1
|
Li S, Ren R, Lyu L, Song J, Wang Y, Lin TW, Brun AL, Hsu HY, Shen HH. Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. MEMBRANES 2022; 12:membranes12100906. [PMID: 36295664 PMCID: PMC9609327 DOI: 10.3390/membranes12100906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Anton Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Paracini N, Schneck E, Imberty A, Micciulla S. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane. Adv Colloid Interface Sci 2022; 301:102603. [PMID: 35093846 DOI: 10.1016/j.cis.2022.102603] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPSs) are a constitutive element of the cell envelope of Gram-negative bacteria, representing the main lipid in the external leaflet of their outer membrane (OM) lipid bilayer. These unique surface-exposed glycolipids play a central role in the interactions of Gram-negative organisms with their surrounding environment and represent a key element for protection against antimicrobials and the development of antibiotic resistance. The biophysical investigation of a wide range of different types of in vitro model membranes containing reconstituted LPS has revealed functional and structural properties of these peculiar membrane lipids, providing molecular-level details of their interaction with antimicrobial compounds. LPS assemblies reconstituted at interfaces represent a versatile tool to study the properties of the Gram-negative OM by exploiting several surface-sensitive techniques, in particular X-ray and neutron scattering, which can probe the structure of thin films with sub-nanometer resolution. This review provides an overview of different approaches employed to investigate structural and biophysical properties of LPS, focusing on studies on Langmuir monolayers of LPS at the air/liquid interface and a range of supported LPS-containing model membranes reconstituted at solid/liquid interfaces.
Collapse
Affiliation(s)
| | - Emanuel Schneck
- Physics Departent, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
3
|
Palusińska-Szysz M, Jurak M, Gisch N, Waldow F, Zehethofer N, Nehls C, Schwudke D, Koper P, Mazur A. The human LL-37 peptide exerts antimicrobial activity against Legionella micdadei interacting with membrane phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159138. [DOI: 10.1016/j.bbalip.2022.159138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022]
|
4
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
5
|
Zeth K, Sancho-Vaello E. Structural Plasticity of LL-37 Indicates Elaborate Functional Adaptation Mechanisms to Bacterial Target Structures. Int J Mol Sci 2021; 22:ijms22105200. [PMID: 34068993 PMCID: PMC8156758 DOI: 10.3390/ijms22105200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The human cathelicidin LL-37 is a multifunctional peptide of the human innate immune system. Among the various functions of LL-37, its antimicrobial activity is important in controlling the microorganisms of the human body. The target molecules of LL-37 in bacteria include membrane lipids, lipopolysaccharides (LPS), lipoteichoic acid (LTA), proteins, DNA and RNA. In this mini-review, we summarize the entity of LL-37 structural data determined over the last 15 years and specifically discuss features implicated in the interactions with lipid-like molecules. For this purpose, we discuss partial and full-length structures of LL-37 determined in the presence of membrane-mimicking detergents. This constantly growing structural database is now composed of monomers, dimers, tetramers, and fiber-like structures. The diversity of these structures underlines an unexpected plasticity and highlights the conformational and oligomeric adaptability of LL-37 necessary to target different molecular scaffolds. The recent co-crystal structures of LL-37 in complex with detergents are particularly useful to understand how these molecules mimic lipids and LPS to induce oligomerization and fibrillation. Defined detergent binding sites provide deep insights into a new class of peptide scaffolds, widening our view on the fascinating world of the LL-37 structural factotum. Together, the new structures in their evolutionary context allow for the assignment of functionally conserved residues in oligomerization and target interactions. Conserved phenylalanine and arginine residues primarily mediate those interactions with lipids and LPS. The interactions with macromolecules such as proteins or DNA remain largely unexplored and open a field for future studies aimed at structures of LL-37 complexes. These complexes will then allow for the structure-based rational design of LL-37-derived peptides with improved antibiotic properties.
