1
|
Point AD, Crimmins BS, Holsen TM, Fernando S, Hopke PK, Darie CC. Can blood proteome diversity among fish species help explain perfluoroalkyl acid trophodynamics in aquatic food webs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162337. [PMID: 36848995 DOI: 10.1016/j.scitotenv.2023.162337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/22/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse family of industrially significant synthetic chemicals infamous for extreme environmental persistence and global environmental distribution. Many PFAS are bioaccumulative and biologically active mainly due to their tendency to bind with various proteins. These protein interactions are important in determining the accumulation potential and tissue distribution of individual PFAS. Trophodynamics studies including aquatic food webs present inconsistent evidence for PFAS biomagnification. This study strives to identify whether the observed variability in PFAS bioaccumulation potential among species could correspond with interspecies protein composition differences. Specifically, this work compares the perfluorooctane sulfonate (PFOS) serum protein binding potential and the tissue distribution of ten perfluoroalkyl acids (PFAAs) detected in alewife (Alosa pseudoharengus), deepwater sculpin (Myoxocephalus thompsonii), and lake trout (Salvelinus namaycush) of the Lake Ontario aquatic piscivorous food web. These three fish sera and fetal bovine reference serum all had unique total serum protein concentrations. Serum protein-PFOS binding experiments showed divergent patterns between fetal bovine serum and fish sera, suggesting potentially two different PFOS binding mechanisms. To identify interspecies differences in PFAS-binding serum proteins, fish sera were pre-equilibrated with PFOS, fractionated by serial molecular weight cut-off filter fractionation, followed by liquid chromatography-tandem mass spectrometry analysis of the tryptic protein digests and the PFOS extracts of each fraction. This workflow identified similar serum proteins for all fish species. However, serum albumin was only identified in lake trout, suggesting apolipoproteins are likely the primary PFAA transporters in alewife and deepwater sculpin sera. PFAA tissue distribution analysis provided supporting evidence for interspecies variations in lipid transport and storage, which may also contribute to the varied PFAA accumulation in these species. Proteomics data are available via ProteomeXchange with identifier PXD039145.
Collapse
Affiliation(s)
- Adam D Point
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, United States of America.
| | - Bernard S Crimmins
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States of America; AEACS, LLC, New Kensington, PA, United States of America
| | - Thomas M Holsen
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States of America; Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, United States of America
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, United States of America
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, United States of America; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, United States of America
| |
Collapse
|
2
|
Yi S, Yang D, Zhu L, Mabury SA. Significant Reductive Transformation of 6:2 Chlorinated Polyfluorooctane Ether Sulfonate to Form Hydrogen-Substituted Polyfluorooctane Ether Sulfonate and Their Toxicokinetics in Male Sprague-Dawley Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6123-6132. [PMID: 33947185 DOI: 10.1021/acs.est.1c00616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was previously shown to undergo limited dechlorination in rainbow trout to yield 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) as the sole metabolite. However, the biotransformation susceptibility of 6:2 Cl-PFESA has not been investigated in mammals and the biological behavior of 6:2 H-PFESA has not been defined in any species. We investigated the respective transformation products of 6:2 Cl-PFESA and 6:2 H-PFESA and their toxicokinetic properties in male Sprague-Dawley rats as a mammalian model. 6:2 H-PFESA was the sole detectable metabolite of 6:2 Cl-PFESA, with a transformation percentage of 13.6% in rat liver, but it resisted further degradation. 6:2 Cl-PFESA also transformed to 6:2 H-PFESA in reductive rat liver S9 incubations but remained stable under oxidative conditions, suggesting a reductive enzyme-dependent transformation pathway. 6:2 Cl-PFESA was more enriched in lipid-rich tissues, while 6:2 H-PFESA was more prone to cumulative urinary excretion. From this perspective, it may suggest a detoxification mechanism for organisms to form the less hydrophobic 6:2 H-PFESA to alleviate total burdens. To date, 6:2 Cl-PFESA was the second perfluoroalkyl acid reported to undergo biotransformation in mammals. The toxicokinetic properties determined for 6:2 Cl-PFESA and 6:2 H-PFESA in blood and urine were found to be structure and dose dependent.
Collapse
Affiliation(s)
- Shujun Yi
- State Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Lingyan Zhu
- State Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| |
Collapse
|
3
|
Ghosh N, Roy S, Mondal JA. Headgroup-Specific Interaction of Biological Lipid Monolayer/Water Interface with Perfluorinated Persistent Organic Pollutant ( f-POP): As Observed with Interface-Selective Vibrational Spectroscopy. J Phys Chem B 2022; 126:563-571. [PMID: 34990127 DOI: 10.1021/acs.jpcb.1c08214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Perfluoro compounds are widely used in various manufacturing processes, which leads to their bioaccumulation and subsequent adverse effects on human health. Using interface-selective vibrational spectroscopy (heterodyne-detected vibrational sum frequency generation (HD-VSFG)), we have elucidated the molecular mechanism of the perturbation of lipid monolayers on the water surface using a prototype perfluorinated persistent organic pollutant, perfluoroheptanoic acid (PFHA). PFHA disrupts the well-ordered all-trans conformation of a cationic lipid (1,2-dipalmitoyl-3-trimethylammonium propane (DPTAP)) monolayer and reduces the interfacial electric field at the lipid/water interface. In contrast, the hydrophobic packing of an anionic lipid (1,2-dipalmitoyl-sn-glycero-3-phospoglycerol (DPPG)) monolayer remains largely unaffected in the presence of PFHA, though the interfacial electric field is reduced. For a zwitterionic lipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC))/water interface, both alkyl chain ordering and interfacial electric field are fairly perturbed by PFHA. Lipid headgroup-specific interaction of PFHA and the repulsive interaction of oleophobic fluoroalkyl chain with the lipid alkyl chains govern these distinct perturbations of the lipid monolayers on the water surface.
