); (G.L.-V.)
| |
Collapse
|
5
|
Zhou Z, Yu W, Li H, Shi J, Meng S, Yan Y, Chen R, Liu H, Wang J, Sun J, Xiao Z, Zhang J. Hepatitis B Virus X Protein Represses Expression of Tumor Suppressor PTPN18 in Hepatocellular Carcinoma. Mol Cancer Res 2024; 22:891-901. [PMID: 38787319 DOI: 10.1158/1541-7786.mcr-23-0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
HBV-associated hepatocellular carcinoma (HCC) represents the prevalent form of HCC, with HBx protein being a crucial oncoprotein. Numerous members of the protein tyrosine phosphatase nonreceptor (PTPN) family have been confirmed to be significantly associated with the occurrence and progression of malignant tumors. Our group previously identified the involvement of PTPN13 in HCC. However, the roles of other PTPNs in HCC require further investigation. In this study, we found that PTPN18 expression was significantly downregulated within HCC tissues compared with adjacent nontumor and reference liver tissues. Functionally, PTPN18 exerted inhibitory effects on the proliferation, migration, invasion, and sphere-forming capability of HCC cells while concurrently promoting apoptotic processes. Through phospho-protein microarray screening followed by subsequent validation experiments, we identified that PTPN18 could activate the p53 signaling pathway and suppress the AKT/FOXO1 signaling cascade in HCC cells. Moreover, the HBx protein mediated the repression of PTPN18 expression by upregulating miR-128-3p. Collectively, our study unveiled the role of PTPN18 as a tumor suppressor in HBV-related HCC. Implications: Our findings revealed that PTPN18 might be a potential diagnostic and therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wei Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Jinan University, JiNan University, Guangzhou, P.R. China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Juanyi Shi
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shiyu Meng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ruibin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Haohan Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jian Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Jinan University, JiNan University, Guangzhou, P.R. China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Mohapatra D, Senapati PC, Senapati S, Pandey V, Dubey PK, Singh S, Sahu AN. Quality-by-design-based microemulsion of disulfiram for repurposing in melanoma and breast cancer therapy. Ther Deliv 2024; 15:521-544. [PMID: 38949622 PMCID: PMC11412148 DOI: 10.1080/20415990.2024.2363136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: The current study aims to develop and optimize microemulsions (ME) through Quality-by-Design (QbD) approach to improve the aqueous solubility and dissolution of poorly water-soluble drug disulfiram (DSF) for repurposing in melanoma and breast cancer therapy.Materials & methods: The ME was formulated using Cinnamon oil & Tween® 80, statistically optimized using a D-optimal mixture design-based QbD approach to develop the best ME with low vesicular size (Zavg) and polydispersity index (PDI).Results: The DSF-loaded optimized stable ME showed enhanced dissolution, in-vitro cytotoxicity and improved cellular uptake in B16F10 and MCF-7 cell lines compared with their unformulated free DSF.Conclusion: Our investigations suggested the potential of the statistically designed DSF-loaded optimized ME for repurposing melanoma and breast cancer therapy.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| | | | - Shantibhusan Senapati
- Tumor Microenvironment & Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar- 751023, Odisha, India
| | - Vivek Pandey
- Centre for Genetics Disorders, Institute of Science (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetics Disorders, Institute of Science (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sanjay Singh
- Nanomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
8
|
Liu Y, Tang R, Cao Y, Wu N, Qin Q, Chen Y, Wei X, Ren J, Sun Y, Zhou H, Zhou Y, Li P. LIFU/MMP-2 dual-responsive release of repurposed drug disulfiram from nanodroplets for inhibiting vasculogenic mimicry and lung metastasis in triple-negative breast cancer. J Nanobiotechnology 2024; 22:209. [PMID: 38664830 PMCID: PMC11046851 DOI: 10.1186/s12951-024-02492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM), when microvascular channels are formed by cancer cells independent of endothelial cells, often occurs in deep hypoxic areas of tumors and contributes to the aggressiveness and metastasis of triple-negative breast cancer (TNBC) cells. However, well-developed VM inhibitors exhibit inadequate efficacy due to their low drug utilization rate and limited deep penetration. Thus, a cost-effective VM inhibition strategy needs to be designed for TNBC treatment. RESULTS Herein, we designed a low-intensity focused ultrasound (LIFU) and matrix metalloproteinase-2 (MMP-2) dual-responsive nanoplatform termed PFP@PDM-PEG for the cost-effective and efficient utilization of the drug disulfiram (DSF) as a VM inhibitor. The PFP@PDM-PEG nanodroplets effectively penetrated tumors and exhibited substantial accumulation facilitated by PEG deshielding in a LIFU-mediated and MMP-2-sensitive manner. Furthermore, upon exposure to LIFU irradiation, DSF was released controllably under ultrasound imaging guidance. This secure and controllable dual-response DSF delivery platform reduced VM formation by inhibiting COL1/pro-MMP-2 activity, thereby significantly inhibiting tumor progression and metastasis. CONCLUSIONS Considering the safety of the raw materials, controlled treatment process, and reliable repurposing of DSF, this dual-responsive nanoplatform represents a novel and effective VM-based therapeutic strategy for TNBC in clinical settings.
