1
|
Rouaud F, Meens MJ, Yvon R, Hautefort A, Legouis D, Mean I, Jond L, Maillard M, Kwak BR, Moll S, Seigneux SD, Feraille E, Citi S. The knock-out of paracingulin attenuates hypertension through modulation of kidney ion transport. Am J Physiol Renal Physiol 2025; 328:F737-F751. [PMID: 40204428 DOI: 10.1152/ajprenal.00271.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Hypertension is a major risk factor for human morbidity and mortality, and the junctional protein paracingulin (CGNL1, JACOP) is required for the development of hypertension in a Dahl salt-sensitive rat model and is linked to human hypertension in genome wide association studies. However, the mechanism through which CGNL1 may regulate hypertension is unknown. Here, we address this question using a mouse model, where hypertension is induced by unilateral nephrectomy and angiotensin II infusion (N+A protocol). Although untreated WT and CGNL1-KO mice showed similar blood pressure, the N+A protocol induced hypertension in WT mice but not in CGNL1-KO mice. We show by immunolocalization and transcriptomic analysis that CGNL1 is expressed throughout the kidney tubules and in the endothelium of blood vessels, but not in smooth muscle. The N+A protocol induced decreased potassium urinary excretion in wild-type (WT), but not in CGNL1-KO mice. Immunoblot analysis shows that the KO of CGNL1 blunted the N+A-induced changes in the expression levels and activation of tubular ion transporters, including the Na/H exchanger 3 (NHE3) and the thiazide-sensitive Na-Cl cotransporter (NCC), and blunted the angiotensin II-dependent changes in the levels and/or activation of AMP-activated protein kinase (AMPK), ERK and myosin light chain. In contrast, myography showed comparable vascular reactivity in thoracic aortas and mesenteric arteries isolated from WT or CGNL1-KO mice. Together, these results suggest the KO of CGNL1 attenuates hypertension by uncoupling angiotensin II signaling in kidney tubule cells, indicating a novel pathway of regulation of signaling by a junctional protein.NEW & NOTEWORTHY The knock-out of paracingulin (CGNL1) prevents the development of hypertension in a unilateral nephrectomy/angiotensin II infusion model (N+A) in mice and this antihypertensive effect likely depends on uncoupling of angiotensin II from stimulation of sodium transporter activity in kidney tubules rather than on alteration of resistance blood vessel contractility.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Merlijn J Meens
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Research Office, Faculty of Health, Medicine and Life Sciences, Maastricht, The Netherlands
| | - Raphaël Yvon
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Hautefort
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Isabelle Mean
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marc Maillard
- Department of Nephrology and Hypertension, Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Solange Moll
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie De Seigneux
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eric Feraille
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Morris CJ, Rolf MG, Starnes L, Villar IC, Pointon A, Kimko H, Di Veroli GY. Modelling hemodynamics regulation in rats and dogs to facilitate drugs safety risk assessment. Front Pharmacol 2024; 15:1402462. [PMID: 39534082 PMCID: PMC11555398 DOI: 10.3389/fphar.2024.1402462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceutical companies routinely screen compounds for hemodynamics related safety risk. In vitro secondary pharmacology is initially used to prioritize compounds while in vivo studies are later used to quantify and translate risk to humans. This strategy has shown limitations but could be improved via the incorporation of molecular findings in the animal-based toxicological risk assessment. The aim of this study is to develop a mathematical model for rat and dog species that can integrate secondary pharmacology modulation and therefore facilitate the overall pre-clinical safety translation assessment. Following an extensive literature review, we built two separate models recapitulating known regulation processes in dogs and rats. We describe the resulting models and show that they can reproduce a variety of interventions in both species. We also show that the models can incorporate the mechanisms of action of a pre-defined list of 50 pharmacological mechanisms whose modulation predict results consistent with known pharmacology. In conclusion, a mechanistic model of hemodynamics regulations in rat and dog species has been developed to support mechanism-based safety translation in drug discovery and development.
Collapse
Affiliation(s)
- Christopher J. Morris
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael G. Rolf
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Starnes
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inmaculada C. Villar
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Giovanni Y. Di Veroli
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
3
|
Dutta P, Layton AT. Paradoxes in magnesium transport in type 1 Bartter's syndrome and Gitelman's syndrome: a modeling analysis. Am J Physiol Renal Physiol 2024; 327:F386-F396. [PMID: 38991009 DOI: 10.1152/ajprenal.00117.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Type 1 Bartter's syndrome and Gitelman's syndrome are characterized by mutations in two key renal Na+ transporters, Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC). Since these two transporters play an important role in regulating magnesium (Mg2+) and calcium (Ca2+) transport in the kidney, significant alterations in the transport of these two electrolytes are observed in type 1 Bartter's syndrome and Gitelman's syndrome. In this study, we used our sex-specific computational models of renal electrolyte transport in rats to understand the complex compensatory mechanisms, in terms of alterations in tubular dimensions and ion transporter activities, that lead to Mg2+ and Ca2+ preservation or wasting in these two genetic disorders. Given the sexual dimorphism in renal transporter patterns, we also assessed how the magnitude of these alterations may differ between males and females. Model simulations showed that in type 1 Bartter's syndrome, nephron adaptations prevent salt wasting and favor Mg2+ preservation but not Ca2+, whereas in Gitelman's syndrome, those adaptations favor Ca2+ preservation over Mg2+. In addition, our models predicted that the compensatory alterations in tubular dimensions and ion transporter activities are stronger in females than in males.NEW & NOTEWORTHY Although changes in Ca2+ excretion in type 1 Bartter's syndrome and Gitelman's syndrome are well understood, Mg2+ excretion displays an interesting paradox. This computational modeling study provides insights into how renal adaptations in these two disorders impact Ca2+ and Mg2+ transport along different nephron segments. Model simulations showed that nephron adaptations favor Mg2+ preservation over Ca2+ in Bartter's syndrome and Ca2+ preservation over Mg2+ in Gitelman's syndrome and are stronger in females than in males.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
G-protein-coupled receptor kinase 4 causes renal angiotensin II type 2 receptor dysfunction by increasing its phosphorylation. Clin Sci (Lond) 2022; 136:989-1003. [PMID: 35695067 PMCID: PMC9793447 DOI: 10.1042/cs20220236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Activation of the angiotensin II type 2 receptor (AT2R) induces diuresis and natriuresis. Increased expression or/and activity of G-protein-coupled receptor kinase 4 (GRK4) or genetic variants (e.g., GRK4γ142V) cause sodium retention and hypertension. Whether GRK4 plays a role in the regulation of AT2R in the kidney remains unknown. In the present study, we found that spontaneously hypertensive rats (SHRs) had increased AT2R phosphorylation and impaired AT2R-mediated diuretic and natriuretic effects, as compared with normotensive Wistar-Kyoto (WKY) rats. The regulation by GRK4 of renal AT2R phosphorylation and function was studied in human (h) GRK4γ transgenic mice. hGRK4γ142V transgenic mice had increased renal AT2R phosphorylation and impaired AT2R-mediated natriuresis, relative to hGRK4γ wild-type (WT) littermates. These were confirmed in vitro; AT2R phosphorylation was increased and AT2R-mediated inhibition of Na+-K+-ATPase activity was decreased in hGRK4γ142V, relative to hGRK4γ WT-transfected renal proximal tubule (RPT) cells. There was a direct physical interaction between renal GRK4 and AT2R that was increased in SHRs, relative to WKY rats. Ultrasound-targeted microbubble destruction of renal GRK4 decreased the renal AT2R phosphorylation and restored the impaired AT2R-mediated diuresis and natriuresis in SHRs. In vitro studies showed that GRK4 siRNA reduced AT2R phosphorylation and reversed the impaired AT2R-mediated inhibition of Na+-K+-ATPase activity in SHR RPT cells. Our present study shows that GRK4, at least in part, impairs renal AT2R-mediated diuresis and natriuresis by increasing its phosphorylation; inhibition of GRK4 expression and/or activity may be a potential strategy to improve the renal function of AT2R.