Collapse
Affiliation(s)
- Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- Correspondence: (K.Z.); (E.S.-V.); Tel.: +45-604-666-29 (K.Z.)
| | - Enea Sancho-Vaello
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: (K.Z.); (E.S.-V.); Tel.: +45-604-666-29 (K.Z.)
| |
Collapse
|
6
|
Ciumac D, Gong H, Campbell RA, Campana M, Xu H, Lu JR. Structural elucidation upon binding of antimicrobial peptides into binary mixed lipid monolayers mimicking bacterial membranes. J Colloid Interface Sci 2021; 598:193-205. [PMID: 33901846 DOI: 10.1016/j.jcis.2021.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Antimicrobial peptides (AMPs) kill microorganisms by causing structural damage to bacterial membranes. Different microorganisms often require a different type and concentration of an AMP to achieve full microbial killing. We hypothesise that the difference is caused by different membrane structure and composition. EXPERIMENTS Given the complexities of bacterial membranes, we have used monolayers of the binary DPPG/TMCL mixture to mimic the cytoplasmic membrane of Gram-positive bacteria and the binary DPPG/DPPE mixture to mimic the cytoplasmic membrane of Gram-negative bacteria, where DPPG, TMCL and DPPE stand for 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol), 1',3'-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-glycerol, and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, respectively. A Langmuir trough was specially designed to control the spread lipid monolayers and facilitate neutron reflectivity measurements. FINDINGS Surface pressure-area isotherm analysis revealed that all binary lipid systems mix non-ideally, but mixing is thermodynamically favoured. An increase in the surface pressure encourages demixing, resulting in phase separation and formation of clusters. Neutron reflectivity measurements were undertaken to study the binding of an antimicrobial peptide G(IIKK)4-I-NH2 (G4) to the binary DPPG/TMCL and DPPG/DPPE monolayer mixtures at the molar ratios of 6/4 and 3/7, respectively. The results revealed stronger binding and penetration of G4 to the DPPG/TMCL monolayer, indicating greater affinity of the antimicrobial peptide due to the electrostatic interaction and more extensive penetration into the more loosely packed lipid film. This work helps explain how AMPs attack different bacterial membranes, and the results are discussed in the context of other lipid models and antibacterial studies.
Collapse
Affiliation(s)
- Daniela Ciumac
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK
| | - Richard A Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS-20156, 38042 Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Stopford Building, Manchester M13 9PT, UK
| | - Mario Campana
- ISIS Neutron Facility, STFC, Chilton, Didcot OX11 0QZ, UK
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, China
| | - Jian R Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK.
| |
Collapse
|
7
|
Nelson N, Opene B, Ernst RK, Schwartz DK. Antimicrobial peptide activity is anticorrelated with lipid a leaflet affinity. PLoS One 2020; 15:e0242907. [PMID: 33253275 PMCID: PMC7703904 DOI: 10.1371/journal.pone.0242907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
The activity of antimicrobial peptides (AMPs) has significant bacterial species bias, the mechanisms of which are not fully understood. We employed single-molecule tracking to measure the affinity of three different AMPs to hybrid supported bilayers composed of lipid A extracted from four different Gram negative bacteria and observed a strong empirical anticorrelation between the affinity of a particular AMP to a given lipid A layer and the activity of that AMP towards the bacterium from which that lipid A was extracted. This suggested that the species bias of AMP activity is directly related to AMP interactions with bacterial outer membranes, despite the fact that the mechanism of antimicrobial activity occurs at the inner membrane. The trend also suggested that the interactions between AMPs and the outer membrane lipid A (even in the absence of other components, such as lipopolysaccharides) capture effects that are relevant to the minimum inhibitory concentration.
Collapse
Affiliation(s)
- Nathaniel Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Belita Opene
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dezanet C, Kempf J, Mingeot-Leclercq MP, Décout JL. Amphiphilic Aminoglycosides as Medicinal Agents. Int J Mol Sci 2020; 21:E7411. [PMID: 33049963 PMCID: PMC7583001 DOI: 10.3390/ijms21197411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conjugation of hydrophobic group(s) to the polycationic hydrophilic core of the antibiotic drugs aminoglycosides (AGs), targeting ribosomal RNA, has led to the development of amphiphilic aminoglycosides (AAGs). These drugs exhibit numerous biological effects, including good antibacterial effects against susceptible and multidrug-resistant bacteria due to the targeting of bacterial membranes. In the first part of this review, we summarize our work in identifying and developing broad-spectrum antibacterial AAGs that constitute a new class of antibiotic agents acting on bacterial membranes. The target-shift strongly improves antibiotic activity against bacterial strains that are resistant to the parent AG drugs and to antibiotic drugs of other classes, and renders the emergence of resistant Pseudomonas aeruginosa strains highly difficult. Structure-activity and structure-eukaryotic cytotoxicity relationships, specificity and barriers that need to be crossed in their development as antibacterial agents are delineated, with a focus on their targets in membranes, lipopolysaccharides (LPS) and cardiolipin (CL), and the corresponding mode of action against Gram-negative bacteria. At the end of the first part, we summarize the other recent advances in the field of antibacterial AAGs, mainly published since 2016, with an emphasis on the emerging AAGs which are made of an AG core conjugated to an adjuvant or an antibiotic drug of another class (antibiotic hybrids). In the second part, we briefly illustrate other biological and biochemical effects of AAGs, i.e., their antifungal activity, their use as delivery vehicles of nucleic acids, of short peptide (polyamide) nucleic acids (PNAs) and of drugs, as well as their ability to cleave DNA at abasic sites and to inhibit the functioning of connexin hemichannels. Finally, we discuss some aspects of structure-activity relationships in order to explain and improve the target selectivity of AAGs.
