1
|
Verbeelen T, Fernandez CA, Nguyen TH, Gupta S, Leroy B, Wattiez R, Vlaeminck SE, Leys N, Ganigué R, Mastroleo F. Radiotolerance of N-cycle bacteria and their transcriptomic response to low-dose space-analogue ionizing irradiation. iScience 2024; 27:109596. [PMID: 38638570 PMCID: PMC11024918 DOI: 10.1016/j.isci.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
The advancement of regenerative life support systems (RLSS) is crucial to allow long-distance space travel. Within the Micro-Ecological Life Support System Alternative (MELiSSA), efficient nitrogen recovery from urine and other waste streams is vital to produce liquid fertilizer to feed food and oxygen production in subsequent photoautotrophic processes. This study explores the effects of ionizing radiation on nitrogen cycle bacteria that transform urea to nitrate. In particular, we assess the radiotolerance of Comamonas testosteroni, Nitrosomonas europaea, and Nitrobacter winogradskyi after exposure to acute γ-irradiation. Moreover, a comprehensive whole transcriptome analysis elucidates the effects of spaceflight-analogue low-dose ionizing radiation on the individual axenic strains and on their synthetic community o. This research sheds light on how the spaceflight environment could affect ureolysis and nitrification processes from a transcriptomic perspective.
Collapse
Affiliation(s)
- Tom Verbeelen
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Celia Alvarez Fernandez
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thanh Huy Nguyen
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Surya Gupta
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Siegfried E. Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Natalie Leys
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Felice Mastroleo
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
2
|
Li J, Zhang H, Li D, Liu YJ, Bayer EA, Cui Q, Feng Y, Zhu P. Structure of the transcription open complex of distinct σ I factors. Nat Commun 2023; 14:6455. [PMID: 37833284 PMCID: PMC10575876 DOI: 10.1038/s41467-023-41796-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Bacterial σI factors of the σ70-family are widespread in Bacilli and Clostridia and are involved in the heat shock response, iron metabolism, virulence, and carbohydrate sensing. A multiplicity of σI paralogues in some cellulolytic bacteria have been shown to be responsible for the regulation of the cellulosome, a multienzyme complex that mediates efficient cellulose degradation. Here, we report two structures at 3.0 Å and 3.3 Å of two transcription open complexes formed by two σI factors, SigI1 and SigI6, respectively, from the thermophilic, cellulolytic bacterium, Clostridium thermocellum. These structures reveal a unique, hitherto-unknown recognition mode of bacterial transcriptional promoters, both with respect to domain organization and binding to promoter DNA. The key characteristics that determine the specificities of the σI paralogues were further revealed by comparison of the two structures. Consequently, the σI factors represent a distinct set of the σ70-family σ factors, thus highlighting the diversity of bacterial transcription.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haonan Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dongyu Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Energy Institute, 266101, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Ping Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
3
|
Mascher T. Past, Present, and Future of Extracytoplasmic Function σ Factors: Distribution and Regulatory Diversity of the Third Pillar of Bacterial Signal Transduction. Annu Rev Microbiol 2023; 77:625-644. [PMID: 37437215 DOI: 10.1146/annurev-micro-032221-024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Responding to environmental cues is a prerequisite for survival in the microbial world. Extracytoplasmic function σ factors (ECFs) represent the third most abundant and by far the most diverse type of bacterial signal transduction. While archetypal ECFs are controlled by cognate anti-σ factors, comprehensive comparative genomics efforts have revealed a much higher abundance and regulatory diversity of ECF regulation than previously appreciated. They have also uncovered a diverse range of anti-σ factor-independent modes of controlling ECF activity, including fused regulatory domains and phosphorylation-dependent mechanisms. While our understanding of ECF diversity is comprehensive for well-represented and heavily studied bacterial phyla-such as Proteobacteria, Firmicutes, and Actinobacteria (phylum Actinomycetota)-our current knowledge about ECF-dependent signaling in the vast majority of underrepresented phyla is still far from complete. In particular, the dramatic extension of bacterial diversity in the course of metagenomic studies represents both a new challenge and an opportunity in expanding the world of ECF-dependent signal transduction.
Collapse
Affiliation(s)
- Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany;
| |
Collapse
|
4
|
Kersey CM, Dumenyo CK. Regulation of corA, the Magnesium, Nickel, Cobalt Transporter, and Its Role in the Virulence of the Soft Rot Pathogen, Pectobacterium versatile Strain Ecc71. Microorganisms 2023; 11:1747. [PMID: 37512919 PMCID: PMC10384996 DOI: 10.3390/microorganisms11071747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Pectobacterium versatile (formally P. carotovorum) causes disease on diverse plant species by synthesizing and secreting copious amount of plant-cell-wall-degrading exoenzymes including pectate lyases, polygalacturonases, cellulases, and proteases. Exoenzyme production and virulence are controlled by many factors of bacterial, host, and environmental origin. The ion channel forming the magnesium, nickel, and cobalt transporter CorA is required for exoenzyme production and full virulence in strain Ecc71. We investigated CorA's role as a virulence factor and its expression in P. versatile. Inhibiting the transport function of CorA by growing a CorA+ strain in the presence of specific CorA inhibitor, cobalt (III) hexaammine (Co (III)Hex), has no effect on exoenzyme production. Transcription of pel-1, encoding a pectate lyase isozyme, is decreased in the absence of CorA, suggesting that CorA influences exoenzyme production at the transcriptional level, although apparently not through its transport function. CorA- and CorA+ strains grown in the presence of Co (III)Hex transcriptionally express corA at higher levels than CorA+ strains in the absence of an inhibitor, suggesting the transport role of corA contributes to autorepression. The expression of corA is about four-fold lower in HrpL- strains lacking the hrp-specific extracytoplasmic sigma factor. The corA promoter region contains a sequence with a high similarity to the consensus Hrp box, suggesting that corA is part of Hrp regulon. Our data suggest a complex role, possibly requiring the physical presence of the CorA protein in the virulence of the Pectobacterium versatile strain Ecc71.
Collapse
Affiliation(s)
- Caleb M Kersey
- Department of Biological, Physical and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA
| | - C Korsi Dumenyo
- Departments of Plant Science, Tennessee State University, Campus Box 9543, Nashville, TN 37209, USA
| |
Collapse
|
5
|
Braun V, Ratliff AC, Celia H, Buchanan SK. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. J Bacteriol 2023; 205:e0003523. [PMID: 37219427 PMCID: PMC10294619 DOI: 10.1128/jb.00035-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.