Collapse
|
5
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Wesson DE, Buysse JM, Bushinsky DA. Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease. J Am Soc Nephrol 2020; 31:469-482. [PMID: 31988269 DOI: 10.1681/asn.2019070677] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Retrospective analyses and single-center prospective studies identify chronic metabolic acidosis as an independent and modifiable risk factor for progression of CKD. In patients with CKD, untreated chronic metabolic acidosis often leads to an accelerated reduction in GFR. Mechanisms responsible for this reduction include adaptive responses that increase acid excretion but lead to a decline in kidney function. Metabolic acidosis in CKD stimulates production of intrakidney paracrine hormones including angiotensin II, aldosterone, and endothelin-1 (ET-1) that mediate the immediate benefit of increased kidney acid excretion, but their chronic upregulation promotes inflammation and fibrosis. Chronic metabolic acidosis also stimulates ammoniagenesis that increases acid excretion but also leads to ammonia-induced complement activation and deposition of C3 and C5b-9 that can cause tubule-interstitial damage, further worsening disease progression. These effects, along with acid accumulation in kidney tissue, combine to accelerate progression of kidney disease. Treatment of chronic metabolic acidosis attenuates these adaptive responses; reduces levels of angiotensin II, aldosterone, and ET-1; reduces ammoniagenesis; and diminishes inflammation and fibrosis that may lead to slowing of CKD progression.
Collapse
Affiliation(s)
- Donald E Wesson
- Baylor Scott & White Health and Wellness Center, Dallas, Texas; .,Department of Internal Medicine, Texas A&M College of Medicine, Bryan, Texas
| | | | - David A Bushinsky
- Division of Nephrology, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
7
|
Novel dietary and pharmacologic approaches for acid–base modulation to preserve kidney function and manage uremia. Curr Opin Nephrol Hypertens 2020; 29:39-48. [DOI: 10.1097/mnh.0000000000000568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Yang N, Gonzalez-Vicente A, Garvin JL. Angiotensin II-induced superoxide and decreased glutathione in proximal tubules: effect of dietary fructose. Am J Physiol Renal Physiol 2019; 318:F183-F192. [PMID: 31760771 DOI: 10.1152/ajprenal.00462.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Angiotensin II exacerbates oxidative stress in part by increasing superoxide (O2-) production by many renal tissues. However, whether it does so in proximal tubules and the source of O2- in this segment are unknown. Dietary fructose enhances the stimulatory effect of angiotensin II on proximal tubule Na+ reabsorption, but whether this is true for oxidative stress is unknown. We hypothesized that angiotensin II causes proximal nephron oxidative stress in part by stimulating NADPH oxidase (NOX)4-dependent O2- production and decreasing the amount of the antioxidant glutathione, and this is exacerbated by dietary fructose. We measured basal and angiotensin II-stimulated O2- production with and without inhibitors, NOX1 and NOX4 expression, and total and reduced glutathione (GSH) in proximal tubules from rats drinking either tap water (control) or 20% fructose. Angiotensin II (10 nM) increased O2- production by 113 ± 42 relative light units·mg protein-1·s-1 in controls and 401 ± 74 relative light units·mg protein-1·s-1 with 20% fructose (n = 11 for each group, P < 0.05 vs. control). Apocynin and the Nox1/4 inhibitor GKT136901 prevented angiotensin II-induced increases in both groups. NOX4 expression was not different between groups. NOX1 expression was undetectable. Angiotensin II decreased GSH by 1.8 ± 0.8 nmol/mg protein in controls and by 4.2 ± 0.9 nmol/mg protein with 20% fructose (n = 18 for each group, P < 0.047 vs. control). We conclude that 1) angiotensin II causes oxidative stress in proximal tubules by increasing O2- production by NOX4 and decreasing GSH and 2) dietary fructose enhances the ability of angiotensin II to stimulate O2- and diminish GSH, thereby exacerbating oxidative stress in this segment.
Collapse
Affiliation(s)
- Nianxin Yang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
9
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
10
|
Uijl E, Mirabito Colafella KM, Sun Y, Ren L, van Veghel R, Garrelds IM, de Vries R, Poglitsch M, Zlatev I, Kim JB, Hoorn EJ, Foster D, Danser AJ. Strong and Sustained Antihypertensive Effect of Small Interfering RNA Targeting Liver Angiotensinogen. Hypertension 2019; 73:1249-1257. [DOI: 10.1161/hypertensionaha.119.12703] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Estrellita Uijl
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Division of Nephrology and Transplantation (E.U., E.J.H.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Katrina M. Mirabito Colafella
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Cardiovascular Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia (K.M.M.C.)
| | - Yuan Sun
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Liwei Ren
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Richard van Veghel
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ingrid M. Garrelds
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - René de Vries
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals, Cambridge, MA (I.Z., J.B.K., D.F.)
| | - Jae B. Kim
- Alnylam Pharmaceuticals, Cambridge, MA (I.Z., J.B.K., D.F.)
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation (E.U., E.J.H.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Don Foster
- Alnylam Pharmaceuticals, Cambridge, MA (I.Z., J.B.K., D.F.)
| | - A.H. Jan Danser
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
11
|
Lewis L, Kwong RWM. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. Int J Mol Sci 2018; 19:E1087. [PMID: 29621145 PMCID: PMC5979485 DOI: 10.3390/ijms19041087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct). Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na⁺, Cl- and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.
Collapse
Affiliation(s)
- Lletta Lewis
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
12
|
Packer M. Role of the sodium-hydrogen exchanger in mediating the renal effects of drugs commonly used in the treatment of type 2 diabetes. Diabetes Obes Metab 2018; 20:800-811. [PMID: 29227582 DOI: 10.1111/dom.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/19/2023]
Abstract
Diabetes is characterized by increased activity of the sodium-hydrogen exchanger (NHE) in the glomerulus and renal tubules, which contributes importantly to the development of nephropathy. Despite the established role played by the exchanger in experimental studies, it has not been specifically targeted by those seeking to develop novel pharmacological treatments for diabetes. This review demonstrates that many existing drugs that are commonly prescribed to patients with diabetes act on the NHE1 and NHE3 isoforms in the kidney. This action may explain their effects on sodium excretion, albuminuria and the progressive decline of glomerular function in clinical trials; these responses cannot be readily explained by the influence of these drugs on blood glucose. Agents that may affect the kidney in diabetes by virtue of an action on NHE include: (1) insulin and insulin sensitizers; (2) incretin-based agents; (3) sodium-glucose cotransporter 2 inhibitors; (4) antagonists of the renin-angiotensin system (angiotensin converting-enzyme inhibitors, angiotensin receptor blockers and angiotensin receptor neprilysin inhibitors); and (5) inhibitors of aldosterone action and cholesterol synthesis (spironolactone, amiloride and statins). The renal effects of each of these drug classes in patients with type 2 diabetes may be related to a single shared biological mechanism.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
13
|
Mun EG, Sohn HS, Kim MS, Cha YS. Antihypertensive effect of Ganjang (traditional Korean soy sauce) on Sprague-Dawley Rats. Nutr Res Pract 2017; 11:388-395. [PMID: 28989575 PMCID: PMC5621361 DOI: 10.4162/nrp.2017.11.5.388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/17/2017] [Accepted: 09/15/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/OBJECTIVES Although Korean fermented foods contain large amounts of salt, which is known to exacerbate health problems, these foods still have beneficial effects such as anti-hypertension, anti-cancer, and anti-colitis properties. We hypothesized that ganjang may have different effects on blood pressure compared to same concentrations of salt. MATERIALS/METHODS Sprague-Dawley rats were divided into control (CT), NaCl (NC), and ganjang (GJ) groups and orally administered with 8% NaCl concentration for 9 weeks. The systolic blood pressure (SBP), serum chemistry, Na+ and K+ concentrations and renal gene expressions were measured. RESULTS The SBP was significantly increased in the NC group compared to the GJ and CT groups. In addition, the Na+ concentration in urine was higher in the GJ and NC groups than the CT group, but the urine volume was increased in the GJ group compared to the other groups. The serum renin levels were decreased in the GJ group compared to the CT group, while the serum aldosterone level was decreased in the GJ group relative to the NC group. The mRNA expression of the renin, angiotensin II type I receptor, and mineralocorticoid receptor were significantly lower in the GJ group compared to other groups. Furthermore, GJ group showed the lowest levels of genes for Na+ transporter in kidney cortex such as Na+/K+ ATPaseα1 (NKAα1), Na+/H+ exchanger 3 (NHE3), Na+/HCO3- co-exchanger (NBC), and carbonic anhydrases II (CAII). CONCLUSIONS The decreased SBP in the GJ could be due to decreased renin and aldosterone levels in serum and increased urinary volume and excretion of Na+ with its transporter gene alteration. Therefore, ganjang may have antihypertensive effect despite its high contents of salt.