Collapse
Affiliation(s)
- Clément Dezanet
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| | - Julie Kempf
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, Catholic University of Louvain, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium
| | - Jean-Luc Décout
- Molecular Pharmacochemistry Department, University Grenoble Alpes, CNRS, 470 Rue de la Chimie, F-38000 Grenoble, France; (C.D.); (J.K.)
| |
Collapse
|
9
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
10
|
Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182977. [DOI: 10.1016/j.bbamem.2019.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022]
|
11
|
Martynowycz MW, Rice A, Andreev K, Nobre TM, Kuzmenko I, Wereszczynski J, Gidalevitz D. Salmonella Membrane Structural Remodeling Increases Resistance to Antimicrobial Peptide LL-37. ACS Infect Dis 2019; 5:1214-1222. [PMID: 31083918 DOI: 10.1021/acsinfecdis.9b00066] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gram-negative bacteria are protected from their environment by an outer membrane that is primarily composed of lipopolysaccharides (LPSs). Under stress, pathogenic serotypes of Salmonella enterica remodel their LPSs through the PhoPQ two-component regulatory system that increases resistance to both conventional antibiotics and antimicrobial peptides (AMPs). Acquired resistance to AMPs is contrary to the established narrative that AMPs circumvent bacterial resistance by targeting the general chemical properties of membrane lipids. However, the specific mechanisms underlying AMP resistance remain elusive. Here we report a 2-fold increase in bacteriostatic concentrations of human AMP LL-37 for S. enterica with modified LPSs. LPSs with and without chemical modifications were isolated and investigated by Langmuir films coupled with grazing-incidence X-ray diffraction (GIXD) and specular X-ray reflectivity (XR). The initial interactions between LL-37 and LPS bilayers were probed using all-atom molecular dynamics simulations. These simulations suggest that initial association is nonspecific to the type of LPS and governed by hydrogen bonding to the LPS outer carbohydrates. GIXD experiments indicate that the interactions of the peptide with monolayers reduce the number of crystalline domains but greatly increase the typical domain size in both LPS isoforms. Electron densities derived from XR experiments corroborate the bacteriostatic values found in vitro and indicate that peptide intercalation is reduced by LPS modification. We hypothesize that defects at the liquid-ordered boundary facilitate LL-37 intercalation into the outer membrane, whereas PhoPQ-mediated LPS modification protects against this process by having innately increased crystallinity. Since induced ordering has been observed with other AMPs and drugs, LPS modification may represent a general mechanism by which Gram-negative bacteria protect against host innate immunity.