Collapse
Affiliation(s)
- Volkmar Braun
- Max-Planck-Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Anna C. Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| |
Collapse
|
6
|
Dawan J, Ahn J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10071385. [PMID: 35889104 PMCID: PMC9322497 DOI: 10.3390/microorganisms10071385] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea
- Correspondence: ; Tel.: +82-33-250-6564
| |
Collapse
|
7
|
Braun V, Hartmann MD, Hantke K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev 2022; 46:6524835. [PMID: 35138377 PMCID: PMC9249621 DOI: 10.1093/femsre/fuac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as “cell surface signaling”. Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Klaus Hantke
- IMIT Institute, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Pinel-Cabello M, Jroundi F, López-Fernández M, Geffers R, Jarek M, Jauregui R, Link A, Vílchez-Vargas R, Merroun ML. Multisystem combined uranium resistance mechanisms and bioremediation potential of Stenotrophomonas bentonitica BII-R7: Transcriptomics and microscopic study. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123858. [PMID: 33264934 DOI: 10.1016/j.jhazmat.2020.123858] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/18/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
The potential use of microorganisms in the bioremediation of U pollution has been extensively described. However, a lack of knowledge on molecular resistance mechanisms has become a challenge for the use of these technologies. We reported on the transcriptomic and microscopic response of Stenotrophomonas bentonitica BII-R7 exposed to 100 and 250 μM of U. Results showed that exposure to 100 μM displayed up-regulation of 185 and 148 genes during the lag and exponential phases, respectively, whereas 143 and 194 were down-regulated, out of 3786 genes (>1.5-fold change). Exposure to 250 μM of U showed up-regulation of 68 genes and down-regulation of 290 during the lag phase. Genes involved in cell wall and membrane protein synthesis, efflux systems and phosphatases were up-regulated under all conditions tested. Microscopic observations evidenced the formation of U-phosphate minerals at membrane and extracellular levels. Thus, a biphasic process is likely to occur: the increased cell wall would promote the biosorption of U to the cell surface and its precipitation as U-phosphate minerals enhanced by phosphatases. Transport systems would prevent U accumulation in the cytoplasm. These findings contribute to an understanding of how microbes cope with U toxicity, thus allowing for the development of efficient bioremediation strategies.
Collapse
Affiliation(s)
- M Pinel-Cabello
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| | - F Jroundi
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - M López-Fernández
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - R Geffers
- Genome Analytics, Helmholtz Centre for Infection Research (HZI), 38124, Braunschweig, Germany
| | - M Jarek
- Genome Analytics, Helmholtz Centre for Infection Research (HZI), 38124, Braunschweig, Germany
| | - R Jauregui
- AgResearch Grasslands Research Centre, Tennent drive, Palmerston North, New Zealand
| | - A Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Magdeburg, Leipziger Str. 44.39120, Magdeburg, Germany
| | - R Vílchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Magdeburg, Leipziger Str. 44.39120, Magdeburg, Germany
| | - M L Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
10
|
Dou Y, Rutanhira H, Schormann N, Deivanayagam C, Fletcher HM. PG1659 functions as anti-sigma factor to extracytoplasmic function sigma factor RpoE in Porphyromonas gingivalis W83. Mol Oral Microbiol 2021; 36:80-91. [PMID: 33377315 DOI: 10.1111/omi.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Anti-sigma factors play a critical role in regulating the expression of sigma factors in response to environmental stress signals. PG1659 is cotranscribed with an upstream gene PG1660 (rpoE), which encodes for a sigma factor that plays an important role in oxidative stress resistance and the virulence regulatory network of P. gingivalis. PG1659, which is annotated as a hypothetical gene, is evaluated in this study. PG1659, composed of 130 amino acids, is predicted to be transmembrane protein with a single calcium (Ca2+ ) binding site. In P. gingivalis FLL358 (ΔPG1659::ermF), the rpoE gene was highly upregulated compared to the wild-type W83 strain. RpoE-induced genes were also upregulated in the PG1659-defective isogenic mutant. Both protein-protein pull-down and bacterial two-hybrid assays revealed that the PG1659 protein could interact with/bind RpoE. The N-terminal domain of PG1659, representing the cytoplasmic fragment of the protein, is critical for interaction with RpoE. In the presence of PG1659, the initiation of transcription by the RpoE sigma factor was inhibited. Taken together, our data suggest that PG1659 is an anti-sigma factor which plays an important regulatory role in the modulation of the sigma factor RpoE in P. gingivalis.
Collapse
Affiliation(s)
- Yuetan Dou
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hiel Rutanhira
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Norbert Schormann
- Department of Biochemistry and Molecular Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hansel M Fletcher
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
11
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
12
|
Veyrier FJ, Nieves C, Lefrancois LH, Trigui H, Vincent AT, Behr MA. RskA Is a Dual Function Activator-Inhibitor That Controls SigK Activity Across Distinct Bacterial Genera. Front Microbiol 2020; 11:558166. [PMID: 33013790 PMCID: PMC7509140 DOI: 10.3389/fmicb.2020.558166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
It has been previously shown that RskA, the anti-Sigma factor K of Mycobacterium tuberculosis, inhibits SigK and that mutations in RskA promote high expression of the SigK regulon. The latter observation led us to hypothesize that RskA mutations lead to loss of the anti-Sigma factor function. In this report, we used natural and artificial mutations in RskA to determine the basis of the SigK-RskA partnership. Consistent with predictions, the N-terminal cytoplasmic portion of RskA was sufficient on its own to inhibit SigK. Unexpectedly, RskA also served as an activator of SigK. This activation depended on the same N-terminal region and was enhanced by the membrane-extracellular portion of RskA. Based on this, we engineered similar truncations in a Gram-negative bacterium, namely Yersinia enterocolitica. Again, we observed that, with specific alterations of RskA, we were able to enhance SigK activity. Together these results support an alternative mechanism of anti-Sigma factor function, that we could term modulator (activator-inhibitor) in both Actinobacteria and Gram-negative bacteria, suggesting that Sigma factor activation by anti-Sigma factors could be under-recognized.
Collapse
Affiliation(s)
- Frédéric J Veyrier
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
| | - Cecilia Nieves
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
| | - Louise H Lefrancois
- McGill International TB Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Hana Trigui
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
| | - Antony T Vincent
- Bacterial Symbionts Evolution, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
| | - Marcel A Behr
- McGill International TB Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Abstract
The transcription initiation signal elicited by the binding of ferric citrate to the outer membrane FecA protein is transmitted by the FecR protein across the cytoplasmic membrane to the FecI extracytoplasmic function (ECF) sigma factor. In this issue of Journal of Bacteriology, I. J. Passmore, J. M. Dow, F. Coll, J. Cuccui, et al. (J Bacteriol 202:e00541-19, 2020, https://doi.org/10.1128/JB.00541-19) report that the FecR sequence contains both the twin-arginine signal motif and the secretory (Sec) avoidance motif typical of proteins secreted by the twin-arginine translocation (TAT) system. The same study shows that FecR is indeed secreted by Tat and represents a new class of bitopic Tat-dependent membrane proteins.