Collapse
|
4
|
Shen Z, Ge J, Ye H, Tang S, Li Y. Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer. J Phys Chem B 2020; 124:5415-5425. [PMID: 32515593 DOI: 10.1021/acs.jpcb.0c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To understand the potential cytotoxicity of perfluoroalkyl substances (PFAS), we study their interactions with a model phospholipid bilayer membrane using molecular dynamics (MD) simulations. Four typical PFAS molecules are investigated, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctanesulfonic acid (PFOS), and perfluorohexane sulfonate (PFHxS). All of these PFAS molecules are found to spontaneously penetrate the lipid bilayer within a short simulation time (a few nanoseconds). During the penetration process, further free-energy analysis reveals that a PFAS molecule encounters an energy barrier at the bilayer/water interface. To overcome this free-energy barrier, the PFAS molecule flips itself at the interface. We further investigate the influence of embedded PFAS molecules on the membrane properties. All of the embedded PFAS molecules are found to produce a cholesterol-like condensing effect on the lipid bilayer, which includes increases of the order parameters of lipid tails and the thickness of the lipid bilayer and a decrease of area per lipid. Moreover, the PFAS molecules are found to form hydrogen bonds with oxygen atoms at three different positions of a lipid molecule. Our work reveals the penetration pathway of PFAS molecules entering into a lipid bilayer. In addition, the cholesterol-like condensing effect induced by embedded PFAS molecules on model membranes is systematically investigated and discussed. Our simulations can help understand the physical mechanisms of PFAS cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey Ge
- Department of Materials Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shan Tang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Ebert A, Allendorf F, Berger U, Goss KU, Ulrich N. Membrane/Water Partitioning and Permeabilities of Perfluoroalkyl Acids and Four of their Alternatives and the Effects on Toxicokinetic Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5051-5061. [PMID: 32212724 DOI: 10.1021/acs.est.0c00175] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The search for alternatives to bioaccumulative perfluoroalkyl acids (PFAAs) is ongoing. New, still highly fluorinated alternatives are produced in hopes of reducing bioaccumulation. To better estimate this bioaccumulative behavior, we performed dialysis experiments and determined membrane/water partition coefficients, Kmem/w, of six perfluoroalkyl carboxylic acids (PFCAs), three perfluoroalkanesulfonic acids, and four alternatives. We also investigated how passive permeation might influence the uptake kinetics into cells, measuring the passive anionic membrane permeability Pion through planar lipid bilayers for six PFAAs and three alternatives. Experimental Kmem/w and Pion were both predicted well by the COSMO-RS theory (log RMSE 0.61 and 0.46, respectively). Kmem/w values were consistent with the literature data, and alternatives showed similar sorption behavior as PFAAs. Experimental Pion values were high enough to explain observed cellular uptake by passive diffusion with no need to postulate the existence of active uptake processes. However, predicted pKa and neutral permeabilities suggest that also the permeation of the neutral species should be significant in case of PFCAs. This can have direct consequences on the steady-state distribution of PFAAs across cell membranes and thus toxicity. Consequently, we propose a model to predict pH-dependent baseline toxicity based on Kmem/w, which considers the permeation of both neutral and anionic species.
Collapse
Affiliation(s)
- Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | - Flora Allendorf
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Urs Berger
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
- Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
| | - Nadin Ulrich
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| |
Collapse
|
6
|
Ghosh N, Roy S, Mondal JA. On the Behavior of Perfluorinated Persistent Organic Pollutants (POPs) at Environmentally Relevant Aqueous Interfaces: An Interplay of Hydrophobicity and Hydrogen Bonding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3720-3729. [PMID: 32202791 DOI: 10.1021/acs.langmuir.0c00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The behavior of perfluorinated persistent organic pollutants (POPs), especially perfluoroalkyl carboxylic and sulfonic acids, at aqueous interfaces is crucial for their transport and speciation in the environment and subsequent immunotoxicity. Here, we investigate the surface prevalence and interfacial interaction of a prototype perfluorinated-POP, perfluoroheptanoic acid (PFHA), with environmentally relevant amphiphiles of varying hydrophobicity and head groups (CnH2n+1-X; n: 8 vs 16; -X: -OH vs -COOH) using interface-selective vibrational sum frequency generation (VSFG) spectroscopy. SFG intensity spectra in the CH- and OH-stretch regions reveal that PFHA prevails at aqueous interfaces that contain amphiphiles of intermediate chain length such as 1-octanol (n = 8) and heptanoic acid (n = 6). PFHA partially expels as well as increases the alkyl chain order of octanol on the water surface. Whereas heptanoic acid, though less hydrophobic than octanol, is retained at the water surface through hydrogen-bonding with the PFHA head group ((PFHA)COO-···HOOC(heptanoic-acid)). Long chain amphiphiles (n = 16) such as hexadecanol and palmitic acid expel PFHA from the water surface regardless of the difference in their head groups. Interestingly, the dangling OH (3710 cm-1) which is diminished at the hydrogenated-amphiphile-water interface is preserved at the perfluorinated-POP-water interface.
Collapse
|
7
|
Stróżyńska M, H Gross J, Schuhen K. Structural investigation of perfluorocarboxylic acid derivatives formed in the reaction with N,N-dimethylformamide dialkylacetals. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:131-143. [PMID: 31594396 DOI: 10.1177/1469066719880546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A structural investigation of perfluorocarboxylic acid derivatives formed in the reaction with N,N-dimethylformamide dialkylacetals employing several techniques of mass spectrometry (MS) is described. Two derivatizing reagents, dimethylformamide dimethyl acetal (DMF-DMA) and dimethylformamide diethylacetal (DMF-DEA) were used. In contrast to carboxylic acids, perfluorocarboxylic acids are not able to form alkyl esters as the main product in this reaction. We found that perfluorooctanoic acid (PFOA) forms a salt with N,N-dimethylformamide dialkylacetals. This salt undergoes a further reaction inside the injection block of a gas chromatograph (GC) by loss of CO2 and then forms 1,1-perfluorooctane-(N,N,N,N-tetramethyl)-diamine. The GC-MS experiments using both electron ionization (EI) and positive-ion chemical ionization (PCI) revealed that the same reaction products are formed with either derivatizing reagent. Subjecting the perfluorocarboxylic acid derivative to electrospray ionization (ESI) and direct analysis in real time (DART), both positive- and negative-ion modes indicated that cluster ions are formed. In the positive-ion mode, this cluster ion consists of two iminium cations and one PFOA anion, while in the negative-ion mode, it comprises two PFOA anions and one cation. The salt structure was further confirmed by liquid injection field desorption/ionization (LIFDI) as well as infrared (IR) spectroscopy. We propose a simple mechanism of N,N,N',N'-tetramethylformamidinium cation formation. The structure elucidation is supported by specific fragment ions as obtained by GC-EI-MS and GC-PCI-MS analyses.
Collapse
Affiliation(s)
- Monika Stróżyńska
- Wasser 3.0/abcr GmbH, Karlsruhe, Germany
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
8
|
Viada B, Cámara CI, Yudi LM. Destabilizing effect of perfluorodecanoic acid on simple membrane models. SOFT MATTER 2019; 15:2447-2462. [PMID: 30801603 DOI: 10.1039/c8sm02301h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perfluoroalkyl acids (PFA) are amphiphilic surfactants widely used in industry with several commercial applications. An important feature of these compounds is their non-biodegradability and their tendency to bio-accumulate in the environment, which has led to these compounds being considered among the most persistent pollutants worldwide. Many studies have provided evidence of their toxic effect on humans and wildlife. For this reason, more and more efforts have been made to better understand the effect of these compounds on living organisms. The aim of the present study is to understand how the electrostatic interactions and film compactness of biological membrane models modulate their interaction with PFA, more specifically with perfluorodecanoic acid (PFD). Langmuir isotherms and Brewster angle microscopy (BAM) are used to evaluate the effect of PFD on lipid membrane models (air/water monolayers and vesicles), analyzing the behavior of PFD : lipid mixtures. The lipids used in this study are distearoyl phosphatidic acid (DSPA), dilauroyl phosphatidic acid (DLPA) and distearoyl phosphatidylethanolamine (DSPE). PFD induces an increase in the mean molecular area per lipid in monolayers, mainly at lower surface pressures. BAM images demonstrate that PFD mixes with DLPA, inducing a decrease in gray level, while it forms a non-miscible mixture with DSPA, segregating PFD domains. Insertion studies of PFD within monolayers and dynamic light scattering experiments demonstrate that PFD can penetrate into monolayers and bilayers above 30 mN m-1, which is the lateral pressure value accepted for a cellular bilayer.