Collapse
Affiliation(s)
- Eun-Gyung Mun
- Department of Food Science and Human Nutrition, Chonbuk National University, 567, Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk 54896, Korea
| | - Hee-Sook Sohn
- Department of Food Science and Human Nutrition, Chonbuk National University, 567, Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk 54896, Korea
| | - Mi-Sun Kim
- Department of Food Science and Human Nutrition, Chonbuk National University, 567, Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk 54896, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Chonbuk National University, 567, Baekje-daero, Duckjin-gu, Jeonju, Jeonbuk 54896, Korea
| |
Collapse
|
14
|
Li J, Hatano R, Xu S, Wan L, Yang L, Weinstein AM, Palmer L, Wang T. Gender difference in kidney electrolyte transport. I. Role of AT 1a receptor in thiazide-sensitive Na +-Cl - cotransporter activity and expression in male and female mice. Am J Physiol Renal Physiol 2017; 313:F505-F513. [PMID: 28566500 DOI: 10.1152/ajprenal.00087.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
We studied gender differences in Na+-Cl- cotransporter (NCC) activity and expression in wild-type (WT) and AT1a receptor knockout (KO) mice. In renal clearance experiments, urine volume (UV), glomerular filtration rate, absolute Na+ (ENa) and K+ (EK), and fractional Na+ (FENa) and K+ excretion were measured and compared at peak changes after bolus intravenous injection of hydrochlorothiazide (HCTZ; 30 mg/kg). In WT, females responded more strongly than males to HCTZ, with larger fractional increases of UV (7.8- vs. 3.4-fold), ENa (11.7- vs. 5.7-fold), FENa (7.9- vs. 4.9-fold), and EK (2.8- vs. 1.4-fold). In contrast, there were no gender differences in the responses to the diuretic in KO mice; HCTZ produced greater effects on male KO than on WT but similar effects on females. In WT, total (tNCC) and phosphorylated (pNCC) NCC protein expressions were 1.8- and 4.6-fold higher in females compared with males (P < 0.05), consistent with the larger response to HCTZ. In KO mice, tNCC and pNCC increased significantly in males to levels not different from those in females. There were no gender differences in the expression of the Na+/H+ exchanger (NHE3) in WT; NHE3 protein decreased to similar extents in male and female KO animals, suggesting AT1a-mediated NHE3 expression in proximal tubules. The resulting increase in delivery of NaCl to the distal nephron may underlie increased NCC expression and activity in mice lacking the AT1a receptor.
Collapse
Affiliation(s)
- Jing Li
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut.,Department of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Ryo Hatano
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Shuhua Xu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Laxiang Wan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Lei Yang
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Lawrence Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut;
| |
Collapse
|
15
|
Yang G, Chu PL, Rump LC, Le TH, Stegbauer J. ACE2 and the Homolog Collectrin in the Modulation of Nitric Oxide and Oxidative Stress in Blood Pressure Homeostasis and Vascular Injury. Antioxid Redox Signal 2017; 26:645-659. [PMID: 27889958 DOI: 10.1089/ars.2016.6950] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Hypertension is the leading risk factor causing mortality and morbidity worldwide. Angiotensin (Ang) II, the most active metabolite of the renin-angiotensin system, plays an outstanding role in the pathogenesis of hypertension and vascular injury. Activation of angiotensin converting enzyme 2 (ACE2) has shown to attenuate devastating effects of Ang II in the cardiovascular system by reducing Ang II degradation and increasing Ang-(1-7) generation leading to Mas receptor activation. Recent Advances: Activation of the ACE2/Ang-(1-7)/Mas receptor axis reduces hypertension and improves vascular injury mainly through an increased nitric oxide (NO) bioavailability and decreased reactive oxygen species production. Recent studies reported that shedding of the enzymatically active ectodomain of ACE2 from the cell surface seems to regulate its activity and serves as an interorgan communicator in cardiovascular disease. In addition, collectrin, an ACE2 homolog with no catalytic activity, regulates blood pressure through an NO-dependent mechanism. CRITICAL ISSUES Large body of experimental data confirmed sustained beneficial effects of ACE2/Ang-(1-7)/Mas receptor axis activation on hypertension and vascular injury. Experimental studies also suggest that activation of collectrin might be beneficial in hypertension and endothelial dysfunction. Their role in clinical hypertension is unclear as selective and reliable activators of both axes are not yet available. FUTURE DIRECTIONS This review will highlight the results of recent research progress that illustrate the role of both ACE and collectrin in the modulation of NO and oxidative stress in blood pressure homeostasis and vascular injury, providing evidence for the potential therapeutic application of ACE2 and collectrin in hypertension and vascular disease. Antioxid. Redox Signal. 26, 645-659.
Collapse
Affiliation(s)
- Guang Yang
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| | - Pei-Lun Chu
- 2 Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, Virginia.,3 Department of Internal Medicine, Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Lars C Rump
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| | - Thu H Le
- 2 Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Johannes Stegbauer
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
16
|
Chu PL, Gigliotti JC, Cechova S, Bodonyi-Kovacs G, Chan F, Ralph DL, Howell N, Kalantari K, Klibanov AL, Carey RM, McDonough AA, Le TH. Renal Collectrin Protects against Salt-Sensitive Hypertension and Is Downregulated by Angiotensin II. J Am Soc Nephrol 2017; 28:1826-1837. [PMID: 28062568 DOI: 10.1681/asn.2016060675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Collectrin, encoded by the Tmem27 gene, is a transmembrane glycoprotein with approximately 50% homology with angiotensin converting enzyme 2, but without a catalytic domain. Collectrin is most abundantly expressed in the kidney proximal tubule and collecting duct epithelia, where it has an important role in amino acid transport. Collectrin is also expressed in endothelial cells throughout the vasculature, where it regulates L-arginine uptake. We previously reported that global deletion of collectrin leads to endothelial dysfunction, augmented salt sensitivity, and hypertension. Here, we performed kidney crosstransplants between wild-type (WT) and collectrin knockout (Tmem27Y/- ) mice to delineate the specific contribution of renal versus extrarenal collectrin on BP regulation and salt sensitivity. On a high-salt diet, WT mice with Tmem27Y/- kidneys had the highest systolic BP and were the only group to exhibit glomerular mesangial hypercellularity. Additional studies showed that, on a high-salt diet, Tmem27Y/- mice had lower renal blood flow, higher abundance of renal sodium-hydrogen antiporter 3, and lower lithium clearance than WT mice. In WT mice, administration of angiotensin II for 2 weeks downregulated collectrin expression in a type 1 angiotensin II receptor-dependent manner. This downregulation coincided with the onset of hypertension, such that WT and Tmem27Y/- mice had similar levels of hypertension after 2 weeks of angiotensin II administration. Altogether, these data suggest that salt sensitivity is determined by intrarenal collectrin, and increasing the abundance or activity of collectrin may have therapeutic benefits in the treatment of hypertension and salt sensitivity.