Collapse
|
14
|
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Front Microbiol 2020; 11:37. [PMID: 32082281 PMCID: PMC7005843 DOI: 10.3389/fmicb.2020.00037] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
15
|
Wei Z, Chen C, Liu YJ, Dong S, Li J, Qi K, Liu S, Ding X, Ortiz de Ora L, Muñoz-Gutiérrez I, Li Y, Yao H, Lamed R, Bayer EA, Cui Q, Feng Y. Alternative σI/anti-σI factors represent a unique form of bacterial σ/anti-σ complex. Nucleic Acids Res 2019; 47:5988-5997. [PMID: 31106374 PMCID: PMC6582324 DOI: 10.1093/nar/gkz355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
The σ70 family alternative σI factors and their cognate anti-σI factors are widespread in Clostridia and Bacilli and play a role in heat stress response, virulence, and polysaccharide sensing. Multiple σI/anti-σI factors exist in some lignocellulolytic clostridial species, specifically for regulation of components of a multienzyme complex, termed the cellulosome. The σI and anti-σI factors are unique, because the C-terminal domain of σI (SigIC) and the N-terminal inhibitory domain of anti-σI (RsgIN) lack homology to known proteins. Here, we report structure and interaction studies of a pair of σI and anti-σI factors, SigI1 and RsgI1, from the cellulosome-producing bacterium, Clostridium thermocellum. In contrast to other known anti-σ factors that have N-terminal helical structures, RsgIN has a β-barrel structure. Unlike other anti-σ factors that bind both σ2 and σ4 domains of the σ factors, RsgIN binds SigIC specifically. Structural analysis showed that SigIC contains a positively charged surface region that recognizes the promoter -35 region, and the synergistic interactions among multiple interfacial residues result in the specificity displayed by different σI/anti-σI pairs. We suggest that the σI/anti-σI factors represent a distinctive mode of σ/anti-σ complex formation, which provides the structural basis for understanding the molecular mechanism of the intricate σI/anti-σI system.
Collapse
Affiliation(s)
- Zhen Wei
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Qi
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyue Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoke Ding
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lizett Ortiz de Ora
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Iván Muñoz-Gutiérrez
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yifei Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongwei Yao
- High-Field Nuclear Magnetic Resonance Center, Xiamen University, 422 South Siming Road, Xiamen 361005, China
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- To whom correspondence should be addressed. Tel: +86 532 80662706; Fax: +86 532 80662707;
| |
Collapse
|
16
|
Liu Y, Bian QQ, Zhang SH, Wang J, Wang ZM, Li JY. Post-treatment serological changes in some patients with early syphilis exhibit a parabolic trend. Int J STD AIDS 2019; 30:1389-1396. [PMID: 31744395 DOI: 10.1177/0956462419871855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Early syphilis accounts for a large proportion of patients with syphilis. Non- Treponema pallidum tests are commonly used to assess treatment effectiveness by analyzing the serological titer before treatment and six months after treatment. However, serological changes during the first three months after completion of treatment have not been completely understood. This prompted us to investigate whether serum titers of patients exhibit a continuous decrease post-treatment and to assess the trend of change in serological titer during this period. One hundred and seventy-three eligible patients with early syphilis were included in the analysis. Pre-treatment serological titers and those at three and six months post-treatment were compared and analyzed. Serological recovery was defined as a 4-fold or greater decrease in titer from pre-treatment level. Forty patients (23.1%) were found to have an increased serum titer at three months after treatment. Among the 40 patients, 13 patients had primary syphilis, 5 patients had secondary syphilis, and 22 patients had early latent syphilis. The proportion of patients with primary syphilis was higher, and their initial titers were significantly lower. No significant differences were observed with respect to age, gender, or initial treatment. The assessment results of 17 patients (9.8% of the total patients) change. Serological changes in some patients exhibit a parabolic pattern that may affect the clinician’s assessment of patient recovery. Therefore, more frequent assessment of serological titer might be required within the first six months post-treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Dermatology and STD, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cell; Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Que-Qiao Bian
- Department of Dermatology and STD, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cell; Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Shu-Huan Zhang
- Department of Dermatology and STD, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cell; Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Jun Wang
- Department of Dermatology and STD, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Artificial Cell; Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Zhen-Ming Wang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China
| | - Jun-Yue Li
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
17
|
Moraleda-Muñoz A, Marcos-Torres FJ, Pérez J, Muñoz-Dorado J. Metal-responsive RNA polymerase extracytoplasmic function (ECF) sigma factors. Mol Microbiol 2019; 112:385-398. [PMID: 31187912 PMCID: PMC6851896 DOI: 10.1111/mmi.14328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 01/02/2023]
Abstract
In order to survive, bacteria must adapt to multiple fluctuations in their environment, including coping with changes in metal concentrations. Many metals are essential for viability, since they act as cofactors of indispensable enzymes. But on the other hand, they are potentially toxic because they generate reactive oxygen species or displace other metals from proteins, turning them inactive. This dual effect of metals forces cells to maintain homeostasis using a variety of systems to import and export them. These systems are usually inducible, and their expression is regulated by metal sensors and signal‐transduction mechanisms, one of which is mediated by extracytoplasmic function (ECF) sigma factors. In this review, we have focused on the metal‐responsive ECF sigma factors, several of which are activated by iron depletion (FecI, FpvI and PvdS), while others are activated by excess of metals such as nickel and cobalt (CnrH), copper (CarQ and CorE) or cadmium and zinc (CorE2). We focus particularly on their physiological roles, mechanisms of action and signal transduction pathways.
Collapse
Affiliation(s)
- Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| |
Collapse
|
18
|
Braun V. The Outer Membrane Took Center Stage. Annu Rev Microbiol 2018; 72:1-24. [PMID: 30200853 DOI: 10.1146/annurev-micro-090817-062156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My interest in membranes was piqued during a lecture series given by one of the founders of molecular biology, Max Delbrück, at Caltech, where I spent a postdoctoral year to learn more about protein chemistry. That general interest was further refined to my ultimate research focal point-the outer membrane of Escherichia coli-through the influence of the work of Wolfhard Weidel, who discovered the murein (peptidoglycan) layer and biochemically characterized the first phage receptors of this bacterium. The discovery of lipoprotein bound to murein was completely unexpected and demonstrated that the protein composition of the outer membrane and the structure and function of proteins could be unraveled at a time when nothing was known about outer membrane proteins. The research of my laboratory over the years covered energy-dependent import of proteinaceous toxins and iron chelates across the outer membrane, which does not contain an energy source, and gene regulation by iron, including transmembrane transcriptional regulation.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
19
|
Bouillet S, Arabet D, Jourlin-Castelli C, Méjean V, Iobbi-Nivol C. Regulation of σ factors by conserved partner switches controlled by divergent signalling systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:127-139. [PMID: 29393573 DOI: 10.1111/1758-2229.12620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Partner-Switching Systems (PSS) are widespread regulatory systems, each comprising a kinase-anti-σ, a phosphorylatable anti-σ antagonist and a phosphatase module. The anti-σ domain quickly sequesters or delivers the target σ factor according to the phosphorylation state of the anti-σ antagonist induced by environmental signals. The PSS components are proteins alone or merged to other domains probably to adapt to the input signals. PSS are involved in major cellular processes including stress response, sporulation, biofilm formation and pathogenesis. Surprisingly, the target σ factors are often unknown and the sensing modules acting upstream from the PSS diverge according to the bacterial species. Indeed, they belong to either two-component systems or complex pathways as the stressosome or Chemosensory Systems (CS). Based on a phylogenetic analysis, we propose that the sensing module in Gram-negative bacteria is often a CS.