Collapse
Affiliation(s)
- Benjamin Viada
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Córdoba, Argentina.
| | | | | |
Collapse
|
9
|
Valsecchi C, Grisoni F, Consonni V, Ballabio D. Structural alerts for the identification of bioaccumulative compounds. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:19-28. [PMID: 30024088 DOI: 10.1002/ieam.4085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Legislators have included bioaccumulation in the evaluation of chemicals in the framework of the European Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. REACH requires information on the bioconcentration factor (BCF), which is a parameter for assessing bioaccumulation and encourages the use of a weight-of-evidence approach, including predictions from quantitative structure-activity relationships (QSARs). This study presents a novel approach, based on structural alerts, to be used as a decision-support system for the identification of substances with bioaccumulation potential. In a regulatory framework, these alerts can be integrated with other sources of information, such as experimental and in silico data, to reduce the uncertainty of the assessment, thereby supporting a weight-of-evidence approach. Moreover, the identified alerts have a direct connection with relevant structural features, thus fostering the applicability and interpretability of the approach. The structural alerts were identified on 779 chemicals annotated for their fish BCF, and the approach was then validated on 278 external molecules. The developed decision-support system allowed identification of 77% of bioaccumulative chemicals and was competitive with more complex QSAR models used in regulatory assessments. The approach is implemented in an easy-to-use workflow, provided free of charge. Integr Environ Assess Manag 2019;15:19-28. © 2018 SETAC.
Collapse
Affiliation(s)
- Cecile Valsecchi
- Milano Chemometrics & QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Francesca Grisoni
- Milano Chemometrics & QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Viviana Consonni
- Milano Chemometrics & QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Davide Ballabio
- Milano Chemometrics & QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
10
|
Wang H, Zhang X, Liu Y, Liu J. Stabilization of Liposomes by Perfluorinated Compounds. ACS OMEGA 2018; 3:15353-15360. [PMID: 30556004 PMCID: PMC6288781 DOI: 10.1021/acsomega.8b02448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/30/2018] [Indexed: 05/05/2023]
Abstract
Perfluorinated compounds (PFCs) are emerging persistent environmental contaminants that may be toxic to animals and humans. To gain fundamental insights into the mechanism of their toxicity, the interactions of phosphocholine (PC) liposomes as model membranes were studied with three types of PFCs, including perfluorooctanoic acid, perfluorooctane sulfonate, and perfluorohexanesulfonic acid potassium salt, together with three common surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and sodium 1-heptanesulfonate (SHS). The interactions were systematically characterized by zeta potential measurement, dynamic light scattering, negative-stain transmission electron microscopy, and fluorescence spectroscopy. Unmodified liposomes, calcein-loaded liposomes, and Laurdan dye-embedded liposomes were all tested. By gradually increasing the temperature, the three PFCs and SHS decreased the leakage of calcein-loaded 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposomes, whereas SDS and CTAB increased the leakage. The PFCs that affected the lipid membranes stronger than SHS were attributable to their perfluoroalkyl carbon chains. Packing of the lipids was further studied using Laurdan dye as a probe. Calcein leakage tests also indicated that PFCs inhibited lipid membrane leakage induced by inorganic nanoparticles such as silica and gold nanoparticles. This study confirmed the similar effect of the PFCs as cholesterol in affecting membrane properties and would be helpful for understanding the interaction mechanism of PFCs and cell membranes.
Collapse
Affiliation(s)
- Heye Wang
- Jiangsu
Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation
Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaohan Zhang
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yibo Liu
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- E-mail: (J.L.)
| |
Collapse
|
11
|
Fitzgerald NJM, Wargenau A, Sorenson C, Pedersen J, Tufenkji N, Novak PJ, Simcik MF. Partitioning and Accumulation of Perfluoroalkyl Substances in Model Lipid Bilayers and Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10433-10440. [PMID: 30148610 DOI: 10.1021/acs.est.8b02912] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants, yet knowledge of their biological effects and mechanisms of action is limited. The highest aqueous PFAS concentrations are found in areas where bacteria are relied upon for functions such as nutrient cycling and contaminant degradation, including fire-training areas, wastewater treatment plants, and landfill leachates. This research sought to elucidate one of the mechanisms of action of PFAS by studying their uptake by bacteria and partitioning into model phospholipid bilayer membranes. PFAS partitioned into bacteria as well as model membranes (phospholipid liposomes and bilayers). The extent of incorporation into model membranes and bacteria was positively correlated to the number of fluorinated carbons. Furthermore, incorporation was greater for perfluorinated sulfonates than for perfluorinated carboxylates. Changes in zeta potential were observed in liposomes but not bacteria, consistent with PFAS being incorporated into the phospholipid bilayer membrane. Complementary to these results, PFAS were also found to alter the gel-to-fluid phase transition temperature of phospholipid bilayers, demonstrating that PFAS affected lateral phospholipid interactions. This investigation compliments other studies showing that sulfonated PFAS and PFAS with more than seven fluorinated carbons have a higher potential to accumulate within biota than carboxylated and shorter-chain PFAS.