Collapse
Affiliation(s)
| | - Joseph C Gigliotti
- Division of Nephrology.,Department of Integrated Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia; and
| | | | | | | | - Donna Lee Ralph
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Nancy Howell
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | | | | | - Robert M Carey
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Alicia A McDonough
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, California
| | | |
Collapse
|
17
|
Crajoinas RO, Polidoro JZ, Carneiro de Morais CPA, Castelo-Branco RC, Girardi ACC. Angiotensin II counteracts the effects of cAMP/PKA on NHE3 activity and phosphorylation in proximal tubule cells. Am J Physiol Cell Physiol 2016; 311:C768-C776. [PMID: 27510906 DOI: 10.1152/ajpcell.00191.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/29/2016] [Indexed: 12/16/2022]
Abstract
Binding of angiotensin II (ANG II) to the AT1 receptor (AT1R) in the proximal tubule stimulates Na+/H+ exchanger isoform 3 (NHE3) activity through multiple signaling pathways. However, the effects of ANG II/AT1R-induced inihibitory G protein (Gi) activation and subsequent decrease in cAMP accumulation on NHE3 regulation are not well established. We therefore tested the hypothesis that ANG II reduces cAMP/PKA-mediated phosphorylation of NHE3 on serine 552 and, in doing so, stimulates NHE3 activity. Under basal conditions, ANG II stimulated NHE3 activity but did not affect PKA-mediated NHE3 phosphorylation at serine 552 in opossum kidney (OKP) cells. However, in the presence of the cAMP-elevating agent forskolin (FSK), ANG II blocked FSK-induced NHE3 inhibition, reduced intracellular cAMP concentrations, lowered PKA activity, and prevented the FSK-mediated increase in NHE3 serine 552 phosphorylation. All effects of ANG II were blocked by pretreating OKP cells with the AT1R antagonist losartan, highlighting the contribution of the AT1R/Gi pathway in ANG II-mediated NHE3 upregulation under cAMP-elevating conditions. Accordingly, Gi inhibition by pertussis toxin treatment decreased NHE3 activity both in vitro and in vivo and, more importantly, prevented the stimulatory effect of ANG II on NHE3 activity in rat proximal tubules. Collectively, our results suggest that ANG II counteracts the effects of cAMP/PKA on NHE3 phosphorylation and inhibition by activating the AT1R/Gi pathway. Moreover, these findings support the notion that NHE3 dephosphorylation at serine 552 may represent a key event in the regulation of renal proximal tubule sodium handling by ANG II in the presence of natriuretic hormones that promote cAMP accumulation and transporter phosphorylation.
Collapse
Affiliation(s)
- Renato O Crajoinas
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil; and
| | - Juliano Z Polidoro
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil; and
| | - Carla P A Carneiro de Morais
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil; and
| | - Regiane C Castelo-Branco
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, São Paulo, São Paulo, Brazil
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil; and
| |
Collapse
|
18
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
19
|
Castrop H. A role for AT1 receptor-associated proteins in blood pressure regulation. Curr Opin Pharmacol 2015; 21:43-7. [DOI: 10.1016/j.coph.2014.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 01/11/2023]
|
20
|
Edwards A, Castrop H, Laghmani K, Vallon V, Layton AT. Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. Am J Physiol Renal Physiol 2014; 307:F137-F146. [PMID: 24848496 PMCID: PMC4101627 DOI: 10.1152/ajprenal.00158.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/18/2014] [Indexed: 11/22/2022] Open
Abstract
This study aims to understand the extent to which modulation of the Na(+)-K(+)-2Cl(-) cotransporter NKCC2 differential splicing affects NaCl delivery to the macula densa. NaCl absorption by the thick ascending limb and macula densa cells is mediated by apical NKCC2. A recent study has indicated that differential splicing of NKCC2 is modulated by dietary salt (Schieβl IM, Rosenauer A, Kattler V, Minuth WW, Oppermann M, Castrop H. Am J Physiol Renal Physiol 305: F1139-F1148, 2013). Given the markedly different ion affinities of its splice variants, modulation of NKCC2 differential splicing is believed to impact NaCl reabsorption. To assess the validity of that hypothesis, we have developed a mathematical model of macula densa cell transport and incorporated that cell model into a previously applied model of the thick ascending limb (Weinstein AM, Krahn TA. Am J Physiol Renal Physiol 298: F525-F542, 2010). The macula densa model predicts a 27.4- and 13.1-mV depolarization of the basolateral membrane [as a surrogate for activation of tubuloglomerular feedback (TGF)] when luminal NaCl concentration is increased from 25 to 145 mM or luminal K(+) concentration is increased from 1.5 to 3.5 mM, respectively, consistent with experimental measurements. Simulations indicate that with luminal solute concentrations consistent with in vivo conditions near the macula densa, NKCC2 operates near its equilibrium state. Results also suggest that modulation of NKCC2 differential splicing by low salt, which induces a shift from NKCC2-A to NKCC2-B primarily in the cortical thick ascending limb and macula densa cells, significantly enhances salt reabsorption in the thick limb and reduces Na(+) and Cl(-) delivery to the macula densa by 3.7 and 12.5%, respectively. Simulation results also predict that the NKCC2 isoform shift hyperpolarizes the macula densa basolateral cell membrane, which, taken in isolation, may inhibit the release of the TGF signal. However, excessive early distal salt delivery and renal salt loss during a low-salt diet may be prevented by an asymmetric TGF response, which may be more sensitive to flow increases.
Collapse
Affiliation(s)
- Aurélie Edwards
- University of Paris 6, University of Paris 5, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Hayo Castrop
- Institute of Physiology University of Regensburg, Regensburg, Germany
| | - Kamel Laghmani
- University of Paris 6, University of Paris 5, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California, and San Diego Veterans Affairs Healthcare System, San Diego, California; and
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| |
Collapse
|
21
|
Guillory B, Splenser A, Garcia J. The Role of Ghrelin in Anorexia–Cachexia Syndromes. ANOREXIA 2013; 92:61-106. [DOI: 10.1016/b978-0-12-410473-0.00003-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Castrop H. Angiotensin receptor-associated proteins: local modulators of the renin–angiotensin system. Pflugers Arch 2012; 465:111-9. [DOI: 10.1007/s00424-012-1113-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 01/11/2023]
|
23
|
Inoue BH, dos Santos L, Pessoa TD, Antonio EL, Pacheco BPM, Savignano FA, Carraro-Lacroix LR, Tucci PJF, Malnic G, Girardi ACC. Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure. Am J Physiol Regul Integr Comp Physiol 2012; 302:R166-74. [DOI: 10.1152/ajpregu.00127.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart failure (HF) is associated with a reduced effective circulating volume that drives sodium and water retention and extracellular volume expansion. We therefore hypothesized that Na+/H+ exchanger isoform 3 (NHE3), the major apical transcellular pathway for sodium reabsorption in the proximal tubule, is upregulated in an experimental model of HF. HF was induced in male rats by left ventricle radiofrequency ablation. Sham-operated rats (sham) were used as controls. At 6 wk after surgery, HF rats exhibited cardiac dysfunction with a dramatic increase in left ventricular end-diastolic pressure. By means of stationary in vivo microperfusion and pH-dependent sodium uptake, we demonstrated that NHE3 transport activity was significantly higher in the proximal tubule of HF compared with sham rats. Increased NHE3 activity was paralleled by increased renal cortical NHE3 expression at both protein and mRNA levels. In addition, the baseline PKA-dependent NHE3 phosphorylation at serine 552 was reduced in renal cortical membranes of rats with HF. Collectively, these results suggest that NHE3 is upregulated in the proximal tubule of HF rats by transcriptional, translational, and posttranslational mechanisms. Enhanced NHE3-mediated sodium reabsorption in the proximal tubule may contribute to extracellular volume expansion and edema, the hallmark feature of HF. Moreover, our study emphasizes the importance of undertaking a cardiorenal approach to contain progression of cardiac disease.