Collapse
Affiliation(s)
- Sophie Bouillet
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | - Dallel Arabet
- Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | | | - Vincent Méjean
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | | |
Collapse
|
20
|
Yamamoto K, Yamanaka Y, Shimada T, Sarkar P, Yoshida M, Bhardwaj N, Watanabe H, Taira Y, Chatterji D, Ishihama A. Altered Distribution of RNA Polymerase Lacking the Omega Subunit within the Prophages along the Escherichia coli K-12 Genome. mSystems 2018; 3:e00172-17. [PMID: 29468196 PMCID: PMC5811629 DOI: 10.1128/msystems.00172-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/25/2018] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α2ββ'ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β', but its functional role remains unsolved except for its involvement in ppGpp binding and stringent response. As an initial approach for elucidation of its functional role, we performed in this study ChIP-chip (chromatin immunoprecipitation with microarray technology) analysis of wild-type and rpoZ-defective mutant strains. The altered distribution of RpoZ-defective RNAP was identified mostly within open reading frames, in particular, of the genes inside prophages. For the genes that exhibited increased or decreased distribution of RpoZ-defective RNAP, the level of transcripts increased or decreased, respectively, as detected by reverse transcription-quantitative PCR (qRT-PCR). In parallel, we analyzed, using genomic SELEX (systemic evolution of ligands by exponential enrichment), the distribution of constitutive promoters that are recognized by RNAP RpoD holoenzyme alone and of general silencer H-NS within prophages. Since all 10 prophages in E. coli K-12 carry only a small number of promoters, the altered occupancy of RpoZ-defective RNAP and of transcripts might represent transcription initiated from as-yet-unidentified host promoters. The genes that exhibited transcription enhanced by RpoZ-defective RNAP are located in the regions of low-level H-NS binding. By using phenotype microarray (PM) assay, alterations of some phenotypes were detected for the rpoZ-deleted mutant, indicating the involvement of RpoZ in regulation of some genes. Possible mechanisms of altered distribution of RNAP inside prophages are discussed. IMPORTANCE The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β', of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature.
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Yuki Yamanaka
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Tomohiro Shimada
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Paramita Sarkar
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Neerupma Bhardwaj
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yuki Taira
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Dipankar Chatterji
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| |
Collapse
|
21
|
Bishop TF, Martin LW, Lamont IL. Activation of a Cell Surface Signaling Pathway in Pseudomonas aeruginosa Requires ClpP Protease and New Sigma Factor Synthesis. Front Microbiol 2017; 8:2442. [PMID: 29312164 PMCID: PMC5733041 DOI: 10.3389/fmicb.2017.02442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/24/2017] [Indexed: 11/13/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors control expression of large numbers of genes in bacteria. Most ECF sigma factors are inhibited by antisigma proteins, with inhibition being relieved by environmental signals that lead to inactivation of the antisigma protein and consequent sigma factor activity. In cell surface signaling (CSS) systems in Gram negative bacteria antisigma activity is controlled by an outer membrane protein receptor and its ligand. In Pseudomonas aeruginosa one such system controls expression of genes for secretion and uptake of a siderophore, pyoverdine. In this system the activities of two sigma factors σFpvI and σPvdS are inhibited by antisigma protein FpvR20 that binds to the sigma factors, preventing their interaction with core RNA polymerase. Transport of ferripyoverdine by its outer membrane receptor FpvA causes proteolytic degradation of FpvR20, inducing expression of σFpvI- and σPvdS-dependent target genes. Here we show that degradation of FpvR20 and induction of target gene expression was initiated within 1 min of addition of pyoverdine. FpvR20 was only partially degraded in a mutant lacking the intracellular ClpP protease, resulting in an FpvR20 subfragment (FpvR12) that inhibited σFpvI and σPvdS. The translation inhibitor chloramphenicol did not prevent induction of an σFpvI-dependent gene, showing that degradation of FpvR20 released pre-existing σFpvI in an active form. However, chloramphenicol inhibited induction of σPvdS-dependent genes showing that active σPvdS is not released when FpvR20 is degraded and instead, σPvdS must be synthesized in the absence of FpvR20 to be active. These findings show that sigma factor activation occurs rapidly following addition of the inducing signal in a CSS pathway and requires ClpP protease. Induction of gene expression that can arise from release of active sigma from an antisigma protein but can also require new sigma factor synthesis.
Collapse
Affiliation(s)
- Thomas F Bishop
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Response of Methylocystis sp. Strain SC2 to Salt Stress: Physiology, Global Transcriptome, and Amino Acid Profiles. Appl Environ Microbiol 2017; 83:AEM.00866-17. [PMID: 28802275 DOI: 10.1128/aem.00866-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Soil microorganisms have to rapidly respond to salt-induced osmotic stress. Type II methanotrophs of the genus Methylocystis are widely distributed in upland soils but are known to have a low salt tolerance. Here, we tested the ability of Methylocystis sp. strain SC2 to adapt to increased salinity. When exposed to 0.75% NaCl, methane oxidation was completely inhibited for 2.25 h and fully recovered within 6 h. Growth was inhibited for 23.5 h and then fully recovered. Its transcriptome was profiled after 0 min (control), 45 min (early response), and 14 h (late response) of stress exposure. Physiological and transcriptomic stress responses corresponded well. Salt stress induced the differential expression of 301 genes, with sigma factor σ32 being a major controller of the transcriptional stress response. The transcript levels of nearly all the genes involved in oxidizing CH4 to CO2 remained unaffected, while gene expression involved in energy-yielding reactions (nuoA-N) recovered concomitantly with methane oxidation from salt stress shock. Glutamate acted as an osmoprotectant. Its accumulation in late stress response corresponded to increased production of glutamate dehydrogenase 1. Chromosomal genes whose products (stress-induced protein, DNA-binding protein from starved cells, and CsbD family protein) are known to confer stress tolerance showed increased expression. On plasmid pBSC2-1, genes encoding type IV secretion system and single-strand DNA-binding protein were upregulated in late response, suggesting stress-induced activation of the plasmid-borne conjugation machinery. Collectively, our results show that Methylocystis sp. strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities.IMPORTANCE Besides the oxic interface of methanogenic environments, Methylocystis spp. are widely distributed in upland soils, where they may contribute to the oxidation of atmospheric methane. However, little is known about their ability to cope with changes in soil salinity. Growth and methane oxidation of Methylocystis sp. strain SC2 were not affected by the presence of 0.5% NaCl, while 1% NaCl completely inhibited its activity. This places strain SC2 into the low-salt-tolerance range reported for other Methylocystis species. Our results show that, albeit in a narrow range, strain SC2 is able to respond and adapt to salinity changes. It possesses various stress response mechanisms, which allow resumption of growth within 24 h when exposed to 0.75% NaCl. Presumably, these mechanisms allow Methylocystis spp., such as strain SC2, to thrive in upland soils and to adapt to certain fluctuations in soil salinity.