Collapse
Affiliation(s)
- Nicole J M Fitzgerald
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive SE , Minneapolis , Minnesota 55455 , United States
| | - Andreas Wargenau
- Department of Chemical Engineering , McGill University , 3610 University Street , Montreal , Quebec H3A 0C5 , Canada
| | - Carlise Sorenson
- Department of Bioproducts and Biosystems Engineering , University of Minnesota , 1390 Eckles Avenue , Saint Paul , Minnesota 55108 , United States
| | - Joel Pedersen
- Departments of Soil Science, Civil and Environmental Engineering, and Chemistry , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Nathalie Tufenkji
- Department of Chemical Engineering , McGill University , 3610 University Street , Montreal , Quebec H3A 0C5 , Canada
| | - Paige J Novak
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive SE , Minneapolis , Minnesota 55455 , United States
| | - Matt F Simcik
- School of Public Health , University of Minnesota , 420 Delaware Street S.E. , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
12
|
Nouhi S, Ahrens L, Campos Pereira H, Hughes AV, Campana M, Gutfreund P, Palsson GK, Vorobiev A, Hellsing MS. Interactions of perfluoroalkyl substances with a phospholipid bilayer studied by neutron reflectometry. J Colloid Interface Sci 2018; 511:474-481. [DOI: 10.1016/j.jcis.2017.09.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 01/22/2023]
|
13
|
Time-dependent effects of perfluorinated compounds on viability in cerebellar granule neurons: Dependence on carbon chain length and functional group attached. Neurotoxicology 2017; 63:70-83. [DOI: 10.1016/j.neuro.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/11/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022]
|
14
|
Guo XY, Peschel C, Watermann T, Rudorff GFV, Sebastiani D. Cluster Formation of Polyphilic Molecules Solvated in a DPPC Bilayer. Polymers (Basel) 2017; 9:E488. [PMID: 30965791 PMCID: PMC6418594 DOI: 10.3390/polym9100488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/02/2023] Open
Abstract
We analyse the initial stages of cluster formation of polyphilic additive molecules which are solvated in a dipalmitoylphosphatidylcholine (DPPC) lipid bilayer. Our polyphilic molecules comprise an aromatic (trans-bilayer) core domain with (out-of-bilayer) glycerol terminations, complemented with a fluorophilic and an alkyl side chain, both of which are confined within the aliphatic segment of the bilayer. Large-scale molecular dynamics simulations (1 μ s total duration) of a set of six of such polyphilic additives reveal the initial steps towards supramolecular aggregation induced by the specific philicity properties of the molecules. For our intermediate system size of six polyphiles, the transient but recurrent formation of a trimer is observed on a characteristic timescale of about 100 ns. The alkane/perfluoroalkane side chains show a very distinct conformational distribution inside the bilayer thanks to their different philicity, despite their identical anchoring in the trans-bilayer segment of the polyphile. The diffusive mobility of the polyphilic additives is about the same as that of the surrounding lipids, although it crosses both bilayer leaflets and tends to self-associate.
Collapse
Affiliation(s)
- Xiang-Yang Guo
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany.
| | - Christopher Peschel
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany.
| | - Tobias Watermann
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany.
| | - Guido Falk von Rudorff
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany.
| | - Daniel Sebastiani
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany.
| |
Collapse
|
15
|
Kijewska K, Blanchard GJ. Using Diffusion To Characterize Interfacial Heterogeneity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1155-1161. [PMID: 28094955 DOI: 10.1021/acs.langmuir.6b04341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the use of molecular diffusional motion over a range of length scales to characterize compositional heterogeneity in monolayer structures. This work focuses on the diffusional motion of perylene in two types of films supported on functionalized silica surfaces: single-component (stearic acid) and two-component (hydrocarbon/fluorocarbon) films. Langmuir-Blodgett (LB) monolayers were deposited directly on silica or were bound to surface-modified silica by means of metal ion complexation. The LB films were characterized by their π-A isotherms and by Brewster angle microscopy (BAM) during formation and deposition. Chromophore mobility and monolayer structural heterogeneity were evaluated by comparing rotational diffusion data (fluorescence anisotropy decay imaging) and translational diffusion data (fluorescence recovery after photobleaching) on the same LB films. Our results indicate that the mobility of the chromophore depends sensitively on both metal ion identity and film composition.
Collapse
Affiliation(s)
- Krystyna Kijewska
- Department of Chemistry, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Department of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Grisoni F, Consonni V, Vighi M, Villa S, Todeschini R. Investigating the mechanisms of bioconcentration through QSAR classification trees. ENVIRONMENT INTERNATIONAL 2016; 88:198-205. [PMID: 26760717 DOI: 10.1016/j.envint.2015.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
This paper proposes a scheme to predict whether a compound (1) is mainly stored within lipid tissues, (2) has additional storage sites (e.g., proteins), or (3) is metabolized/eliminated with a reduced bioconcentration. The approach is based on two validated QSAR (Quantitative Structure-Activity Relationship) trees, whose salient features are: (a) descriptor interpretability and (b) simplicity. Trees were developed for 779 organic compounds, the TGD approach was used to quantify the lipid-driven bioconcentration, and a refined machine-learning optimization procedure was applied. We focused on molecular descriptor interpretation, which allowed us to gather new mechanistic insights into the bioconcentration mechanisms.
Collapse
Affiliation(s)
- Francesca Grisoni
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences, Milano, Italy; Milano Chemometrics and QSAR Research Group, Milano, Italy.
| | - Viviana Consonni
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences, Milano, Italy; Milano Chemometrics and QSAR Research Group, Milano, Italy
| | - Marco Vighi
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences, Milano, Italy
| | - Sara Villa
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences, Milano, Italy
| | - Roberto Todeschini
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences, Milano, Italy; Milano Chemometrics and QSAR Research Group, Milano, Italy
| |
Collapse
|
17
|
Shi Y, Vestergren R, Zhou Z, Song X, Xu L, Liang Y, Cai Y. Tissue Distribution and Whole Body Burden of the Chlorinated Polyfluoroalkyl Ether Sulfonic Acid F-53B in Crucian Carp (Carassius carassius): Evidence for a Highly Bioaccumulative Contaminant of Emerging Concern. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14156-65. [PMID: 26560673 DOI: 10.1021/acs.est.5b04299] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Following the global actions to phase out perfluoroctanesulfonic acid (PFOS) a large number of alternative per- and polyfluoroalkyl substances, with poorly defined hazard properties, are being used in increasing quantities. Here, we report on the first detection of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in biological samples and determine the tissue distribution and whole body bioaccumulation factors (BAFwhole body) in crucian carp (Carassius carassius). Analysis of fish samples from Xiaoqing River (XR) and Tangxun Lake (TL) demonstrated a similar level of F-53B contamination with median concentrations in blood of 41.9 and 20.9 ng/g, respectively. Tissue/blood ratios showed that distribution of F-53B primarily occurs to the kidney (TL: 0.48, XR: 0.54), gonad (TL: 0.36, XR: 0.54), liver (TL: 0.38, XR: 0.53), and heart (TL: 0.47, XR: 0.47). Median Log BAFwhole body values for F-53B (XR: 4.124, TL: 4.322) exceeded regulatory bioaccumulation criterion and were significantly higher than those of PFOS in the same data sets (XR: 3.430, TL: 3.279). On the basis of its apparent omnipresence and strong bioaccumulation propensity, it is hypothesized that F-53B could explain a significant fraction of previously unidentified organofluorine in biological samples from China, and regulatory actions for this compound are encouraged.