Collapse
Affiliation(s)
- Bruna H. Inoue
- Heart Institute (InCor), University of São Paulo Medical School
| | - Leonardo dos Santos
- Heart Institute (InCor), University of São Paulo Medical School
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES
| | - Thaissa D. Pessoa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo; and
| | - Ednei L. Antonio
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Paulo J. F. Tucci
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo; and
| | | |
Collapse
|
24
|
Banday AA, Lokhandwala MF. Angiotensin II-mediated biphasic regulation of proximal tubular Na+/H+ exchanger 3 is impaired during oxidative stress. Am J Physiol Renal Physiol 2011; 301:F364-70. [PMID: 21593187 DOI: 10.1152/ajprenal.00121.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Angiotensin (ANG) II via AT1 receptors (AT1Rs) maintains sodium homeostasis by regulating renal sodium transporters including Na(+)/H(+) exchanger 3 (NHE3) in a biphasic manner. Low-ANG II concentration stimulates whereas high concentrations inhibit NHE3 activity. Oxidative stress has been shown to upregulate AT1R function that could modulate the ANG II-mediated NHE3 regulation. This study was designed to identify the signaling pathways responsible for ANG II-mediated biphasic regulation of proximal tubular NHE3 and the effect of oxidative stress on this phenomenon. Male Sprague-Dawley rats were chronically treated with a pro-oxidant L-buthionine sulfoximine (BSO) with and without an antioxidant tempol in tap water for 3 wk. BSO-treated rats exhibited oxidative stress and high blood pressure. At low concentration (1 pM) ANG II increased NHE3 activity in proximal tubules from all animals. However, in BSO-treated rats, the stimulation was more robust and was normalized by tempol treatment. ANG II (1 pM)-mediated NHE3 activation was abolished by AT1R blocker, intracellular Ca(2+) chelator, and inhibitors of phospholipase C (PLC) and Ca(2+)-dependent calmodulin (CaM) but it was insensitive to Giα and protein kinase C inhibitors or AT2R antagonist. A high concentration of ANG II (1 μM) inhibited NHE3 activity in control and tempol-treated rats. However, in BSO-treated rats, ANG II (1 μM) continued to induce NHE3 stimulation. Tempol restored the inhibitory effect of ANG II (1 μM) in BSO-treated rats. The inhibitory effect of ANG II (1 μM) involved AT1R-dependent, cGMP-dependent protein kinase (PKG) activation and was independent of AT2 receptor and nitric oxide signaling. We conclude that ANG II stimulates NHE3 via AT1R-PLC-CaM pathway and inhibits NHE3 by AT1R-PKG activation. Oxidative stress impaired ANG II-mediated NHE3 biphasic response in that stimulation was observed at both high- and low-ANG II concentration.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Texas 77204, USA.
| | | |
Collapse
|
25
|
Queiroz-Leite GD, Peruzzetto MC, Neri EA, Rebouças NA. Transcriptional regulation of the Na⁺/H⁺ exchanger NHE3 by chronic exposure to angiotensin II in renal epithelial cells. Biochem Biophys Res Commun 2011; 409:470-6. [PMID: 21600882 DOI: 10.1016/j.bbrc.2011.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/27/2022]
Abstract
Angiotensin II (Ang II) exerts an acute bimodal effect on proximal tubule NHE3: while low doses stimulate the exchanger, high doses inhibit it. In the present study, we have investigated the chronic effects of Ang II on NHE3 expression and transcriptional regulation. Treatment of a tubular epithelial cell line, OKP, with Ang II 10(-11)M significantly increased NHE protein expression and mRNA levels, without evidence of bimodal effect. No change in mRNA half-life was detected, but transient transfection studies showed a significant increase in NHE3 promoter activity. Binding sites for Sp1/Egr-1 and AP2 transcription factors of the NHE3 proximal promoter were mutated and we observed that the Sp1/Egr-1 binding site integrity is necessary for Ang II stimulatory effects. Inhibition of cytochrome P450, PI3K, PKA and MAPK pathways prevented the Ang II stimulatory effect on the NHE3 promoter activity. Taking all the results together, our data reveal that chronic Ang II treatment exerts a stimulatory effect on NHE3 expression and promoter activity. The Ang II up-regulation of the NHE3 promoter activity appears to involve the Sp1/Egr-1 binding site and the interplay of several intracellular signaling pathways.
Collapse
Affiliation(s)
- Gabriella D Queiroz-Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
26
|
Neri EA, Bezerra CNA, Rebouças NA. Essential regulatory elements for NHE3 gene transcription in renal proximal tubule cells. Braz J Med Biol Res 2011; 44:514-23. [PMID: 21537610 DOI: 10.1590/s0100-879x2011007500054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 04/11/2011] [Indexed: 11/21/2022] Open
Abstract
The objectives of the present study were to identify the cis-elements of the promoter absolutely required for the efficient rat NHE3 gene transcription and to locate positive and negative regulatory elements in the 5'-flanking sequence (5'FS), which might modulate the gene expression in proximal tubules, and to compare this result to those reported for intestinal cell lines. We analyzed the promoter activity of different 5'FS segments of the rat NHE3 gene, in the OKP renal proximal tubule cell line by measuring the activity of the reporter gene luciferase. Because the segment spanning the first 157 bp of 5'FS was the most active it was studied in more detail by sequential deletions, point mutations, and gel shift assays. The essential elements for gene transcription are in the region -85 to -33, where we can identify consensual binding sites for Sp1 and EGR-1, which are relevant to NHE3 gene basal transcription. Although a low level of transcription is still possible when the first 25 bp of the 5'FS are used as promoter, efficient transcription only occurs with 44 bp of 5'FS. There are negative regulatory elements in the segments spanning -1196 to -889 and -467 to -152, and positive enhancers between -889 and -479 bp of 5'FS. Transcription factors in the OKP cell nuclear extract efficiently bound to DNA elements of rat NHE3 promoter as demonstrated by gel shift assays, suggesting a high level of similarity between transcription factors of both species, including Sp1 and EGR-1.
Collapse
Affiliation(s)
- E A Neri
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
27
|
Oppermann M, Gess B, Schweda F, Castrop H. Atrap deficiency increases arterial blood pressure and plasma volume. J Am Soc Nephrol 2010; 21:468-77. [PMID: 20093357 DOI: 10.1681/asn.2009060658] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The angiotensin receptor-associated protein (Atrap) interacts with angiotensin II (AngII) type 1 (AT1) receptors and facilitates their internalization in vitro, but little is known about the function of Atrap in vivo. Here, we detected Atrap expression in several organs of wild-type mice; the highest expression was in the kidney where it localized to the proximal tubule, particularly the brush border. There was no Atrap expression in the renal vasculature or juxtaglomerular cells. We generated Atrap-deficient (Atrap-/-) mice, which were viable and seemed grossly normal. Mean systolic BP was significantly higher in Atrap-/- mice compared with wild-type mice. Dose-response relationships of arterial BP after acute AngII infusion were similar in both genotypes. Plasma volume was significantly higher and plasma renin concentration was markedly lower in Atrap-/- mice compared with wild-type mice. (125)I-AngII binding showed enhanced surface expression of AT1 receptors in the renal cortex of Atrap-/- mice, accompanied by increased carboanhydrase-sensitive proximal tubular function. In summary, Atrap-/- mice have increased arterial pressure and plasma volume. Atrap seems to modulate volume status by acting as a negative regulator of AT1 receptors in the renal tubules.