Collapse
Affiliation(s)
- Michael W. Martynowycz
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Building 401, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Amy Rice
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| | - Konstantin Andreev
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| | - Thatyane M. Nobre
- Departamento de Fisica e Ciecias dos Materiais, Instituto de Fisica de São Carlos, 400 Parque Arnold Schimidt, 13566-590 São Carlos-SP, Brazil
| | - Ivan Kuzmenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Building 401, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| | - David Gidalevitz
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| |
Collapse
|
12
|
Andreev K, Martynowycz MW, Gidalevitz D. Peptoid drug discovery and optimization via surface X-ray scattering. Biopolymers 2019; 110:e23274. [PMID: 30892696 PMCID: PMC6661014 DOI: 10.1002/bip.23274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
Synthetic polymers mimicking antimicrobial peptides have drawn considerable interest as potential therapeutics. N-substituted glycines, or peptoids, are recognized by their in vivo stability and ease of synthesis. Peptoids are thought to act primarily on the negatively charged lipids that are abundant in bacterial cell membranes. A mechanistic understanding of lipid-peptoid interaction at the molecular level will provide insights for rational design and optimization of peptoids. Here, we highlight recent studies that utilize synchrotron liquid surface X-ray scattering to characterize the underlying peptoid interactions with bacterial and eukaryotic membranes. Cellular membranes are highly complex, and difficult to characterize at the molecular level. Model systems including Langmuir monolayers, are used in these studies to reduce system complexity. The general workflow of these systems and the corresponding data analysis techniques are presented alongside recent findings. These studies investigate the role of peptoid physicochemical characteristics on membrane activity. Specifically, the roles of cationic charge, conformational constraint via macrocyclization, and hydrophobicity are shown to correlate their membrane interactions to biological activities in vitro. These structure-activity relationships have led to new insights into the mechanism of action by peptoid antimicrobials, and suggest optimization strategies for future therapeutics based on peptoids.
Collapse
Affiliation(s)
- Konstantin Andreev
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois
| | | | - David Gidalevitz
- Center for the Molecular Study of Condensed Soft Matter and Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
13
|
Ciumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci 2019; 537:163-185. [DOI: 10.1016/j.jcis.2018.10.103] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023]
|
14
|
Nelson N, Schwartz DK. Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers. Biophys J 2018; 114:2606-2616. [PMID: 29874611 PMCID: PMC6129183 DOI: 10.1016/j.bpj.2018.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ∼1.7 μm2/s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ∼0.1 μm2/s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties.
Collapse
Affiliation(s)
- Nathaniel Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
15
|
The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:546-66. [DOI: 10.1016/j.bbamem.2015.11.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
|
16
|
Clifton LA, Skoda MA, Le Brun A, Ciesielski F, Kuzmenko I, Holt SA, Lakey JH. Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:404-12. [PMID: 25489959 PMCID: PMC4295546 DOI: 10.1021/la504407v] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/09/2014] [Indexed: 05/18/2023]
Abstract
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg(2+) and Ca(2+)) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca(2+) binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.
Collapse
Affiliation(s)
- Luke A. Clifton
- ISIS
Pulsed Neutron and Muon Source, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, United Kingdom
| | - Maximilian
W. A. Skoda
- ISIS
Pulsed Neutron and Muon Source, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, United Kingdom
| | - Anton
P. Le Brun
- Bragg
Institute, Australian Nuclear Science and
Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Filip Ciesielski
- ISIS
Pulsed Neutron and Muon Source, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, United Kingdom
| | - Ivan Kuzmenko
- Advanced
Photon Source , Argonne National Laboratories, Argonne, Illinois 60439, United States
| | - Stephen A. Holt
- Bragg
Institute, Australian Nuclear Science and
Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Jeremy H. Lakey
- Institute
for Cell and Molecular Biosciences, Newcastle
University, Framlington
Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
17
|
Faunce CA, Paradies HH. Two Dimensional Crystallization of Three Solid Lipid A-Diphosphate Phases. J Phys Chem B 2014; 118:800-11. [DOI: 10.1021/jp408282x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chester A. Faunce
- The University of Salford, Joule Physics
Laboratory, Faculty of Science, Engineering
and Environment, Manchester M5 4 WT, United Kingdom
| | - Henrich H. Paradies
- The University of Salford, Joule Physics
Laboratory, Faculty of Science, Engineering
and Environment, Manchester M5 4 WT, United Kingdom
| |
Collapse
|
18
|
|
19
|
Le Brun A, Clifton LA, Halbert CE, Lin B, Meron M, Holden PJ, Lakey JH, Holt SA. Structural characterization of a model gram-negative bacterial surface using lipopolysaccharides from rough strains of Escherichia coli. Biomacromolecules 2013; 14:2014-22. [PMID: 23617615 PMCID: PMC3679557 DOI: 10.1021/bm400356m] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/18/2013] [Indexed: 12/29/2022]
Abstract
Lipopolysaccharides (LPS) make up approximately 75% of the Gram-negative bacterial outer membrane (OM) surface, but because of the complexity of the molecule, there are very few model OMs that include LPS. The LPS molecule consists of lipid A, which anchors the LPS within the OM, a core polysaccharide region, and a variable O-antigen polysaccharide chain. In this work we used RcLPS (consisting of lipid A plus the first seven sugars of the core polysaccharide) from a rough strain of Escherichia coli to form stable monolayers of LPS at the air-liquid interface. The vertical structure RcLPS monolayers were characterized using neutron and X-ray reflectometry, while the lateral structure was investigated using grazing incidence X-ray diffraction and Brewster angle microscopy. It was found that RcLPS monolayers at surface pressures of 20 mN m(-1) and above are resolved as hydrocarbon tails, an inner headgroup, and an outer headgroup of polysaccharide with increasing solvation from tails to outer headgroups. The lateral organization of the hydrocarbon lipid chains displays an oblique hexagonal unit cell at all surface pressures, with only the chain tilt angle changing with surface pressure. This is in contrast to lipid A, which displays hexagonal or, above 20 mN m(-1), distorted hexagonal packing. This work provides the first complete structural analysis of a realistic E. coli OM surface model.