Collapse
Affiliation(s)
- Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Robin Vestergren
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Stockholm SE 106 91, Sweden
| | - Zhen Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University , Wuhan 430056, China
| | - Xiaowei Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Lin Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Yong Liang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University , Wuhan 430056, China
- Institute of Environment and Health, Jianghan University , Wuhan 430056, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
- Institute of Environment and Health, Jianghan University , Wuhan 430056, China
| |
Collapse
|
18
|
|
19
|
Armitage JM, Arnot JA, Wania F, Mackay D. Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:115-28. [PMID: 23023933 DOI: 10.1002/etc.2020] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/11/2012] [Accepted: 08/22/2012] [Indexed: 05/19/2023]
Abstract
A mechanistic mass balance bioconcentration model is developed and parameterized for ionogenic organic chemicals (IOCs) in fish and evaluated against a compilation of empirical bioconcentration factors (BCFs). The model is subsequently applied to a set of perfluoroalkyl acids. Key aspects of model development include revised methods to estimate the chemical absorption efficiency of IOCs at the respiratory surface (E(W) ) and the use of distribution ratios to characterize the overall sorption capacity of the organism. Membrane-water distribution ratios (D(MW) ) are used to characterize sorption to phospholipids instead of only considering the octanol-water distribution ratio (D(OW) ). Modeled BCFs are well correlated with the observations (e.g., r(2) = 0.68 and 0.75 for organic acids and bases, respectively) and accurate to within a factor of three on average. Model prediction errors appear to be largely the result of uncertainties in the biotransformation rate constant (k(M) ) estimates and the generic approaches for estimating sorption capacity (e.g., D(MW) ). Model performance for the set of perfluoroalkyl acids considered is highly dependent on the input parameters describing hydrophobicity (i.e., log K(OW) of the neutral form). The model applications broadly support the hypothesis that phospholipids contribute substantially to the sorption capacity of fish, particularly for compounds that exhibit a high degree of ionization at biologically relevant pH. Additional empirical data on biotransformation and sorption to phospholipids and subsequent incorporation into property estimation approaches (e.g., k(M) , D(MW) ) are priorities with respect to improving model performance.
Collapse
Affiliation(s)
- James M Armitage
- Department of Physical & Environmental Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
20
|
Bernardini C, Stoyanov SD, Arnaudov LN, Cohen Stuart MA. Colloids in Flatland: a perspective on 2D phase-separated systems, characterisation methods, and lineactant design. Chem Soc Rev 2013; 42:2100-29. [DOI: 10.1039/c2cs35269a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Armitage JM, Arnot JA, Wania F. Potential role of phospholipids in determining the internal tissue distribution of perfluoroalkyl acids in biota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12285-6. [PMID: 23134198 DOI: 10.1021/es304430r] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- James M Armitage
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4.
| | | | | |
Collapse
|
22
|
Eftaiha AF, Brunet SMK, Paige MF. Influence of film composition on the morphology, mechanical properties, and surfactant recovery of phase-separated phospholipid-perfluorinated fatty acid mixed monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15150-15159. [PMID: 23043367 DOI: 10.1021/la3026655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monolayer surfactant films composed of a mixture of phospholipids and perfluorinated (or partially fluorinated) surfactants are of potential utility for applications in pulmonary lung surfactant-based therapies. As a simple, minimal model of such a lung surfactant system, binary mixed monolayer films composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and perfluorooctadecanoic acid (C18F) prepared on a simplified lung fluid mimic subphase (pH 7.4, 150 mM NaCl) have been characterized in terms of mixing thermodynamics and compressibility (measured through π–A compression isotherms), film morphology (via atomic force, fluorescence, and Brewster angle microscopy), as well as spreading rate and hysteresis response to repeated expansion–contraction cycles for a variety of compositions of mixed films. Under all mixing conditions, films and their components were found to be completely immiscible and phase-separated, though there were significant changes in the aforementioned film properties as a function of composition. Of particular note was the existence of a maximum in the extent of immiscibility (characterized by ΔG(ex)(π) values) and enhanced surfactant recovery during hysteresis experiments at χ(C18F) ≥ 0.30. The latter was attributed to the relatively rapid respreading rate of the perfluorinated amphiphile in comparison with DPPC alone at the air–water interface, which enhances the performance of this mixture as a potential pulmonary lung surfactant. Further, monolayer film structure could be tracked dynamically as a function of compression at the air–water interface via Brewster angle microscopy, with the C18F component being preferentially squeezed out of the film with compression, but returning rapidly upon re-expansion. In general, addition of C18F to DPPC monolayers resulted in improvements to mechanical, structural, and respreading properties of the film, indicating the potential value of these compounds as additives to pulmonary lung surfactant formulations.
Collapse
Affiliation(s)
- Ala'a F Eftaiha
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | | | | |
Collapse
|
23
|
Eftaiha AF, Brunet SM, Paige MF. Thermodynamic and structural characterization of a mixed perfluorocarbon–phospholipid ternary monolayer surfactant system. J Colloid Interface Sci 2012; 368:356-65. [DOI: 10.1016/j.jcis.2011.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 12/21/2022]
|
24
|
Araghi HY, Paige MF. Deposition and photopolymerization of phase-separated perfluorotetradecanoic acid-10,12-pentacosadiynoic acid Langmuir-Blodgett monolayer films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10657-10665. [PMID: 21761852 DOI: 10.1021/la201773e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mixed monolayer surfactant films of perfluorotetradecanoic acid and the photopolymerizable diacetylene molecule 10,12-pentacosadiynoic acid were prepared at the air-water interface and transferred onto solid supports via Langmuir-Blodgett (LB) deposition. The addition of the perfluoroacid to the diacetylene surfactant results in enhanced stabilization of the monolayer in comparison with the pure diacetylene alone, allowing film transfer onto a solid substrate without resorting to addition of cations in the subphase or photopolymerization prior to deposition. The resulting LB films consisted of well-defined phase-separated domains of the two film components, and the films were characterized by a combination of atomic force microscope (AFM) imaging and fluorescence emission microscopy both before and after photopolymerization into the highly emissive "red form" of the polydiacetylene. Photopolymerization of the monolayer films resulted in the formation of diacetylene bilayers, which were highly fluorescent, with the apparent rate of photopolymerization and the fluorescence emission of the films being largely unaffected by the presence of the perfluoroacid.
Collapse
Affiliation(s)
- Hessamaddin Younesi Araghi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | | |
Collapse
|
25
|
Eftaiha AF, Paige MF. The influence of salinity on surfactant miscibility in mixed dipalmitoylphosphatidylcholine – perfluorooctadecanoic acid monolayer films. J Colloid Interface Sci 2011; 353:210-9. [DOI: 10.1016/j.jcis.2010.09.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 12/20/2022]
|
26
|
Xie W, Bothun GD, Lehmler HJ. Partitioning of perfluorooctanoate into phosphatidylcholine bilayers is chain length-independent. Chem Phys Lipids 2010; 163:300-8. [PMID: 20096277 DOI: 10.1016/j.chemphyslip.2010.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/04/2010] [Accepted: 01/08/2010] [Indexed: 11/30/2022]
Abstract
The chain length dependence of the interaction of PFOA, a persistent environmental contaminant, with dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated using steady-state fluorescence anisotropy spectroscopy, differential scanning calorimetry (DSC) and dynamic light scattering (DLS). PFOA caused a linear depression of the main phase transition temperature T(m) while increasing the width of the phase transition of all three phosphatidylcholines. Although PFOA's effect on T(m) and the transition width decreased in the order DMPC>DPPC>DSPC, its relative effect on the phase behavior was largely independent of the phosphatidylcholine. PFOA caused swelling of DMPC but not DPPC and DSPC liposomes at 37 degrees C in the DLS experiments, which suggests that PFOA partitions more readily into bilayers in the fluid phase. These findings suggest that PFOA's effect on the phase behavior of phosphatidylcholines depends on the cooperativity and state (i.e., gel versus liquid phase) of the membrane. DLS experiments are also consistent with partial liposome solubilization at PFOA/lipid molar ratios>1, which suggests the formation of mixed PFOA-lipid micelles.