Collapse
|
28
|
Alexander RT, Grinstein S. Tethering, recycling and activation of the epithelial sodium–proton exchanger, NHE3. J Exp Biol 2009; 212:1630-7. [DOI: 10.1242/jeb.027375] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
NHE3 is a sodium–proton exchanger expressed predominantly in the apical membrane of renal and intestinal epithelia, where it plays a key role in salt and fluid absorption and pH homeostasis. It performs these functions through the exchange of luminal sodium for cytosolic protons. Acute regulation of NHE3 function is mediated by altering the total number of exchangers in the plasma membrane as well as their individual activity. Traffic between endomembrane and plasmalemmal pools of NHE3 dictates the density of exchangers available at the cell surface. The activity of the plasmalemmal pool, however,is not fixed and can be altered by the association with modifier proteins, by post-translational alterations (such as cAMP-mediated phosphorylation) and possibly also via interaction with specific plasmalemmal phospholipids. Interestingly, association with cytoskeletal components affects both levels of regulation, tethering NHE3 molecules at the surface and altering their intrinsic activity. This paper reviews the role of proteins and lipids in the modulation of NHE3 function.
Collapse
Affiliation(s)
- R. Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,T6G 2R7
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada,M5G 1X8
- Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
29
|
Hatch M, Freel RW. Increased colonic sodium absorption in rats with chronic renal failure is partially mediated by AT1 receptor agonism. Am J Physiol Gastrointest Liver Physiol 2008; 295:G348-56. [PMID: 18535292 PMCID: PMC2519856 DOI: 10.1152/ajpgi.00079.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To test the hypothesis that colonic Na(+) transport is altered in the 5/6 nephrectomized rat model of chronic renal failure (CRF), we measured Na(+) fluxes across distal colon from control (CON), CRF, and CRF rats treated with the angiotensin II (ANG II) receptor antagonist losartan (+LOS). We also evaluated overall fluid and Na(+) balance and compared colonic protein and mRNA expression profiles for electroneutral [sodium-hydrogen exchanger (NHE)] and electrogenic Na(+) transport [epithelial sodium channel (ENaC)] in these groups. Consistent with a 60% enhancement in colonic Na(+) absorption in CRF, urinary Na(+) excretion increased by about 50% while serum Na(+) homeostasis was maintained. These CRF-induced changes in Na(+) handling were normalized by treatment with LOS. Net Na(+) absorption was also stimulated in in vitro tissues from CON rats following acute serosal addition of ANG II (10(-7) M), and this increase was blocked by AT(1) antagonism but not by an AT(2) antagonist. In CRF, colonic protein and mRNA expression variably increased for apical NHE2, NHE3, and ENaC alpha-, beta-, gamma-subunits, whereas expression of basolateral NHE1 and Na(+)-K(+)-ATPase (alpha-isoform) remained unaltered. Upregulation of the ENaC subunit mRNA was attenuated somewhat by LOS treatment. Previously, we showed that colonic AT(1) receptor protein is upregulated twofold in CRF, and here we find that AT(1) and AT(2) mRNA and AT(2) protein abundance is unchanged in CRF. We conclude that Na(+) absorption in CRF rat distal colon is increased due to elevated expression of proteins mediating electroneutral and electrogenic uptake and that it is partially mediated by AT(1) receptors.
Collapse
Affiliation(s)
- Marguerite Hatch
- Dept. of Pathology, Immunology, and Laboratory Medicine, P.O. Box 100275, 1600 SW Archer Rd., Gainesville, FL 32610, USA.
| | - Robert W. Freel
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
30
|
Castrop H. Modulation of adenosine receptor expression in the proximal tubule: a novel adaptive mechanism to regulate renal salt and water metabolism. Am J Physiol Renal Physiol 2008; 295:F35-6. [DOI: 10.1152/ajprenal.90299.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Diaz-Sylvester PL, Fiori MC, Dieguez SM, Müller AC, Lopardo ML, Amorena CE. Effect of chronic inhibition of converting enzyme on proximal tubule acidification. Am J Physiol Regul Integr Comp Physiol 2008; 294:R2014-20. [PMID: 18401002 DOI: 10.1152/ajpregu.00589.2007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The acute effect of angiotensin-converting enzyme inhibition (ACEi) on proximal convoluted tubule (PCT) function is well documented. However, the effect of chronic treatment is less known. The aim of this work was to evaluate the effect of chronic ACEi on PCT acidification (J(HCO(3)(-))). Rats received enalapril (10 mg.kg(-1).day(-1), added to the drinking water) during 3 mo. Micropuncture experiments were performed to measure the effect of chronic ACEi on J(HCO(3)(-)). Nitric oxide (NO.) synthesis in kidney cortex homogenates was assessed by quantifying the conversion of [(14)C]-L-arginine to [(14)C]-L-citrulline. Western blot analysis was performed to determine the abundances of V-H(+)ATPase and NHE3 isoform of the Na(+)/H(+) exchanger in proximal brush-border membrane vesicles (BBMV). Enalapril treatment induced an approximately 50% increase in J(HCO(3)(-)). Luminal perfusion with ethyl-isopropyl amiloride (EIPA) 10(-4)M or bafilomycin 10(-6)M decreased J(HCO(3)(-)) by approximately 60% and approximately 30%, respectively, in both control and enalapril-treated rats. The effect of EIPA and bafilomycin on absolute J(HCO(3)(-)) was larger in enalapril-treated than in control rats. Acute inhibition of NO. synthesis with N(G)-nitro-L-arginine methyl ester abolished the enalapril-induced increase in J(HCO(3)(-)). Cortex homogenates from enalapril-treated rats displayed a 46% increase in nitric oxide synthase (NOS) activity compared with those from untreated animals. Enalapril treatment did not affect the abundances of NHE3 and V-H(+)ATPase in BBMV. Our results suggest that PCT acidification is increased during chronic ACEi probably due to an increase in NO. synthesis, which would stimulate Na(+)/H(+) exchange and electrogenic proton transport.
Collapse
Affiliation(s)
- Paula L Diaz-Sylvester
- CESyMA, ECyT, Universidad Nacional de Gral. San Martín, Avenida Gral Paz 5445, 1650 San Martín, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
32
|
Renal Modulation: The Renin-Angiotensin-Aldosterone System (RAAS). NEPHROLOGY AND FLUID/ELECTROLYTE PHYSIOLOGY: NEONATOLOGY QUESTIONS AND CONTROVERSIES 2008. [PMCID: PMC7152415 DOI: 10.1016/b978-1-4160-3163-5.50013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Kiwull-Schöne H, Kiwull P, Frede S, Wiemann M. Role of Brainstem Sodium/Proton Exchanger 3 for Breathing Control during Chronic Acid–Base Imbalance. Am J Respir Crit Care Med 2007; 176:513-9. [PMID: 17600278 DOI: 10.1164/rccm.200703-347oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The sodium/proton exchanger (NHE) 3 is expressed in brainstem areas with prevalence for central chemosensitivity. Selective NHE3 inhibitors can evoke CO(2) mimetic responses both in vitro and in vivo, demonstrating the functional significance of this pH-regulating protein. Moreover, levels of NHE3 expression are inversely correlated to interindividual differences of baseline ventilation in conscious rabbits. OBJECTIVES We explored the influence of chronic acid-base disturbances on mRNA levels of brainstem NHE3 in relation to breathing control. METHODS Alveolar ventilation (Va), blood gases, systemic base excess (BE), and metabolic Vco(2) were determined in rabbits shortly after exposure to either CO(2)-enriched air for 3 days (n = 5) or to ammonium chloride with drinking water for 2 days (n = 6). Untreated animals served as controls (n = 24). NHE3 mRNA within the obex region was quantified by real-time reverse transcription-polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS After chronic hypercapnia, we found a compensatory rise of BE (mean +/- SEM) to 5.3 +/- 0.5 mmol x L(-1) with slightly elevated Pa(CO(2)). Brainstem NHE3 mRNA as well as Va were not significantly different from control levels. In the NH(4)Cl group, arterial pH was approximately 0.09 units lower than control, and BE decreased to -6.5 +/- 1.6 mmol x L(-1) with slightly decreased Pa(CO(2)), but considerably reduced Va (by approximately 25%; P < 0.05) and Vco(2). Concomitantly, brainstem NHE3 mRNA had increased from control level of 1.45 +/- 0.19 to 3.64 +/- 0.37 fg cDNA/mug RNA; P < 0.01. CONCLUSIONS Expression of brainstem NHE3 is up-regulated by chronic metabolic acidosis but not by prolonged hypercapnia. It is proposed that elevated brainstem NHE3 expression contributes to limit maladaptive hyperventilation during metabolic acidosis.