Collapse
Affiliation(s)
- Anton
P. Le Brun
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Luke A. Clifton
- ISIS Neutron Facility, STFC Rutherford
Appleton Laboratory, Didcot, Oxfordshire
OX11 0QX, United Kingdom
| | - Candice E. Halbert
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| | - Binhua Lin
- Consortium
of Advanced Radiation
Sources (CARS), University of Chicago,
Chicago, Illinois 60637, United States
| | - Mati Meron
- Consortium
of Advanced Radiation
Sources (CARS), University of Chicago,
Chicago, Illinois 60637, United States
| | - Peter J. Holden
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Jeremy H. Lakey
- Institute for Cell and Molecular
Biosciences, Newcastle University, Framlington
Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stephen A. Holt
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| |
Collapse
|
20
|
Mechanism of membrane perturbation by the HIV-1 gp41 membrane-proximal external region and its modulation by cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2521-8. [PMID: 22692008 DOI: 10.1016/j.bbamem.2012.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 11/20/2022]
Abstract
Membrane-activity of the glycoprotein 41 membrane-proximal external region (MPER) is required for HIV-1 membrane fusion. Consequently, its inhibition results in viral neutralization by the antibody 4E10. Previous studies suggested that MPER might act during fusion by locally perturbing the viral membrane, i.e., following a mechanism similar to that proposed for certain antimicrobial peptides. Here, we explore the molecular mechanism of how MPER permeates lipid monolayers containing cholesterol, a main component of the viral envelope, using grazing incidence X-ray diffraction and X-ray reflectivity. Our studies reveal that helical MPER forms lytic pores under conditions not affecting the lateral packing order of lipids. Moreover, we observe an increment of the surface area occupied by MPER helices in cholesterol-enriched membranes, which correlates with an enhancement of the 4E10 epitope accessibility in lipid vesicles. Thus, our data support the view that curvature generation by MPER hydrophobic insertion into the viral membrane is functionally more relevant than lipid packing disruption.
Collapse
|
21
|
Jeworrek C, Evers F, Howe J, Brandenburg K, Tolan M, Winter R. Effects of specific versus nonspecific ionic interactions on the structure and lateral organization of lipopolysaccharides. Biophys J 2011; 100:2169-77. [PMID: 21539784 DOI: 10.1016/j.bpj.2011.03.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/23/2011] [Accepted: 03/17/2011] [Indexed: 11/27/2022] Open
Abstract
We report x-ray reflectivity and grazing incidence x-ray diffraction measurements of lipopolysaccharide (LPS) monolayers at the water-air interface. Our investigations reveal that the structure and lateral ordering of the LPS molecules is very different from phospholipid systems and can be modulated by the ionic strength of the aqueous subphase in an ion-dependent manner. Our findings also indicate differential effects of monovalent and divalent ions on the two-dimensional ordering of lipid domains. Na(+) ions interact unspecifically with LPS molecules based on their ability to efficiently screen the negative charges of the LPS molecules, whereas Ca(2+) ions interact specifically by cross-linking adjacent molecules in the monolayer. At low lateral pressures, Na(+) ions present in the subphase lead to a LPS monolayer structure ordered over large areas with high compressibility, nearly hexagonal packing of the hydrocarbon chains, and high density in the LPS headgroup region. At higher film pressures, the LPS monolayer becomes more rigid and results in a less perfect, oblique packing of the LPS hydrocarbon chains as well as a smaller lateral size of highly ordered domains on the monolayer. Furthermore, associated with the increased surface pressure, a conformational change of the sugar headgroups occurs, leading to a thickening of the entire LPS monolayer structure. The effect of Ca(2+) ions in the subphase is to increase the rigidity of the LPS monolayer, leading to an oblique packing of the hydrocarbon chains already at low film pressures, an upright orientation of the sugar moieties, and much smaller sizes of ordered domains in the plane of the monolayer. In the presence of both Na(+)- and Ca(2+) ions in the subphase, the screening effect of Na(+) is predominant at low film pressures, whereas, at higher film pressures, the structure and lateral organization of LPS molecules is governed by the influence of Ca(2+) ions. The unspecific charge-screening effect of the Na(+) ions on the conformation of the sugar moiety becomes less dominant at biologically relevant lateral pressures.