Collapse
Affiliation(s)
- Wei Xie
- Department of Occupational and Environmental Health, University of Iowa, College of Public Health, Iowa City, IA 52242-5000, USA
| | | | | |
Collapse
|
27
|
Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes. Chem Phys Lipids 2010; 163:64-73. [DOI: 10.1016/j.chemphyslip.2009.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/24/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022]
|
28
|
Model and cell membrane partitioning of perfluorooctanesulfonate is independent of the lipid chain length. Colloids Surf B Biointerfaces 2009; 76:128-36. [PMID: 19932010 DOI: 10.1016/j.colsurfb.2009.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 11/23/2022]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse health effects in humans and animals by interacting with and disturbing of the normal properties of biological lipid assemblies. To gain further insights into these interactions, we investigated the effect of PFOS potassium salt on dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) model membranes using fluorescence anisotropy measurements and differential scanning calorimetry (DSC) and on the cell membrane of HL-60 human leukemia cells and freshly isolated rat alveolar macrophages using fluorescence anisotropy measurements. PFOS produced a concentration-dependent decrease of the main phase transition temperature (T(m)) and an increased peak width (DeltaT(w)) in both the fluorescence anisotropy and the DSC experiments, with a rank order DMPC>DPPC>DSPC. PFOS caused a fluidization of the gel phase of all phosphatidylcholines investigated, but had the opposite effect on the liquid-crystalline phase. The apparent partition coefficients of PFOS between the phosphatidylcholine bilayer and the bulk aqueous phase were largely independent of the phosphatidylcholine chain length and ranged from 4.4x10(4) to 8.8x10(4). PFOS also significantly increased the fluidity of membranes of cells. These findings suggest that PFOS readily partitions into lipid assemblies, independent of their composition, and may cause adverse biological effects by altering their fluidity in a manner that depends on the membrane cooperativity and state (e.g., gel versus liquid-crystalline phase) of the lipid assembly.
Collapse
|
29
|
Yokoyama H, Nakahara H, Shibata O. Miscibility and phase behavior of DPPG and perfluorocarboxylic acids at the air–water interface. Chem Phys Lipids 2009; 161:103-14. [DOI: 10.1016/j.chemphyslip.2009.06.142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
|
30
|
Miscibility behavior of two-component monolayers at the air-water interface: perfluorocarboxylic acids and DMPE. J Colloid Interface Sci 2009; 337:191-200. [PMID: 19481762 DOI: 10.1016/j.jcis.2009.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/04/2009] [Accepted: 05/04/2009] [Indexed: 11/21/2022]
Abstract
Surface pressure (pi)-molecular area (A) and surface potential (DeltaV)-A isotherms have been measured for two-component monolayers of four different perfluorocarboxylic acids [FCn; perfluorododecanoic acid (FC12), perfluorotetradecanoic acid (FC14), perfluorohexadecanoic acid (FC16), and perfluorooctadecanoic acid (FC18)] and dimyristoylphosphatidylethanolamine (DMPE) on 0.15M NaCl (pH 2) at 298.2K. The present study is focused on the miscibility and the interfacial behavior for the binary DMPE/FCn monolayers upon compression. From the isotherms, the miscibility has been elucidated in terms of the additivity rule, the interaction parameter, and the interaction energy. The interaction parameter (or energy) is compared with that for the previous dipalmitoylphosphatidylcholine (DPPC)/FCn systems [Colloids Surf. B 41 (2005) 285-298] to understand the effect of phospholipids' polar headgroup on the binary miscibility. Furthermore, the phase behavior of the DMPE/FCn systems has been morphologically examined using fluorescence microscopy (FM) and atomic force microscopy (AFM). These images reveal the different interaction modes among the four systems; DMPE can be miscible with FC12 and FC14 and immiscible with FC16 and FC18 in the monolayer state. These systematic examinations indicate that the miscibility of perfluorocarboxylic acids and phospholipids depends on combination of hydrocarbon and fluorocarbon chain lengths and on phospholipids' polar headgroups within a monolayer.
Collapse
|
31
|
Petrov JG, Andreeva TD, Moehwald H. Dipolar interactions and miscibility in binary Langmuir monolayers with opposite dipole moments of the hydrophilic heads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3659-3666. [PMID: 19708148 DOI: 10.1021/la804136j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigate unusual binary Langmuir monolayers with the same long CH3(CH2)21 hydrocarbon chains and fluorinated -O-CH2CF3 (FEE) versus nonfluorinated -O-CH2CH3 (EE) hydrophilic heads, whose opposite dipoles assist miscibility, in contrast to the equally oriented polar head dipoles of almost all natural or synthetic amphiphiles that minister to phase separation. Although two-component bulk micelles, lipid bilayers, and monolayers with fluorinated and nonfluorinated chains, which also have opposite dipoles, often show phase separation, we find complete miscibility and nonideality of the FEE-EE mixtures demonstrated via deviation of the composition dependencies of the mean molecular area at fixed surface pressure from the additivity rule. The composition dependencies of the excess molecular areas exhibit minima and maxima which show specific structural changes at particular compositions. They originate from the dipolar and steric interactions between the polar heads, because the interactions between the same chains of FEE and EE do not vary. The pi/A isotherms and the pi/X(FEE) phase diagram reveal that mixtures with molar fractions X(FEE) > or = 0.3 exist in an upright solid phase even in uncompressed state. This result is confirmed by the compressibility values and via Brewster angle microscopy, which does not show optical anisotropy at X(FEE) > or = 0.3. Comparison of the collapse and phase-transition molecular areas with literature data suggests that the upright architecture corresponds to LS-phase or S-phase with more defects as the S-phase in the pure monolayers. The mixtures with X(FEE) < 0.3 exist in tilted L2' phase at low surface pressures. Their mean molecular areas are smaller than the corresponding values in the EE film, which manifests reduction of the tilt of the EE chains with increasing FEE content. We ascribe the chain erection to partial dehydration of the EE heads caused by dipolar attraction between the EE and FEE heads. The excess free energy of mixing deltaG(exc)pi is positive but much smaller than the negative total free energy of mixing AG mix(pi) showing a spontaneous miscibility at all compositions due to an entropy increase. The analysis of the conflict between the deltaG(mix)pi minimum at molar fraction X(FEE) = 0.5 and the minimum and negative value of the excess molecular area A(pi,exc) at X(FEE) = 0.8 shows that the A(pi,exc)/X(FEE) minimum has not an electrostatic but a short-range structural origin.