Collapse
|
34
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
35
|
Fiori M, Radrizzani M, Díaz-Sylvester P, Müller A, Corti T, Monserrat A, Amorena C. Relative contribution of V-H+ATPase and NA+/H+ exchanger to bicarbonate reabsorption in proximal convoluted tubules of old rats. Aging Cell 2006; 5:367-72. [PMID: 16968310 DOI: 10.1111/j.1474-9726.2006.00229.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
With aging, the kidney develops a progressive deterioration of several structures and functions. Proximal tubular acidification is impaired in old rats with a decrease in the activity of brush border Na+/H+ exchange and a fall of H-ion flux measured with micropuncture experiments. In the present work we evaluate the contribution of 5-N-ethyl-n-isopropyl amiloride- (EIPA) and bafilomycin-sensitive bicarbonate flux (JHCO3-) in proximal convoluted tubules of young and aged rats. We performed micropuncture experiments inhibiting the Na+/H+ exchanger with EIPA (10(-4) M) and the V-H+ATPase with bafilomycin (10(-6) M). We used antibodies against the NHE3 isoform of the Na+/H+ exchanger and the subunit E of the V-H+ATPase for detecting by Western blot the abundance of these proteins in brush border membrane vesicles from proximal convoluted tubules of young and old rats. The abundance of NHE3 and the V-H+ATPase was similar in 18-month-old and 3-month-old rats. The bicarbonate flux in old rats was 30% lower than in young rats. EIPA reduced by 60% and bafilomycin by 30% in young rats; in contrast, EIPA reduced by approximately 40% and bafilomycin by approximately 50% in old rats. The inhibited by bafilomycin was the same in young and old rats: 0.62 nmol.cm-2.s-1 and 0.71 nmol.cm-2.s-1, respectively. However, the EIPA-sensitive fraction was larger in young than in old rats: 1.26 nmol.cm-2.s-1 vs. 0.85 nmol.cm-2.s-1, respectively. These results suggest that the component more affected in bicarbonate reabsorption of proximal convoluted tubules from aged rats is the Na+-H+ exchanger, probably a NHE isoform different from NHE3.
Collapse
Affiliation(s)
- Mariana Fiori
- Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, San Lorenzo 3391, (1650) San Martín, Argentina
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The regulation of volume is fundamental to life. There exist numerous conditions that can produce perturbations of cell volume. The cell has developed mechanisms to directly counteract these perturbations so as to maintain its physiological volume. Directed influx of the major extracellular cation, sodium, serves to counteract a decreased cell volume through the subsequent osmotically coupled movement of water to the intracellular space. This process, termed regulatory volume increase is often mediated by the ubiquitous sodium/hydrogen ion exchanger, NHE1. Similarly, the maintenance of intravascular volume is essential for the maintenance of blood pressure and consequently the proper perfusion of vital organs. Numerous mechanisms exist to counterbalance alterations in intravascular volume, not the least of which is the renal absorption of sodium filtered at the glomerulus. Two-thirds of filtered sodium and water are absorbed in the renal proximal tubule, a mechanism that intimately involves the apical sodium/hydrogen ion exchanger, NHE3. This isoform is fundamental to the maintenance and regulation of intravascular volume and blood pressure. In this article, the effects of cell volume on the activity of these different isoforms, NHE1 and NHE3, will be described and the consequences of their activity on intracellular and intravascular volume will be explored.
Collapse
Affiliation(s)
- R T Alexander
- Department of Pediatrics, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, ON, Canada
| | | |
Collapse
|
37
|
Xu L, Dixit MP, Nullmeyer KD, Xu H, Kiela PR, Lynch RM, Ghishan FK. Regulation of Na+/H+ exchanger-NHE3 by angiotensin-II in OKP cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:519-26. [PMID: 16603121 DOI: 10.1016/j.bbamem.2006.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/15/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that circulating Angiotensin II (A-II) increases renal Na+ reabsorption via elevated Na+/H+ exchanger isoform 3 (NHE3) activity. We hypothesized that prolonged exposure to A-II leads to an increased expression of renal NHE3 by a transcriptionally mediated mechanism. To test this hypothesis, we utilized the proximal tubule-like OKP cell line to evaluate the effects of 16-h treatment with A-II on NHE3 activity and gene expression. A-II significantly stimulated NHE3-mediated, S-3226-sensitive Na+/H+ exchange. Inhibition of transcription with actinomycin D abolished the stimulatory effect of A-II on NHE3-mediated pH recovery in acid-loaded OKP cells. This prolonged exposure to A-II was also found to elevate endogenous NHE3 mRNA (by 40%)-an effect also abolished by inhibition of gene transcription. To evaluate the molecular mechanism by which A-II regulates NHE3 expression, the activity of NHE3 promoter driven reporter gene was analyzed in transient transfection assays. In transfected OKP cells, rat NHE3 promoter activity was significantly stimulated by A-II treatment, and preliminary mapping indicated that the A-II responsive element(s) is present between 149 and 548 bp upstream of the transcription initiation site in the NHE3 gene promoter. We conclude that a transcriptional mechanism is at least partially responsible for the chronic effects of A-II treatment on renal NHE3 activity.
Collapse
Affiliation(s)
- Liping Xu
- Department of Pediatrics and Physiology, Steele Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Siragy HM. Angiotensin II compartmentalization within the kidney: effects of salt diet and blood pressure alterations. Curr Opin Nephrol Hypertens 2006; 15:50-3. [PMID: 16340666 DOI: 10.1097/01.mnh.0000196148.42460.4f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW All components of the renin-angiotensin-aldosterone system are present within the kidney. Renin, renin receptor, angiotensinogen and angiotensin AT1 and AT2 receptor and aldosterone synthase messenger RNA and protein are present in close proximity to the renal vasculature and tubules. The interaction between the different components of the renin-angiotensin-aldosterone system determines the level of activity of this system and in turn may influence the regulation of blood pressure and renal sodium handling. RECENT FINDINGS Angiotensin through the stimulation of its subtype AT2 receptor regulates sodium excretion, renin synthesis and secretion. Aldosterone synthase mRNA and protein are expressed in glomeruli, renal vasculature and tubules, and are regulated by angiotensin AT1 receptor, diabetes and salt. Although aldosterone is known to influence renal tubular channels with the subsequent enhancement of sodium reabsorption, it is not clear if the renally produced aldosterone also influences renal sodium handling or blood pressure regulation. In addition, angiotensin II influences kidney function and structure through the stimulation of renal inflammation. New data suggest that the renal AT1 receptor plays an important role in the determination of blood pressure levels, and this effect is unique and non-redundant in the actions of extrarenal AT1 receptors. SUMMARY The finding of new functions and components of the renin-angiotensin-aldosterone system clearly adds new knowledge to our understanding of how angiotensin II influences the kidney and blood pressure.