Collapse
|
23
|
Fujise K, Kikuchi Y, Kokubu E, Okamoto-Shibayama K, Ishihara K. Effect of extracytoplasmic function sigma factors on autoaggregation, hemagglutination, and cell surface properties of Porphyromonas gingivalis. PLoS One 2017; 12:e0185027. [PMID: 28931045 PMCID: PMC5607195 DOI: 10.1371/journal.pone.0185027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 09/05/2017] [Indexed: 01/05/2023] Open
Abstract
Porphyromonas gingivalis is a bacterium frequently isolated from chronic periodontal lesions and is involved in the development of chronic periodontitis. To colonize the gingival crevice, P. gingivalis has to adapt to environmental stresses. Microbial gene expression is regulated by transcription factors such as those in two-component systems and extracytoplasmic function (ECF) sigma factors. ECF sigma factors are involved in the regulation of environmental stress response genes; however, the roles of individual ECF sigma factors are largely unknown. The purpose of this study was to investigate the functions, including autoaggregation, hemagglutination, gingipain activity, susceptibility to antimicrobial agents, and surface structure formation, of P. gingivalis ECF sigma factors encoded by SigP (PGN_0274), SigCH (PGN_0319), PGN_0450, PGN_0970, and SigH (PGN_1740). Various physiological aspects of the sigP mutant were affected; autoaggregation was significantly decreased at 60 min (p < 0.001), hemagglutination activity was markedly reduced, and enzymatic activities of Kgp and Rgps were significantly decreased (p < 0.001). The other mutants also showed approximately 50% reduction in Rgps activity. Kgp activity was significantly reduced in the sigH mutant (p < 0.001). No significant differences in susceptibilities to tetracycline and ofloxacin were observed in the mutants compared to those of the wild-type strain. However, the sigP mutant displayed an increased susceptibility to ampicillin, whereas the PGN_0450 and sigH mutants showed reduced susceptibility. Transmission electron microscopy images revealed increased levels of outer membrane vesicles formed at the cell surfaces of the sigP mutant. These results indicate that SigP is important for bacterial surface-associated activities, including gingipain activity, autoaggregation, hemagglutination, vesicle formation, and antimicrobial susceptibility.
Collapse
Affiliation(s)
- Kazutaka Fujise
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | | | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
24
|
2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability. PLoS One 2017; 12:e0180925. [PMID: 28749949 PMCID: PMC5547695 DOI: 10.1371/journal.pone.0180925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
There is an urgent need to develop new drug treatment strategies to control the global spread of drug-sensitive and multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). The ß-lactam class of antibiotics is among the safest and most widely prescribed antibiotics, but they are not effective against M. tuberculosis due to intrinsic resistance. This study shows that 2-aminoimidazole (2-AI)-based small molecules potentiate ß-lactam antibiotics against M. tuberculosis. Active 2-AI compounds significantly reduced the minimal inhibitory and bactericidal concentrations of ß-lactams by increasing M. tuberculosis cell envelope permeability and decreasing protein secretion including ß-lactamase. Metabolic labeling and transcriptional profiling experiments revealed that 2-AI compounds impair mycolic acid biosynthesis, export and linkage to the mycobacterial envelope, counteracting an important defense mechanism reducing permeability to external agents. Additionally, other important constituents of the M. tuberculosis outer membrane including sulfolipid-1 and polyacyltrehalose were also less abundant in 2-AI treated bacilli. As a consequence of 2-AI treatment, M. tuberculosis displayed increased sensitivity to SDS, increased permeability to nucleic acid staining dyes, and rapid binding of cell wall targeting antibiotics. Transcriptional profiling analysis further confirmed that 2-AI induces transcriptional regulators associated with cell envelope stress. 2-AI based small molecules potentiate the antimicrobial activity of ß-lactams by a mechanism that is distinct from specific inhibitors of ß-lactamase activity and therefore may have value as an adjunctive anti-TB treatment.
Collapse
|
25
|
Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks. PLoS Comput Biol 2016; 12:e1005267. [PMID: 27977677 PMCID: PMC5207722 DOI: 10.1371/journal.pcbi.1005267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 11/23/2016] [Indexed: 01/23/2023] Open
Abstract
Despite the central role of alternative sigma factors in bacterial stress response and virulence their regulation remains incompletely understood. Here we investigate one of the best-studied examples of alternative sigma factors: the σB network that controls the general stress response of Bacillus subtilis to uncover widely relevant general design principles that describe the structure-function relationship of alternative sigma factor regulatory networks. We show that the relative stoichiometry of the synthesis rates of σB, its anti-sigma factor RsbW and the anti-anti-sigma factor RsbV plays a critical role in shaping the network behavior by forcing the σB network to function as an ultrasensitive negative feedback loop. We further demonstrate how this negative feedback regulation insulates alternative sigma factor activity from competition with the housekeeping sigma factor for RNA polymerase and allows multiple stress sigma factors to function simultaneously with little competitive interference. Understanding the regulation of bacterial stress response holds the key to tackling the problems of emerging resistance to anti-bacteria’s and antibiotics. To this end, here we study one of the longest serving model systems of bacterial stress response: the σB pathway of Bacillus subtilis. The sigma factor σB controls the general stress response of Bacillus subtilis to a variety of stress conditions including starvation, antibiotics and harmful environmental perturbations. Recent studies have demonstrated that an increase in stress triggers pulsatile activation of σB. Using mathematical modeling we identify the core structural design feature of the network that are responsible for its pulsatile response. We further demonstrate how the same core design features are common to a variety of stress response pathways. As a result of these features, cells can respond to multiple simultaneous stresses without interference or competition between the different pathways.
Collapse
|
26
|
Quesada JM, Otero-Asman JR, Bastiaansen KC, Civantos C, Llamas MA. The Activity of the Pseudomonas aeruginosa Virulence Regulator σ(VreI) Is Modulated by the Anti-σ Factor VreR and the Transcription Factor PhoB. Front Microbiol 2016; 7:1159. [PMID: 27536271 PMCID: PMC4971064 DOI: 10.3389/fmicb.2016.01159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Gene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σECF) is predominant. Pseudomonas aeruginosa contains nineteen σECF, including the virulence regulator σVreI. σVreI is encoded by the vreAIR operon, which also encodes a receptor-like protein (VreA) and an anti-σ factor (VreR). These three proteins form a signal transduction pathway known as PUMA3, which controls expression of P. aeruginosa virulence functions. Expression of the vreAIR operon occurs under inorganic phosphate (Pi) limitation and requires the PhoB transcription factor. Intriguingly, the genes of the σVreI regulon are also expressed in low Pi despite the fact that the σVreI repressor, the anti-σ factor VreR, is also produced in this condition. Here we show that although σVreI is partially active under Pi starvation, maximal transcription of the σVreI regulon genes requires the removal of VreR. This strongly suggests that an extra signal, probably host-derived, is required in vivo for full σVreI activation. Furthermore, we demonstrate that the activity of σVreI is modulated not only by VreR but also by the transcription factor PhoB. Presence of this regulator is an absolute requirement for σVreI to complex the DNA and initiate transcription of the PUMA3 regulon. The potential DNA binding sites of these two proteins, which include a pho box and −10 and −35 elements, are proposed.