Collapse
Affiliation(s)
- Jordan G Petrov
- Institute of Biophysics, Bulgarian Academy of Sciences; 1 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
32
|
Li X, Turánek J, Knötigová P, Kudláčková H, Mašek J, Pennington DB, Rankin SE, Knutson BL, Lehmler HJ. Synthesis and biocompatibility evaluation of fluorinated, single-tailed glucopyranoside surfactants. NEW J CHEM 2008. [DOI: 10.1039/b805015e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Tsuji M, Inoue T, Shibata O. Purification and thermal analysis of perfluoro-n-alkanoic acids. Colloids Surf B Biointerfaces 2008; 61:61-5. [PMID: 17719754 DOI: 10.1016/j.colsurfb.2007.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 07/07/2007] [Accepted: 07/14/2007] [Indexed: 11/22/2022]
Abstract
Purification of perfluoro-n-alkanoic acids (C(n)F(2n+1)COOH, n=7, 9, 11, 13, 15 and 17) was made by repeated recrystallizations from n-hexane/acetone mixed solvent, and their purity was found to be more than 99.5% by GC-MS, NMR, and elemental analysis. The thermal behaviors such as melting point and enthalpy change of fusion were investigated using differential scanning calorimetry (DSC). The melting point monotonously increased with increasing carbon number (n) of the acids, while the enthalpy change showed irregularity at n=14. The crystal structure of these acids was found to be dependent upon solvent used for recrystallization; that is, the acids recrystallized from the above solvent becomes more stable energetically, indicating their higher enthalpy change of fusion than that of the solidified acids from fused ones. The solid state was also found to vary depending upon the thermal history, indicating that a few crystal structures of the solid state are quite similar energetically. The melting points (T(m)) of perfluoro-n-alkanoic acids are higher than those of corresponding n-alkanoic acids, and the difference in T(m) increases with increasing carbon number in the acids.
Collapse
Affiliation(s)
- Minami Tsuji
- Division of Biointerfacial Science, Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
34
|
Xie W, Kania-Korwel I, Bummer PM, Lehmler HJ. Effect of potassium perfluorooctanesulfonate, perfluorooctanoate and octanesulfonate on the phase transition of dipalmitoylphosphatidylcholine (DPPC) bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1299-308. [PMID: 17349969 PMCID: PMC1993895 DOI: 10.1016/j.bbamem.2007.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/26/2007] [Accepted: 02/01/2007] [Indexed: 11/23/2022]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse effects by inhibiting pulmonary surfactant. To gain further insights in this potential mechanism of toxicity, we investigated the interaction of PFOS potassium salt with dipalmitoylphosphatidylcholine (DPPC) - the major component of pulmonary surfactant - using steady-state fluorescence anisotropy spectroscopy and DSC (differential scanning calorimetry). In addition, we investigated the interactions of two structurally related compounds, perfluorooctanoic acid (PFOA) and octanesulfonic acid (OS) potassium salt, with DPPC. In the fluorescence experiments a linear depression of the main phase transition temperature of DPPC (T(m)) and an increased peak width was observed with increasing concentration of all three compounds, both using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) as fluorescent probes. PFOS caused an effect on T(m) and peak width at much lower concentrations because of its increased tendency to partition onto DPPC bilayers, i.e., the partition coefficients decrease in the K(PFOS)>K(PFOA)>>K(OS). Similar to the fluorescence anisotropy measurements, all three compounds caused a linear depression in the onset of the main phase transition temperature and a significant peak broadening in the DSC experiments, with PFOS having the most pronounced effect of the peak width. The effect of PFOS and other fluorinated surfactants on DPPC in both mono- and bilayers may be one mechanism by which these compounds cause adverse biological effects.
Collapse
Affiliation(s)
- W. Xie
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242
| | - I. Kania-Korwel
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242
| | - P. M. Bummer
- College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - H.-J. Lehmler
- *Corresponding Author: Dr. H.-J. Lehmler, The University of Iowa, Department of Occupational and Environmental Health, 100 Oakdale Campus #221 IREH, Iowa City, IA 52242-5000, Phone: (319) 335-4414, Fax: (319) 335-4290, e-mail:
| |
Collapse
|
35
|
Lehmler HJ, Xie W, Bothun GD, Bummer PM, Knutson BL. Mixing of perfluorooctanesulfonic acid (PFOS) potassium salt with dipalmitoyl phosphatidylcholine (DPPC). Colloids Surf B Biointerfaces 2006; 51:25-9. [PMID: 16814996 PMCID: PMC2593940 DOI: 10.1016/j.colsurfb.2006.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/03/2006] [Accepted: 05/19/2006] [Indexed: 11/20/2022]
Abstract
Perfluorooctane-1-sulfonic acid (PFOS) is emerging as an important persistent environmental pollutant. To gain insight into the interaction of PFOS with biological systems, the mixing behavior of dipalmitoylphosphatidylcholine (DPPC) with PFOS was studied using differential scanning calorimetry (DSC) and fluorescence anisotropy measurements. In the DSC experiments the onset temperature of the DPPC pretransition (Tp) decreased with increasing PFOS concentration, disappearing at XDPPC < or = 0.97. The main DPPC phase transition temperature showed a depression and peak broadening with increasing mole fraction of PFOS in both the DSC and the fluorescence anisotropy studies. From the melting point depression in the fluorescence anisotropy studies, which was observed at a concentration as low as 10 mg/L, an apparent partition coefficient of K = 5.7 x 10(4) (mole fraction basis) was calculated. These results suggest that PFOS has a high tendency to partition into lipid bilayers. These direct PFOS-DPPC interactions are one possible mechanism by which PFOS may contribute to adverse effects, for example neonatal mortality, in laboratory studies and possibly in humans.