Collapse
Affiliation(s)
- Helmy M Siragy
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908-1409, USA.
| |
Collapse
|
39
|
Juncos R, Hong NJ, Garvin JL. Differential effects of superoxide on luminal and basolateral Na+/H+ exchange in the thick ascending limb. Am J Physiol Regul Integr Comp Physiol 2006; 290:R79-83. [PMID: 16099821 DOI: 10.1152/ajpregu.00447.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Superoxide (O2−) increases Na+ reabsorption in the thick ascending limb (THAL) by enhancing Na/K/2Cl cotransport. However, the effects of O2− on other THAL transporters, such as Na+/H+ exchangers, are unknown. We hypothesized that O2− stimulates Na+/H+ exchange in the THAL. We assessed total Na+/H+ exchange activity by measuring recovery of intracellular pH (pHi) after acid loading in isolated perfused THALs before and after adding xanthine oxidase (XO) and hypoxanthine (HX). We found that XO and HX decreased total pHi recovery rate from 0.26 ± 0.05 to 0.21 ± 0.04 pH units/min ( P < 0.05), and this net inhibition decreased steady-state pHi from 7.52 to 7.37. Because THALs have different Na+/H+ exchanger isoforms on the luminal and basolateral membrane, we tested the effects of xanthine oxidase and hypoxanthine on luminal and basolateral Na+/H+ exchange by adding dimethylamiloride to either the bath or lumen. Xanthine oxidase and hypoxanthine increased luminal Na+/H+ exchange from 3.5 ± 0.8 to 6.7 ± 1.4 pmol·min−1·mm−1 ( P < 0.01) but decreased basolateral Na+/H+ exchange from 10.8 ± 1.8 to 6.8 ± 1.1 pmol·min−1·mm−1 ( P < 0.007). To ascertain whether these effects were caused by O2− or H2O2, we examined the ability of tempol, a superoxide dismutase mimetic, to block these effects. In the presence of tempol, xanthine oxidase and hypoxanthine had no effect on luminal or basolateral Na+/H+ exchange. We conclude that O2− inhibits basolateral and stimulates luminal Na+/H+ exchangers, perhaps because different isoforms are expressed on each membrane. Inhibition of basolateral Na+/H+ exchange may enhance stimulation of luminal Na+/H+ exchange by providing additional protons to be extruded across the luminal membrane. Together, the effects of O2− on Na+/H+ exchange may increase net HCO3− reabsorption by the THAL.
Collapse
Affiliation(s)
- Ramiro Juncos
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202-2689, USA
| | | | | |
Collapse
|
40
|
Makhanova N, Lee G, Takahashi N, Sequeira Lopez ML, Gomez RA, Kim HS, Smithies O. Kidney function in mice lacking aldosterone. Am J Physiol Renal Physiol 2005; 290:F61-9. [PMID: 16118390 DOI: 10.1152/ajprenal.00257.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore the effects of decreased amounts or absence of aldosterone, we have disrupted the gene coding for aldosterone synthase (AS) in mice and investigated blood pressure and kidney function in AS+/+, AS+/-, and AS-/- mice. AS+/- mice have normal blood pressures and show no abnormalities in electrolytes or kidney gene expression, but they have significantly higher than normal urine volume and lower urine osmolality. In contrast, the AS-/- mice have low blood pressure, abnormal electrolyte homeostasis (increased plasma concentrations of K+, Ca2+, and Mg2+ and decreased concentrations of HCO3(-) and Cl- but no difference in the plasma Na+ level), and disturbances in water metabolism (higher urine output, decreased urine osmolality, and impaired urine concentrating and diluting ability). Absence of aldosterone in the AS-/- mice induced several compensatory changes: an increased food intake-to-body weight ratio, an elevated plasma concentration of glucocorticoids, and strong activation of the renin-angiotensin system. Parallel with the markedly increased synthesis and release of renin, the AS-/- mice showed increased expression of cyclooxygenase-2 (COX-2) in macula densa. On salt supplementation, plasma electrolyte concentrations and kidney renin and COX-2 levels became similar to those of wild-type mice, but the lower blood pressure of the AS-/- mice was not corrected. Thus absence of aldosterone in AS-/- mice results in impairment of Na+ reabsorption in the distal nephron, decreased blood pressure, and strong renin-angiotensin system activation. Our data show the substantial correction of these abnormalities, except the low blood pressure, by high dietary salt does not depend on aldosterone.
Collapse
Affiliation(s)
- Natalia Makhanova
- Dept. of Pathology & Laboratory Medicine, Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Pflueger A, Croatt AJ, Peterson TE, Smith LA, d'Uscio LV, Katusic ZS, Nath KA. The hyperbilirubinemic Gunn rat is resistant to the pressor effects of angiotensin II. Am J Physiol Renal Physiol 2005; 288:F552-8. [PMID: 15536166 DOI: 10.1152/ajprenal.00278.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II induces vasoconstriction, at least in part, by stimulating NADPH oxidase and generating reactive oxygen species. ANG II also induces heme oxygenase activity, and bilirubin, a product of such activity, possesses antioxidant properties. We hypothesized that bilirubin, because of its antioxidant properties, may reduce the pressor and prooxidant effects of ANG II. Our in vivo studies used the hyperbilirubinemic Gunn rat which is deficient in the enzyme uridine diphosphate glucuronosyl transferase, the latter enabling the excretion of bilirubin into bile. ANG II (0.5 mg x kg(-1) x day(-1)) or saline vehicle was administered by osmotic minipump to control and Gunn rats for 4 wk. The rise in systolic blood pressure induced by ANG II, as observed in control rats, was markedly reduced in Gunn rats, the latter approximately 50% less at 3 and 4 wk after the initiation of ANG II infusion. The chronic administration of ANG II also impaired endothelium-dependent relaxation responses in control rats but not in Gunn rats. As assessed by the tetrahydrobiopterin/dihydrobiopterin ratio, ANG II induced oxidative stress in the aorta in control rats but not in Gunn rats. Heightened generation of superoxide anion in aortic rings in ANG II-infused rats and by vascular smooth muscle cells exposed to ANG II was normalized by bilirubin in vitro. We conclude that the pressor and prooxidant effects of ANG II are attenuated in the hyperbilirubinemic Gunn rat, an effect which, we speculate, may reflect, at least in part, the scavenging of superoxide anion by bilirubin.
Collapse
Affiliation(s)
- Axel Pflueger
- Division of Nephrology, Department of Internal Medicine, Mayo Clinic, 200 First St., SW, Guggenheim 542, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Xu L, Dixit MP, Chen R, Dixit NM, Collins JF, Ghishan FK. Effects of angiotensin II on NaPi-IIa co-transporter expression and activity in rat renal cortex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1667:114-21. [PMID: 15581846 DOI: 10.1016/j.bbamem.2004.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Revised: 09/07/2004] [Accepted: 09/14/2004] [Indexed: 11/20/2022]
Abstract
The kidney plays a major role in reabsorption of phosphate with the majority occurring in the proximal tubule (PT). The type IIa sodium-phosphate co-transporter (NaPi-IIa) is the main player in PT. The purpose of current study was to determine the effect of angiotensin II (A-II) on membrane expression of NaPi-IIa in the rat renal cortex. A-II (500 ng/kg/min) was chronically infused into the Sprague-Dawley rats by miniosmotic pump for 7 days. The arterial pressure and circulating plasma A-II level along with urine output were markedly increased in A-II rats. There was diuresis but no natriuresis. The phosphate excretion increased sevenfold on day 4 and 5.7-fold on day 7. There was no change in Na-dependent Pi uptake in brush-border membrane (BBM) vesicles between A-II-treated group and control on day 4, however, there was a 43% increase on day 7. Western blot analysis of NaPi-IIa protein abundance showed a parallel pattern: no change after 4 days of treatment and a 48% increase after 7 days of treatment. However, Northern blot analysis of cortical RNA showed no change in NaPi-IIa mRNA abundance on day 7. A-II stimulation of Na/Pi co-transport activity is a result of increases in the expression of BBM NaPi-IIa protein level and that stimulation is most likely mediated by posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Liping Xu
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|