Collapse
Affiliation(s)
- Ying Liu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
- Department of Ultrasound, The Third People's Hospital of Chengdu City, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Street, Chengdu, 610031, Sichuan, China
| | - Rui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Yuting Cao
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Nianhong Wu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Qiaoxi Qin
- Department of Ultrasound, The Third People's Hospital of Chengdu City, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Street, Chengdu, 610031, Sichuan, China
| | - Yuanyuan Chen
- Department of Pathology, The Third People's Hospital of Chengdu City, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianli Ren
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Yang Sun
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Hong Zhou
- Department of Ultrasound, The Third People's Hospital of Chengdu City, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Street, Chengdu, 610031, Sichuan, China
| | - Yang Zhou
- Department of Ultrasound, The Third People's Hospital of Chengdu City, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Street, Chengdu, 610031, Sichuan, China.
| | - Pan Li
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, State Key Laboratory of Ultrasound in Medicine and Engineering of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
9
|
Conan P, Léon A, Caroff N, Rollet C, Chaïr L, Martin J, Bihel F, Mignen O, Voisset C, Friocourt G. New insights into the regulation of Cystathionine beta synthase (CBS), an enzyme involved in intellectual deficiency in Down syndrome. Front Neurosci 2023; 16:1110163. [PMID: 36711154 PMCID: PMC9879293 DOI: 10.3389/fnins.2022.1110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS), the most frequent chromosomic aberration, results from the presence of an extra copy of chromosome 21. The identification of genes which overexpression contributes to intellectual disability (ID) in DS is important to understand the pathophysiological mechanisms involved and develop new pharmacological therapies. In particular, gene dosage of Dual specificity tyrosine phosphorylation Regulated Kinase 1A (DYRK1A) and of Cystathionine beta synthase (CBS) are crucial for cognitive function. As these two enzymes have lately been the main targets for therapeutic research on ID, we sought to decipher the genetic relationship between them. We also used a combination of genetic and drug screenings using a cellular model overexpressing CYS4, the homolog of CBS in Saccharomyces cerevisiae, to get further insights into the molecular mechanisms involved in the regulation of CBS activity. We showed that overexpression of YAK1, the homolog of DYRK1A in yeast, increased CYS4 activity whereas GSK3β was identified as a genetic suppressor of CBS. In addition, analysis of the signaling pathways targeted by the drugs identified through the yeast-based pharmacological screening, and confirmed using human HepG2 cells, emphasized the importance of Akt/GSK3β and NF-κB pathways into the regulation of CBS activity and expression. Taken together, these data provide further understanding into the regulation of CBS and in particular into the genetic relationship between DYRK1A and CBS through the Akt/GSK3β and NF-κB pathways, which should help develop more effective therapies to reduce cognitive deficits in people with DS.
Collapse
Affiliation(s)
- Pierre Conan
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Alice Léon
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Noéline Caroff
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Claire Rollet
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Loubna Chaïr
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Jennifer Martin
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Frédéric Bihel
- Laboratoire d’Innovation Thérapeutique, UMR 7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, Illkirch, France
| | - Olivier Mignen
- U1227, Lymphocytes B, Autoimmunité et Immunothérapies, INSERM, Université de Brest, Brest, France
| | - Cécile Voisset
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | | |
Collapse
|
10
|
Ma W, Han X, Shasaltaneh MD, Hosseinifard H, Maghsoudloo M, Zhang Y, Weng Q, Wang Q, Wen Q, Imani S. The p110α/ΔNp63α complex mutations in triple-negative breast cancer: Potential targets for transcriptional-based therapies. Tumour Biol 2023; 45:127-146. [PMID: 37980588 DOI: 10.3233/tub-230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Hotspot mutations occurring in the p110α domain of the PIK3CA gene, specifically p110αH1047R/L increase tumor metastasis and cell motility in triple-negative breast cancer (TNBC). These mutations also affect the transcriptional regulation of ΔNp63α, a significant isoform of the p53 protein involved in cancer progression. This study attempts to investigate the transcriptional impact of p110αH1047R/L mutations on the PIK3CA/ΔNp63α complex in TNBC carcinogenesis. METHODS We performed site-directed mutagenesis to introduce p110αH1047R/L mutations and evaluated their oncogenic effects on the growth, invasion, migration, and apoptosis of three different TNBC cell lines in vitro. We investigated the impact of these mutations on the p110α/ΔNp63α complex and downstream transcriptional signaling pathways at the gene and protein levels. Additionally, we used bioinformatics techniques such as molecular dynamics