Collapse
Affiliation(s)
- Christoph Jeworrek
- Physical Chemistry I, Faculty of Chemistry, TU Dortmund University, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Haarmann R, Ibrahim M, Stevanovic M, Bredemeier R, Schleiff E. The properties of the outer membrane localized Lipid A transporter LptD. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454124. [PMID: 21339611 DOI: 10.1088/0953-8984/22/45/454124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.
Collapse
Affiliation(s)
- Raimund Haarmann
- JWGU Frankfurt/Main, Cluster of Excellence Macromolecular Complexes, Center of Membrane Proteomics, Department of Biosciences, Molecular Cell Biology, Max-von-Laue Straße 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
23
|
Ivankin A, Livne L, Mor A, Caputo GA, DeGrado WF, Meron M, Lin B, Gidalevitz D. Role of the conformational rigidity in the design of biomimetic antimicrobial compounds. Angew Chem Int Ed Engl 2010; 49:8462-5. [PMID: 20872385 PMCID: PMC4112193 DOI: 10.1002/anie.201003104] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Andrey Ivankin
- Center for Molecular Study of Condensed Soft Matter (μCoSM), and Division of Physics, BCPS Department, Illinois Institute of Technology, 3440 S Dearborn Street, Chicago, IL 60616 (USA)
| | - Liran Livne
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, (Israel)
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, (Israel)
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (USA)
| | - William F. DeGrado
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, 36 & Hamilton Walk, Philadelphia, PA 19104-6059 (USA)
| | - Mati Meron
- CARS, University of Chicago Chicago, IL 60637 (USA)
| | - Binhua Lin
- CARS, University of Chicago Chicago, IL 60637 (USA)
| | - David Gidalevitz
- Center for Molecular Study of Condensed Soft Matter (μCoSM), and Division of Physics, BCPS Department, Illinois Institute of Technology, 3440 S Dearborn Street, Chicago, IL 60616 (USA)
| |
Collapse
|
24
|
Ivankin A, Livne L, Mor A, Caputo GA, DeGrado WF, Meron M, Lin B, Gidalevitz D. Role of the Conformational Rigidity in the Design of Biomimetic Antimicrobial Compounds. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Neville F, Ivankin A, Konovalov O, Gidalevitz D. A comparative study on the interactions of SMAP-29 with lipid monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:851-60. [PMID: 19800862 DOI: 10.1016/j.bbamem.2009.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/08/2009] [Accepted: 09/24/2009] [Indexed: 11/26/2022]
Abstract
This work investigates the discrimination of lipid monolayers by the ovine antimicrobial peptide SMAP-29 and compares it to that of the human LL-37 peptide. Fluid phospholipid monolayers were formed in a Langmuir trough and subsequently studied with the X-ray scattering techniques of X-ray reflectivity and grazing incidence X-ray diffraction. Any changes in the phospholipid structure after injection of peptide under the monolayer were considered to be due to interactions between the peptides and lipids. The data show that SMAP-29 discriminates against negatively charged phospholipids in a similar way to LL-37. However, it is even more interesting to note that despite a higher concentration of SMAP-29 near the monolayer, ensured by its greater charge as compared to LL-37, the amount of SMAP-29 needed to observe monolayer disruption was around three and a half times the number of molecules of LL-37 used to see similar changes with the same system. This result suggests that the structure, amino acid sequence or size of the peptide may well be as important as electrical charge and therefore gives many implications for the further study of antimicrobial peptides with regards to novel drug design and development.