Collapse
Affiliation(s)
- H-J Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
36
|
Lehmler HJ, Bummer PM. Interaction of a partially fluorinated long-chain nicotinate with dipalmitoylphosphatidylcholine. J Lipid Res 2005; 46:2415-22. [PMID: 16150829 DOI: 10.1194/jlr.m500231-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of a partially fluorinated long-chain nicotinate, F-NA18, a compound of interest as a chemopreventive agent, with dipalmitoylphosphatidylcholine (DPPC) was investigated in monolayers at the air-water interface and in fully hydrated bilayers and compared with its hydrocarbon analog, NA18. For the monolayer studies, the compression isotherms of mixtures of F-NA18 with DPPC were recorded at various compositions on a hydrochloric acid subphase (pH = 1.9-2.1, 32 +/- 2 degrees C). Analysis of the composition dependence of the average molecular area at constant film pressure and of the dependence of the breakpoints of the phase transitions suggests that F-NA18 is miscible with DPPC at the air-water interface, whereas NA18 shows some degree of immiscibility. In differential scanning calorimetry studies, only one major phase transition was observed for F-NA18-DPPC mixtures, whereas NA18-DPPC mixtures exhibited a complex phase behavior. The differences in the phase behavior of the respective mixtures may be the result of the geometric packing constraints of F-NA18 versus NA18. Therefore, for biomedical applications, the use of a partially fluorinated tail may offer advantages over simple hydrocarbon systems because, in addition to the chain length, the position and degree of fluorination can be adjusted.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
37
|
Lehmler HJ, Bummer PM. Mixing behavior of 10-(perfluorohexyl)-decanol and DPPC. Colloids Surf B Biointerfaces 2005; 44:74-81. [PMID: 16024238 PMCID: PMC2577365 DOI: 10.1016/j.colsurfb.2005.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 05/26/2005] [Accepted: 05/27/2005] [Indexed: 11/21/2022]
Abstract
Fluorocarbon alcohol such as 10-(perfluorohexyl)-decanol are of interest for novel pulmonary drug delivery approaches. The purpose of this study was to investigate the mixing behavior of 10-(perfluorohexyl)-decanol with dipalmitoylphosphatidylcholine (DPPC), the major component of lung surfactant as an aid in assessing usefulness for this and other biomedical applications. The impact of 10-(perfluorohexyl)-decanol on the phase transitions of DPPC bilayers fully hydrated with a 0.15 M sodium chloride solution were studied using differential scanning calorimetry (DSC). No peak corresponding to excess alcohol was observed. The fluorinated alcohol caused DPPC peak broadening, especially below X(DPPC) < 0.95, and elimination of the pretransition of DPPC at X(DPPC) approximately 0.91. The onset of the main phase transition remains constant down to X(DPPC) approximately 0.91, suggesting limited miscibility in the gel phase. Hydration of the 10-(perfluorohexyl)-decanol-DPPC mixtures with calcium chloride (2 mM) in place of sodium chloride did not alter the macroscopic phase behavior. In addition to the thermal properties, the miscibility of 10-(perfluorohexyl)-decanol in DPPC in monolayers at the air water interface was investigated on water, sodium chloride (0.15 M), calcium chloride (2 mM) or hydrochloric acid (pH 1.9) subphases. The concentration dependence of the onset pressure of the liquid-expanded to liquid condensed phase transition of DPPC showed a slight change with increasing mole fraction on all four subphases. The surface area-mole fraction diagrams of 10-(perfluorohexyl)-decanol and DPPC on water, sodium chloride and calcium chloride showed near ideal behavior with slight negative deviations at higher surface pressure. A more significant negative deviation was observed for the hydrochloric acid subphase. Overall, both the DSC and the monolayer studies suggest that 10-(perfluorohexyl)-decanol and DPPC are partially miscible in biological mono- and bilayers. The macroscopic phase behavior 10-(perfluorohexyl)-decanol-DPPC system is significantly different from the analogous hydrocarbon system, which is attributed to a less favorable packing of the partially fluorinated hydrophobic tails in the mono- and bilayer.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, 100 Oakdale Campus, 124 IREH, Iowa City, IA 52242-5000, USA. hans-joachim-lehmler @uiowa.edu
| | | |
Collapse
|
38
|
Lehmler HJ. Synthesis of environmentally relevant fluorinated surfactants--a review. CHEMOSPHERE 2005; 58:1471-96. [PMID: 15694468 DOI: 10.1016/j.chemosphere.2004.11.078] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Revised: 10/14/2004] [Accepted: 11/25/2004] [Indexed: 05/21/2023]
Abstract
In the past years there has been a growing interest in fluorinated persistent organic pollutants such as perfluorooctanesulfonic acid, perfluorooctanesulfonamides, perfluorinated carboxylic acids and fluorotelomer alcohols. Although these compounds have probably been present in the environment for many decades, we are only now beginning to realize that these environmental contaminants may have serious environmental and health effects. This article gives a state-of-the-art review of synthetic approaches that have been employed for the synthesis of these environmentally relevant fluorinated compounds. Perfluorooctanesulfonic acid derivatives, in particular, pose a problem because only a few perfluorooctanesulfonic acid derivatives are available from commercial sources--a fact that limits the ability of researchers worldwide to further study these compounds. Because of the limited literature available, this article also describes synthetic approaches for shorter chain homologues or perfluoroether analogues that can potentially be applied for the synthesis of perfluorooctanesulfonic acid derivatives. The preparation of typical starting materials for the synthesis of perfluorooctanesulfonic acid derivatives such as the perfluoroalkanesulfonyl fluorides and chlorides will be discussed. Subsequently, their conversion into relevant perfluoroalkane sulfonate salts (R(F)SO3M), sulfonamides (R(F)SO2NH2), N-alkyl sulfonamides (R(F)SO2NHR, R = alkyl), N,N-dialkyl sulfonamides (R(F)SO2NR2, R = alkyl), sulfonamidoethanol (R(F)SO2NRCH2CH2OH, R = -H, -CH3 or -C2H5) and sulfonamidoacetates (R(F)SO2NRCH2CO2H, R = -H, -CH3 or -C2H5) will be described. Many perfluorinated carboxylic acids and fluorotelomer alcohols are available from commercial sources. The review of the synthesis of these two classes of fluorinated compounds includes a review of their industrial synthesis and the synthesis of relevant degradation products.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, 100 Oakdale Campus #124 IREH, Iowa City, IA 52242-5000, USA.
| |
Collapse
|
39
|
Lehmler HJ, Fortis-Santiago A, Nauduri D, Bummer PM. Interaction of long-chain nicotinates with dipalmitoylphosphatidylcholine. J Lipid Res 2004; 46:535-46. [PMID: 15604517 DOI: 10.1194/jlr.m400406-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of four long-chain nicotinates, compounds that are of interest as potential chemopreventive agents, with dipalmitoylphosphatidylcholine (DPPC) was investigated in monolayers at the air-water interface and in fully hydrated bilayers. For the monolayer studies, the compression isotherms of mixtures of the respective nicotinate with DPPC were recorded at various compositions on a hydrochloric acid subphase (pH 1.9-2.1, 37 +/- 2 degrees C). The headgroup of the nicotinates (24-29 A2/molecule) is larger than that of the hydrophobic tail (20 A2/molecule). The pure nicotinates exhibit a temperature- and chain length-dependent transition from an expanded to a condensed phase. Analysis of the concentration dependence of the average molecular area at constant film pressure and the concentration dependence of the breakpoint of the phase transition from the expanded to the condensed state suggests that all four DPPC-nicotinate mixtures are partially miscible at the air-water interface. Although a complex phase behavior with several phase transitions was observed, differential scanning calorimetry studies of the four mixtures are also indicative of the partial miscibility of DPPC and the respective nicotinate. Overall, the complex phase behavior most likely results from the head-tail mismatch of the nicotinates and the geometric packing constraints in the two-component lipid bilayer.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|