1
|
Zhang J, Ma H, Yang Y, Liu L, Luo D, Yu D, Chen T. Iron-lead mixed exposure causes bone damage in mice: A multi-omics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117967. [PMID: 40037083 DOI: 10.1016/j.ecoenv.2025.117967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Excessive intake of essential and toxic metals affects the pathological process of osteoporosis. At present, the effects of single forms of iron (Fe), lead (Pb) and other metals on bone injury have been widely studied. However, these metal elements usually do not exist in the environment in a separate form. They are ingested in various ways and are often found together in the human body. However, the mechanism of bone damage caused by Fe and Pb mixed exposure is still unclear at this stage. At present, the combined analysis of multi-omics is the conventional method to explore the molecular mechanism behind the disease. Therefore, we attempted to combine proteomics and metabolomics to explain the mechanism of bone damage caused by mixed Fe and Pb exposure. Differential proteins and metabolites were found to be predominantly enriched in the JAK-STAT signalling pathway, inflammatory bowel disease (IBD), and osteoclast differentiation. Combined analysis showed that Fpr2, Lifr, Lisofylline, 7-Ketocholesterol, LacCer (d18: 1/14:0) and other substances may be involved in the process of bone injury mediated by mixed metal exposure. In summary, we hypothesise that mixed exposure to Fe and Pb leads to osteoclast activation via the JAK-STAT signalling pathway in situ and indirectly via the gut-bone axis, resulting in bone damage. In general, our study potentially suggests that bone injury induced by mixed exposure of Fe and Pb may be related to osteoclast proliferation mediated by changes in inflammatory levels in vivo.
Collapse
Affiliation(s)
| | - Haitao Ma
- Bengbu Medical University, Bengbu 233030, China
| | | | - Liyin Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Dasheng Luo
- Department of Orthopedic Surgery, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Defu Yu
- Department of Orthopedic Surgery, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Tao Chen
- Bengbu Medical University, Bengbu 233030, China; Department of Orthopedic Surgery, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
2
|
Gao J, Su G, Liu J, Shen M, Zhang Z, Wang M. Formyl peptide receptors in the microglial activation: New perspectives and therapeutic potential for neuroinflammation. FASEB J 2024; 38:e70151. [PMID: 39520282 DOI: 10.1096/fj.202401927r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Secondary neurological impairment mediated by neuroinflammation is recognized as a crucial pathological factor in central nervous system (CNS) diseases. Currently, there exists a lack of specific therapies targeting neuroinflammation. Given that microglia constitute the primary immune cells involved in the neuroinflammatory response, a thorough comprehension of their role in CNS diseases is imperative for the development of efficacious treatments. Recent investigations have unveiled the significance of formyl peptide receptors (FPRs) in various neuroinflammatory diseases associated with microglial overactivation. Consequently, FPRs emerge as promising targets for modulating the neuroinflammatory response. This review aims to comprehensively explore the therapeutic potential of targeting FPRs in the management of microglia-mediated neuroinflammation. It delineates the molecular characteristics and functions of FPRs, elucidates their involvement in the inflammatory response linked to microglial overactivation, and synthesizes therapeutic strategies for regulating microglia-mediated neuroinflammation via FPR modulation, thereby charting a novel course for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Xiong Z, Li Z, Sima X, Zeng Z. Astaxanthin reduces TBPH-induced neurobehavioral deficits in mice by the ROS-ERK1/2-FOS pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116674. [PMID: 38964056 DOI: 10.1016/j.ecoenv.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The persistence of the novel brominated flame retardant, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), in the environment and its potential for bioaccumulation in living organisms, including humans, further exacerbate its health risks. Therefore, ongoing research is crucial for fully understanding the extent of TBPH's neurotoxicity and for developing effective mitigation strategies. This study aims to investigate the potential neurotoxicity of TBPH on mouse neurobehavior and to evaluate the protective effects of the natural antioxidant astaxanthin (AST) against TBPH-induced neurotoxicity. The results indicate that exposure to TBPH can lead to a decline in learning and memory abilities and abnormal behaviors in mice, which may be associated with oxidative stress responses and apoptosis in the hippocampus. TBPH may disrupt the normal function of hippocampal neurons by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Mice exposed to TBPH treated with AST showed improved learning and memory abilities in the Morris water maze (MWM) and Step-down test (SDT). AST, through its antioxidant action, was able to significantly reduce the increase in reactive oxygen species (ROS) levels induced by TBPH, the increased expression of apoptosis markers, and the activation of the ERK1/2-FOS signaling pathway, alleviating TBPH-induced apoptosis in hippocampal neurons and improving neurobehavioral outcomes. These findings suggest that AST may alleviate the neurotoxicity of TBPH by modulating molecular events related to apoptosis and the ERK1/2-FOS signaling pathway. Thus, this study provides evidence for AST as a potential interventional strategy for the prevention or treatment of cognitive decline associated with environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Zhenkun Xiong
- Department of Neurosurgery, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang NO.1 People's Hospital, Jiangxi 332000, PR China
| | - Zhenhua Li
- Department of Cardiothoracic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xueqin Sima
- Department of Histology and Embryology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
4
|
Bultynck G, Khan S, Schmitz ML. Introducing the special issue on "emerging Concepts & non-Canonical Pathways in cellular signaling". BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119478. [PMID: 37080361 DOI: 10.1016/j.bbamcr.2023.119478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Affiliation(s)
- Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49,, BE-3000 Leuven, Belgium
| | - Shazia Khan
- Elsevier, 50 Hampshire Street, Cambridge, Massachusetts, US
| | - M Lienhard Schmitz
- Justus-Liebig-University, Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstrasse 24, 35392 D-Giessen, Germany.