Collapse
Affiliation(s)
- Frances Neville
- School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS29JT, UK
| | | | | | | |
Collapse
|
26
|
Abstract
LL-37 is a human host defence peptide that has a wide range of biological functions, including antimicrobial and immunomodulatory properties. This review summarises how molecular structure influences the balance between the immunomodulatory and antimicrobial functions of LL-37.
Collapse
Affiliation(s)
- Matthew F Burton
- Centre for Bioactive Chemistry, Department of Chemistry, University of Durham, Science Laboratory, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
27
|
Antibacterial properties and mode of action of a short acyl-lysyl oligomer. Antimicrob Agents Chemother 2009; 53:3422-9. [PMID: 19487442 DOI: 10.1128/aac.00010-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the potency, selectivity, and mode of action of the oligo-acyl-lysine (OAK) NC(12)-2 beta(12), which was recently suggested to represent the shortest OAK sequence that retains nonhemolytic antibacterial properties. A growth inhibition assay against a panel of 48 bacterial strains confirmed that NC(12)-2 beta(12) exerted potent activity against gram-positive bacteria while exhibiting negligible hemolysis up to at least 100 times the MIC. Interestingly, NC(12)-2 beta(12) demonstrated a bacteriostatic mode of action, unlike previously described OAKs that were bactericidal and essentially active against gram-negative bacteria only. The results of various experiments with binding to model phospholipid membranes correlated well with those of the cytotoxicity experiments and provided a plausible explanation for the observed activity profile. Thus, surface plasmon resonance experiments performed with model bilayers revealed high binding affinity to a membrane composition that mimicked the plasma membrane of staphylococci (global affinity constant [K(app)], 3.7 x 10(6) M(-1)) and significantly lower affinities to mimics of Escherichia coli or red blood cell cytoplasmic membranes. Additional insertion isotherms and epifluorescence microscopy experiments performed with model Langmuir monolayers mimicking the outer leaflet of plasma membranes demonstrated the preferential insertion of NC(12)-2 beta(12) into highly anionic membranes. Finally, we provide mechanistic studies in support of the view that the bacteriostatic effect resulted from a relatively slow process of plasma membrane permeabilization involving discrete leakage of small solutes, such as intracellular ATP. Collectively, the data point to short OAKs as a potential source for new antibacterial compounds that can selectively affect the growth of gram-positive bacteria while circumventing potential adverse effects linked to lytic compounds.
Collapse
|
28
|
Wang L, Brauner JW, Mao G, Crouch E, Seaton B, Head J, Smith K, Flach CR, Mendelsohn R. Interaction of recombinant surfactant protein D with lipopolysaccharide: conformation and orientation of bound protein by IRRAS and simulations. Biochemistry 2008; 47:8103-13. [PMID: 18620419 DOI: 10.1021/bi800626h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective innate host defense requires early recognition of pathogens. Surfactant protein D (SP-D), shown to play a role in host defense, binds to the lipopolysaccharide (LPS) component of Gram-negative bacterial membranes. Binding takes place via the carbohydrate recognition domain (CRD) of SP-D. Recombinant trimeric neck+CRDs (NCRD) have proven valuable in biophysical studies of specific interactions. Although X-ray crystallography has provided atomic level information on NCRD binding to carbohydrates and other ligands, molecular level information about interactions between SP-D and biological ligands under physiologically relevant conditions is lacking. Infrared reflection-absorption spectroscopy (IRRAS) provides molecular structure information from films at the air/water interface where protein adsorption to LPS monolayers serves as a model for protein-lipid interaction. In the current studies, we examine the adsorption of NCRDs to Rd 1 LPS monolayers using surface pressure measurements and IRRAS. Measurements of surface pressure, Amide I band intensities, and LPS acyl chain conformational ordering, along with the introduction of EDTA, permit discrimination of Ca (2+)-mediated binding from nonspecific protein adsorption. The findings support the concept of specific binding between the CRD and heptoses in the core region of LPS. In addition, a novel simulation method that accurately predicts the IR Amide I contour from X-ray coordinates of NCRD SP-D is applied and coupled to quantitative IRRAS equations providing information on protein orientation. Marked differences in orientation are found when the NCRD binds to LPS compared to nonspecific adsorption. The geometry suggests that all three CRDs are simultaneously bound to LPS under conditions that support the Ca (2+)-mediated interaction.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry, Newark College of Arts and Science, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cardiolipin packing ability studied by grazing incidence X-ray diffraction. Chem Phys Lipids 2008; 152:13-23. [DOI: 10.1016/j.chemphyslip.2007.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 10/16/2007] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