Collapse
Affiliation(s)
- Jose M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones CientíficasGranada, Spain; Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University AmsterdamAmsterdam, Netherlands
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
27
|
Structural basis of the signalling through a bacterial membrane receptor HasR deciphered by an integrative approach. Biochem J 2016; 473:2239-48. [PMID: 27208170 PMCID: PMC4941744 DOI: 10.1042/bcj20160131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
In bacteria, some scarce nutrients are sensed, bound and internalized by their specific transporter. In the present study, using an integrative structural approach, we study HasR, a bacterial haem transporter in both its free and its loaded forms. Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70–90 Å (1 Å=0.1 nm) from the HasR β-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners.
Collapse
|
28
|
Helmann JD. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr Opin Microbiol 2016; 30:122-132. [PMID: 26901131 DOI: 10.1016/j.mib.2016.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 01/20/2023]
Abstract
Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
29
|
A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b. Appl Environ Microbiol 2016; 82:1917-1923. [PMID: 26773085 DOI: 10.1128/aem.03884-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gm(r) mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gm(r) mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake.
Collapse
|
30
|
Jensen JL, Balbo A, Neau DB, Chakravarthy S, Zhao H, Sinha SC, Colbert CL. Mechanistic Implications of the Unique Structural Features and Dimerization of the Cytoplasmic Domain of the Pseudomonas Sigma Regulator, PupR. Biochemistry 2015; 54:5867-77. [PMID: 26313375 PMCID: PMC4701049 DOI: 10.1021/acs.biochem.5b00826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gram-negative bacteria tightly regulate intracellular levels of iron, an essential nutrient. To ensure this strict control, some outer membrane TonB-dependent transporters (TBDTs) that are responsible for iron import stimulate their own transcription in response to extracellular binding by an iron-laden siderophore. This process is mediated by an inner membrane sigma regulator protein (an anti-sigma factor) that transduces an unknown periplasmic signal from the TBDT to release an intracellular sigma factor from the inner membrane, which ultimately upregulates TBDT transcription. Here, we use the Pseudomonas putida ferric-pseudobactin BN7/BN8 sigma regulator, PupR, as a model system to understand the molecular mechanism of this conserved class of sigma regulators. We have determined the X-ray crystal structure of the cytoplasmic anti-sigma domain (ASD) of PupR to 2.0 Å. Size exclusion chromatography, small-angle X-ray scattering, and sedimentation velocity analytical ultracentrifugation all indicate that, in contrast to other ASDs, the PupR-ASD exists as a dimer in solution. Mutagenesis of residues at the dimer interface identified from the crystal structure disrupts dimerization and protein stability, as determined by sedimentation velocity analytical ultracentrifugation and thermal denaturation circular dichroism spectroscopy. These combined results suggest that this type of inner membrane sigma regulator may utilize an unusual mechanism to sequester their cognate sigma factors and prevent transcription activation.
Collapse
Affiliation(s)
- Jaime L. Jensen
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Andrea Balbo
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David B. Neau
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Srinivas Chakravarthy
- Bio-CAT, Advanced Photon Source, 9700 South Cass Avenue, 3Bldg. 435B, Argonne, IL 60439, USA
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sangita C. Sinha
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Christopher L. Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
31
|
Zinicola M, Higgins H, Lima S, Machado V, Guard C, Bicalho R. Shotgun Metagenomic Sequencing Reveals Functional Genes and Microbiome Associated with Bovine Digital Dermatitis. PLoS One 2015; 10:e0133674. [PMID: 26193110 PMCID: PMC4508036 DOI: 10.1371/journal.pone.0133674] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/29/2015] [Indexed: 11/18/2022] Open
Abstract
Metagenomic methods amplifying 16S ribosomal RNA genes have been used to describe the microbial diversity of healthy skin and lesion stages of bovine digital dermatitis (DD) and to detect critical pathogens involved with disease pathogenesis. In this study, we characterized the microbiome and for the first time, the composition of functional genes of healthy skin (HS), active (ADD) and inactive (IDD) lesion stages using a whole-genome shotgun approach. Metagenomic sequences were annotated using MG-RAST pipeline. Six phyla were identified as the most abundant. Firmicutes and Actinobacteria were the predominant bacterial phyla in the microbiome of HS, while Spirochetes, Bacteroidetes and Proteobacteria were highly abundant in ADD and IDD. T. denticola-like, T. vincentii-like and T. phagedenis-like constituted the most abundant species in ADD and IDD. Recruitment plots comparing sequences from HS, ADD and IDD samples to the genomes of specific Treponema spp., supported the presence of T. denticola and T. vincentii in ADD and IDD. Comparison of the functional composition of HS to ADD and IDD identified a significant difference in genes associated with motility/chemotaxis and iron acquisition/metabolism. We also provide evidence that the microbiome of ADD and IDD compared to that of HS had significantly higher abundance of genes associated with resistance to copper and zinc, which are commonly used in footbaths to prevent and control DD. In conclusion, the results from this study provide new insights into the HS, ADD and IDD microbiomes, improve our understanding of the disease pathogenesis and generate unprecedented knowledge regarding the functional genetic composition of the digital dermatitis microbiome.
Collapse
Affiliation(s)
- Martin Zinicola
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Hazel Higgins
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Svetlana Lima
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Vinicius Machado
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Charles Guard
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Rodrigo Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Allen MS, Hurst GB, Lu TYS, Perry LM, Pan C, Lankford PK, Pelletier DA. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response. J Proteome Res 2015; 14:2158-68. [PMID: 25853567 DOI: 10.1021/pr5012558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. To begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σ(RPA4225) (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Taken together, these data suggest that ECF σ(RPA4225) and the three additional genes make up a sigma factor mimicry system in R. palustris.