| |
Collapse
|
5
|
Wang SW, Zhang Q, Lu D, Fang YC, Yan XC, Chen J, Xia ZK, Yuan QT, Chen LH, Zhang YM, Nan FJ, Xie X. GPR84 regulates pulmonary inflammation by modulating neutrophil functions. Acta Pharmacol Sin 2023:10.1038/s41401-023-01080-z. [PMID: 37016043 PMCID: PMC10072043 DOI: 10.1038/s41401-023-01080-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Acute lung injury (ALI) is an acute, progressive hypoxic respiratory failure that could develop into acute respiratory distress syndrome (ARDS) with very high mortality rate. ALI is believed to be caused by uncontrolled inflammation, and multiple types of immune cells, especially neutrophils, are critically involved in the development of ALI. The treatment for ALI/ARDS is very limited, a better understanding of the pathogenesis and new therapies are urgently needed. Here we discover that GPR84, a medium chain fatty acid receptor, plays critical roles in ALI development by regulating neutrophil functions. GPR84 is highly upregulated in the cells isolated from the bronchoalveolar lavage fluid of LPS-induced ALI mice. GPR84 deficiency or blockage significantly ameliorated ALI mice lung inflammation by reducing neutrophils infiltration and oxidative stress. Further studies reveal that activation of GPR84 strongly induced reactive oxygen species production from neutrophils by stimulating Lyn, AKT and ERK1/2 activation and the assembly of the NADPH oxidase. These results reveal an important role of GPR84 in neutrophil functions and lung inflammation and strongly suggest that GPR84 is a potential drug target for ALI.
Collapse
Affiliation(s)
- Si-Wei Wang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Dan Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - You-Chen Fang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Ci Yan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jing Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Kan Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian-Ting Yuan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lin-Hai Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | | - Fa-Jun Nan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Kim SD, Cho KS. Immunomodulatory Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Allergic Airway Disease. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121994. [PMID: 36556359 PMCID: PMC9786036 DOI: 10.3390/life12121994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Mesenchymal stem cells (MSCs) have been reported as promising candidates for the treatment of various diseases, especially allergic diseases, as they have the capacity to differentiate into various cells. However, MSCs itself have several limitations such as creating a risk of aneuploidy, difficulty in handling them, immune rejection, and tumorigenicity, so interest in the extracellular vesicles (EVs) released from MSCs are increasing, and many studies have been reported. Previous studies have shown that extracellular vesicles (EVs) produced by MSCs are as effective as the MSCs themselves in suppression of allergic airway inflammation through the suppression of Th2 cytokine production and the induction of regulatory T cells (Treg) expansion. EVs are one of the substances secreted by paracrine induction from MSCs, and because it exerts its effect by delivering contents such as mRNA, microRNA, and proteins to the receptor cell, it can reduce the problems or risks related to stem cell therapy. This article reviews the immunomodulatory properties of MSCs-derived EVs and their therapeutic implications for allergic airway disease.
Collapse
Affiliation(s)
- Sung-Dong Kim
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, 179 Gudeok-Ro, Seo-gu, Busan 602-739, Republic of Korea
| | - Kyu-Sup Cho
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, 179 Gudeok-Ro, Seo-gu, Busan 602-739, Republic of Korea
| |
Collapse
|