simulations and protein-protein docking to gain insight into the stability and structural changes induced by the p110αH1047R/L mutations in the p110α/ΔNp63α complex and downstream signaling pathway. RESULTS The presence of PIK3CA oncogenic hotspot mutations in the p110α/ΔNp63α complex led to increased scattering of TNBC cells during growth, migration, and invasion. Our in vitro mutagenesis assay showed that the p110αH1047R/L mutations activated the PI3K-Akt-mTOR and tyrosine kinase receptor pathways, resulting in increased cell proliferation, invasion, and apoptosis in TNBC cells. These mutations decreased the repressing effect of ΔNp63α on the p110α kinase domain, leading to the enhancement of downstream signaling pathways of PI3K and tyrosine kinase receptors and oncogenic transformation in TNBC. Additionally, our findings suggest that the physical interaction between the DNA binding domain of ΔNp63α and the kinase domain of p110α may be partially impaired, potentially leading to alterations in the conformation of the p110α/ΔNp63α complex. CONCLUSION Our findings suggest that targeting the p110αH1047R/L mutations in TNBC could be a promising strategy for developing transcriptional-based therapies. Restoring the interaction between ΔNp63α and the p110α kinase domain, which is disrupted by these mutations, may provide a new approach to treating TNBC.
Collapse
Affiliation(s)
- Wenqiong Ma
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingping Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | | | - Hossein Hosseinifard
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuqin Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiao Weng
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Vallee A, Lecarpentier Y, Vallée JN. WNT/β-catenin pathway and circadian rhythms in obsessive-compulsive disorder. Neural Regen Res 2022; 17:2126-2130. [PMID: 35259818 PMCID: PMC9083179 DOI: 10.4103/1673-5374.332133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The neuropsychiatric disease named obsessive-compulsive disorder is composed by obsessions and/or compulsions. Obsessive-compulsive disorder etiologies are undefined. However, numerous mechanisms in several localizations are implicated. Some studies showed that both glutamate, inflammatory factors and oxidative stress could have main functions in obsessive-compulsive disorder. Glycogen synthase kinase-3β, the major negative controller of the WNT/β-catenin pathway is upregulated in obsessive-compulsive disorder. In obsessive-compulsive disorder, some studies presented the actions of the different circadian clock genes. WNT/β-catenin pathway and circadian clock genes appear to be intricate. Thus, this review focuses on the interaction between circadian clock genes and the WNT/β-catenin pathway in obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Alexandre Vallee
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), Université de Poitiers, Poitiers; Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
12
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
13
|
Bellomo F, De Leo E, Taranta A, Giaquinto L, Di Giovamberardino G, Montefusco S, Rega LR, Pastore A, Medina DL, Di Bernardo D, De Matteis MA, Emma F. Drug Repurposing in Rare Diseases: An Integrative Study of Drug Screening and Transcriptomic Analysis in Nephropathic Cystinosis. Int J Mol Sci 2021; 22:ijms222312829. [PMID: 34884638 PMCID: PMC8657658 DOI: 10.3390/ijms222312829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Diagnosis and cure for rare diseases represent a great challenge for the scientific community who often comes up against the complexity and heterogeneity of clinical picture associated to a high cost and time-consuming drug development processes. Here we show a drug repurposing strategy applied to nephropathic cystinosis, a rare inherited disorder belonging to the lysosomal storage diseases. This approach consists in combining mechanism-based and cell-based screenings, coupled with an affordable computational analysis, which could result very useful to predict therapeutic responses at both molecular and system levels. Then, we identified potential drugs and metabolic pathways relevant for the pathophysiology of nephropathic cystinosis by comparing gene-expression signature of drugs that share common mechanisms of action or that involve similar pathways with the disease gene-expression signature achieved with RNA-seq.
Collapse
Affiliation(s)
- Francesco Bellomo
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
- Correspondence: (F.B.); (F.E.)
| | - Ester De Leo
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
| | - Anna Taranta
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
| | - Laura Giaquinto
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
| | | | - Sandro Montefusco
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
| | - Laura Rita Rega
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
| | - Anna Pastore
- Management Diagnostic Innovations Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Diego Luis Medina
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
| | - Diego Di Bernardo
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80138 Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
- Department of Medical Biotechnologies and Molecular Medicine, University of Naples Federico II, 80138 Naples, Italy
| | - Francesco Emma
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: (F.B.); (F.E.)
| |
Collapse
|