|
30
|
Neville F, Ishitsuka Y, Hodges CS, Konovalov O, Waring AJ, Lehrer R, Lee KYC, Gidalevitz D. Protegrin interaction with lipid monolayers: Grazing incidence X-ray diffraction and X-ray reflectivity study. SOFT MATTER 2008; 4:1665-1674. [PMID: 19672319 PMCID: PMC2723866 DOI: 10.1039/b718295c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Interactions of the antimicrobial peptide protegrin-1 (PG-1) with phospholipid monolayers have been investigated by using grazing incidence X-ray diffraction (GIXD) and specular X-ray reflectivity (XR). The structure of a PG-1 film at the air-aqueous interface was also investigated by XR for the first time. Lipid A, dipalmitoyl-phosphatidylglycerol (DPPG) and dipalmitoyl-phosphatidylcholine (DPPC) monolayers were formed at the air-aqueous interface to mimic the surface of the bacterial cell wall and the outer leaflet of the erythrocyte cell membrane, respectively. Experiments were carried out under constant area conditions where the pressure changes upon insertion of peptide into the monolayer. GIXD data suggest that the greatest monolayer disruption produced by PG-1 is seen with the DPPG system at 20 mN/m since the Bragg peaks completely disappear after introduction of PG-1 to the system. PG-1 shows greater insertion into the lipid A system compared to the DPPC system when both films are held at the same initial surface pressure of 20 mN/m. The degree of insertion lessens at 30 mN/m with both DPPC and DPPG monolayer systems. XR data further reveal that PG-1 inserts primarily in the head group region of lipid monolayers. However, only the XR data of the anionic lipids suggest the existence of an additional adsorbed peptide layer below the head group of the monolayer. Overall the data show that the extent of peptide/lipid interaction and lipid monolayer disruption depends not only on the lipid composition of the monolayer, but the packing density of the lipids in the monolayer prior to the introduction of peptide to the subphase.
Collapse
Affiliation(s)
- Frances Neville
- Address, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Koch MHJ, Bras W. Synchrotron radiation studies of non-crystalline systems. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b703892p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Neville F, Gidalevitz D, Kale G, Nelson A. Electrochemical screening of anti-microbial peptide LL-37 interaction with phospholipids. Bioelectrochemistry 2006; 70:205-13. [PMID: 16949887 DOI: 10.1016/j.bioelechem.2006.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 05/18/2006] [Accepted: 07/07/2006] [Indexed: 11/25/2022]
Abstract
LL-37 is an alpha-helical antimicrobial peptide of human origin. It is a 37 residue cathelicidin peptide. This paper explores the use of electrochemical methods to investigate the interaction of LL-37 with phospholipid and lipid A monolayers on a mercury drop electrode. Experiments were carried out in Dulbecco's phosphate buffered saline at pH approximately 7.6. The capacity-potential curves of the coated electrode in the presence and absence of LL-37 were measured using out-of-phase ac voltammetry. The frequency dependence of the complex impedance of the coated electrode in the presence and absence of LL-37 was estimated at -0.4 V versus Ag/AgCl 3.5 mol dm(-3) KCl. The monolayer permeability to ions was studied by following the reduction of Tl(I) to Tl(Hg) at the coated electrode. LL-37 shows no significant interaction with DOPC. However, LL-37 shows a small interaction with DOPG and lipid A within a DOPC monolayer where the monolayer permeability is marginally increased and the zero frequency capacitance (ZFC) is marginally decreased in both cases. LL-37 shows a significant interaction with a lipid A monolayer thereby decreasing the ZFC by 30%. The results concur with the known membrane active properties of LL-37 and establish this electrochemical approach as a key technique for screening peptides.
Collapse
Affiliation(s)
- Frances Neville
- Institute for Materials Research, School of Process, Environmental and Materials Engineering, University of Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|