Collapse
Affiliation(s)
- Michael S Allen
- §Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States.,∥Center for Biosafety and Biosecurity Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | | | | | - Leslie M Perry
- §Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States
| | | | | | | |
Collapse
|
33
|
Okrent RA, Halgren AB, Azevedo MD, Chang JH, Mills DI, Maselko M, Armstrong DJ, Banowetz GM, Trippe KM. Negative regulation of germination-arrest factor production in Pseudomonas fluorescens WH6 by a putative extracytoplasmic function sigma factor. Microbiology (Reading) 2014; 160:2432-2442. [DOI: 10.1099/mic.0.080317-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas fluorescens WH6 secretes a germination-arrest factor (GAF) that we have identified previously as 4-formylaminooxyvinylglycine. GAF irreversibly inhibits germination of the seeds of numerous grassy weeds and selectively inhibits growth of the bacterial plant pathogen Erwinia amylovora. WH6-3, a mutant that has lost the ability to produce GAF, contains a Tn5 insertion in prtR, a gene that has been described previously in some strains of P. fluorescens as encoding a transmembrane regulator. As in these other pseudomonads, in WH6, prtR occurs immediately downstream of prtI, which encodes a protein homologous to extracytoplasmic function (ECF) sigma factors. These two genes have been proposed to function as a dicistronic operon. In this study, we demonstrated that deletion of prtI in WT WH6 had no effect on GAF production. However, deletion of prtI in the WH6-3 mutant overcame the effects of the Tn5 insertion in prtR and restored GAF production in the resulting double mutant. Complementation of the double prtIR mutant with prtI suppressed GAF production. This overall pattern of prtIR regulation was also observed for the activity of an AprX protease. Furthermore, reverse transcription quantitative real-time PCR analysis demonstrated that alterations in GAF production were mirrored by changes in the transcription of two putative GAF biosynthetic genes. Thus, we concluded that PrtI exerted a negative regulatory effect on GAF production, although the mechanism has not yet been determined. In addition, evidence was obtained that the transcription of prtI and prtR in WH6 may be more complex than predicted by existing models.
Collapse
Affiliation(s)
- Rachel A. Okrent
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Anne B. Halgren
- USDA-ARS National Forage Seed Production Research Center, Corvallis, OR 97331, USA
| | - Mark D. Azevedo
- USDA-ARS National Forage Seed Production Research Center, Corvallis, OR 97331, USA
| | - Jeff H. Chang
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Dallice I. Mills
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Maciej Maselko
- USDA-ARS National Forage Seed Production Research Center, Corvallis, OR 97331, USA
| | - Donald J. Armstrong
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Gary M. Banowetz
- USDA-ARS National Forage Seed Production Research Center, Corvallis, OR 97331, USA
| | - Kristin M. Trippe
- USDA-ARS National Forage Seed Production Research Center, Corvallis, OR 97331, USA
| |
Collapse
|
34
|
Maillard AP, Girard E, Ziani W, Petit-Härtlein I, Kahn R, Covès J. The crystal structure of the anti-σ factor CnrY in complex with the σ factor CnrH shows a new structural class of anti-σ factors targeting extracytoplasmic function σ factors. J Mol Biol 2014; 426:2313-27. [PMID: 24727125 DOI: 10.1016/j.jmb.2014.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/19/2014] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Abstract
Gene expression in bacteria is regulated at the level of transcription initiation, a process driven by σ factors. The regulation of σ factor activity proceeds from the regulation of their cytoplasmic availability, which relies on specific inhibitory proteins called anti-σ factors. With anti-σ factors regulating their availability according to diverse cues, extracytoplasmic function σ factors (σ(ECF)) form a major signal transduction system in bacteria. Here, structure:function relationships have been characterized in an emerging class of minimal-size transmembrane anti-σ factors, using CnrY from Cupriavidus metallidurans CH34 as a model. This study reports the 1.75-Å-resolution structure of CnrY cytosolic domain in complex with CnrH, its cognate σ(ECF), and identifies a small hydrophobic knob in CnrY as the major determinant of this interaction in vivo. Unsuspected structural similarity with the molecular switch regulating the general stress response in α-proteobacteria unravels a new class of anti-σ factors targeting σ(ECF). Members of this class carry out their function via a 30-residue stretch that displays helical propensity but no canonical structure on its own.
Collapse
Affiliation(s)
- Antoine P Maillard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France.
| | - Eric Girard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Widade Ziani
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Isabelle Petit-Härtlein
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Richard Kahn
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Jacques Covès
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| |
Collapse
|
35
|
Malki I, Simenel C, Wojtowicz H, Cardoso de Amorim G, Prochnicka-Chalufour A, Hoos S, Raynal B, England P, Chaffotte A, Delepierre M, Delepelaire P, Izadi-Pruneyre N. Interaction of a partially disordered antisigma factor with its partner, the signaling domain of the TonB-dependent transporter HasR. PLoS One 2014; 9:e89502. [PMID: 24727671 PMCID: PMC3984077 DOI: 10.1371/journal.pone.0089502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/21/2014] [Indexed: 11/21/2022] Open
Abstract
Bacteria use diverse signaling pathways to control gene expression in response to external stimuli. In Gram-negative bacteria, the binding of a nutrient is sensed by an outer membrane transporter. This signal is then transmitted to an antisigma factor and subsequently to the cytoplasm where an ECF sigma factor induces expression of genes related to the acquisition of this nutrient. The molecular interactions involved in this transmembrane signaling are poorly understood and structural data on this family of antisigma factor are rare. Here, we present the first structural study of the periplasmic domain of an antisigma factor and its interaction with the transporter. The study concerns the signaling in the heme acquisition system (Has) of Serratia marcescens. Our data support unprecedented partially disordered periplasmic domain of an anti-sigma factor HasS in contact with a membrane-mimicking environment. We solved the 3D structure of the signaling domain of HasR transporter and identified the residues at the HasS-HasR interface. Their conservation in several bacteria suggests wider significance of the proposed model for the understanding of bacterial transmembrane signaling.
Collapse
Affiliation(s)
- Idir Malki
- Institut Pasteur, Unité de RMN des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
| | - Catherine Simenel
- Institut Pasteur, Unité de RMN des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Halina Wojtowicz
- Institut Pasteur, Unité de RMN des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Gisele Cardoso de Amorim
- Institut Pasteur, Unité de RMN des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Ada Prochnicka-Chalufour
- Institut Pasteur, Unité de RMN des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Sylviane Hoos
- Institut Pasteur, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, Paris, France
| | - Bertrand Raynal
- Institut Pasteur, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, Paris, France
| | - Patrick England
- Institut Pasteur, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, Paris, France
| | - Alain Chaffotte
- Institut Pasteur, Unité de RMN des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Muriel Delepierre
- Institut Pasteur, Unité de RMN des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Philippe Delepelaire
- Institut de Biologie Physico-Chimique, CNRS Université Paris-Diderot UMR 7099, Paris, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Unité de RMN des Biomolécules, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3528, Paris, France
| |
Collapse
|
36
|
Mustyala KK, Malkhed V, Potlapally SR, Chittireddy VR, Vuruputuri U. Macromolecular structure and interaction studies of SigF and Usfx inMycobacterium tuberculosis. J Recept Signal Transduct Res 2014; 34:162-73. [DOI: 10.3109/10799893.2013.868903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Treviño-Quintanilla LG, Freyre-González JA, Martínez-Flores I. Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability. Curr Genomics 2014; 14:378-87. [PMID: 24396271 PMCID: PMC3861889 DOI: 10.2174/1389202911314060007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/22/2022] Open
Abstract
In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli.
Collapse
Affiliation(s)
- Luis Gerardo Treviño-Quintanilla
- Departamento de Tecnología Ambiental, Universidad Politécnica del Estado de Morelos. Blvd. Cuauhnáhuac 566, Col. Lomas del Texcal, 62550. Jiutepec, Morelos, México
| | - Julio Augusto Freyre-González
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Av. Universidad s/n, Col. Chamilpa, 62210. Cuernavaca, Morelos, México
| | - Irma Martínez-Flores
- Departamento de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Apdo. Postal 510-3, 62250. Cuernavaca, Morelos, México
| |
Collapse
|
38
|
Adler C, Corbalan NS, Peralta DR, Pomares MF, de Cristóbal RE, Vincent PA. The alternative role of enterobactin as an oxidative stress protector allows Escherichia coli colony development. PLoS One 2014; 9:e84734. [PMID: 24392154 PMCID: PMC3879343 DOI: 10.1371/journal.pone.0084734] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022] Open
Abstract
Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This molecule would be able to scavenge radicals and therefore reduce oxidative stress.
Collapse
Affiliation(s)
- Conrado Adler
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Natalia S. Corbalan
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Daiana R. Peralta
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - María Fernanda Pomares
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Ricardo E. de Cristóbal
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Paula A. Vincent
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
- * E-mail:
| |
Collapse
|
39
|
Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity. J Bacteriol 2013; 196:345-56. [PMID: 24187091 DOI: 10.1128/jb.01034-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is distinguished by its broad metabolic diversity and its remarkable capability for adaptation, which relies on a large collection of transcriptional regulators and alternative sigma (σ) factors. The largest group of alternative σ factors is that of the extracytoplasmic function (ECF) σ factors, which control key transduction pathways for maintenance of envelope homeostasis in response to external stress and cell growth. In addition, there are specific roles of alternative σ factors in regulating the expression of virulence and virulence-associated genes. Here, we analyzed a deletion mutant of the ECF σ factor SigX and applied mRNA profiling to define the SigX-dependent regulon in P. aeruginosa in response to low-osmolarity-medium conditions. Furthermore, the combination of transcriptional data with chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) led to the identification of the DNA binding motif of SigX. Genome-wide mapping of SigX-binding regions revealed enrichment of downstream genes involved in fatty acid biosynthesis, type III secretion, swarming and cyclic di-GMP (c-di-GMP) signaling. In accordance, a sigX deletion mutant exhibited altered fatty acid composition of the cell membrane, reduced cytotoxicity, impaired swarming activity, elevated c-di-GMP levels, and increased biofilm formation. In conclusion, a combination of ChIP-seq with transcriptional profiling and bioinformatic approaches to define consensus DNA binding sequences proved to be effective for the elucidation of the regulon of the alternative σ factor SigX, revealing its role in complex virulence-associated phenotypes in P. aeruginosa.
Collapse
|
40
|
The Pseudomonas aeruginosa periplasmic protease CtpA can affect systems that impact its ability to mount both acute and chronic infections. Infect Immun 2013; 81:4561-70. [PMID: 24082078 DOI: 10.1128/iai.01035-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteases play important roles in the virulence of Pseudomonas aeruginosa. Some are exported to act on host targets and facilitate tissue destruction and bacterial dissemination. Others work within the bacterial cell to process virulence factors and regulate virulence gene expression. Relatively little is known about the role of one class of bacterial serine proteases known as the carboxyl-terminal processing proteases (CTPs). The P. aeruginosa genome encodes two CTPs annotated as PA3257/Prc and PA5134/CtpA in strain PAO1. Prc degrades mutant forms of the anti-sigma factor MucA to promote mucoidy in some cystic fibrosis lung isolates. However, nothing is known about the role or importance of CtpA. We have now found that endogenous CtpA is a soluble periplasmic protein and that a ctpA null mutant has specific phenotypes consistent with an altered cell envelope. Although a ctpA null mutation has no major effect on bacterial growth in the laboratory, CtpA is essential for the normal function of the type 3 secretion system (T3SS), for cytotoxicity toward host cells, and for virulence in a mouse model of acute pneumonia. Conversely, increasing the amount of CtpA above its endogenous level induces an uncharacterized extracytoplasmic function sigma factor regulon, an event that has been reported to attenuate P. aeruginosa in a rat model of chronic lung infection. Therefore, a normal level of CtpA activity is critical for T3SS function and acute virulence, whereas too much activity can trigger an apparent stress response that is detrimental to chronic virulence.
Collapse
|
41
|
Heath JL, Weiss JM, Lavau CP, Wechsler DS. Iron deprivation in cancer--potential therapeutic implications. Nutrients 2013; 5:2836-59. [PMID: 23887041 PMCID: PMC3775231 DOI: 10.3390/nu5082836] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 02/04/2023] Open
Abstract
Iron is essential for normal cellular function. It participates in a wide variety of cellular processes, including cellular respiration, DNA synthesis, and macromolecule biosynthesis. Iron is required for cell growth and proliferation, and changes in intracellular iron availability can have significant effects on cell cycle regulation, cellular metabolism, and cell division. Perhaps not surprisingly then, neoplastic cells have been found to have higher iron requirements than normal, non-malignant cells. Iron depletion through chelation has been explored as a possible therapeutic intervention in a variety of cancers. Here, we will review iron homeostasis in non-malignant and malignant cells, the widespread effects of iron depletion on the cell, the various iron chelators that have been explored in the treatment of cancer, and the tumor types that have been most commonly studied in the context of iron chelation.
Collapse
Affiliation(s)
- Jessica L. Heath
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Joshua M. Weiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Catherine P. Lavau
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Daniel S. Wechsler
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-684-3401; Fax: +1-919-681-7950
| |
Collapse
|
42
|
The Bartonella quintana extracytoplasmic function sigma factor RpoE has a role in bacterial adaptation to the arthropod vector environment. J Bacteriol 2013; 195:2662-74. [PMID: 23564167 DOI: 10.1128/jb.01972-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment.
Collapse
|
43
|
Mascher T. Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. Curr Opin Microbiol 2013; 16:148-55. [DOI: 10.1016/j.mib.2013.02.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/30/2013] [Accepted: 02/03/2013] [Indexed: 11/16/2022]
|
44
|
Kenney GE, Rosenzweig AC. Genome mining for methanobactins. BMC Biol 2013; 11:17. [PMID: 23442874 PMCID: PMC3621798 DOI: 10.1186/1741-7007-11-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/26/2013] [Indexed: 01/27/2023] Open
Abstract
Background Methanobactins (Mbns) are a family of copper-binding natural products involved in copper uptake by methanotrophic bacteria. The few Mbns that have been structurally characterized feature copper coordination by two nitrogen-containing heterocycles next to thioamide groups embedded in a peptidic backbone of varying composition. Mbns are proposed to derive from post-translational modification of ribosomally synthesized peptides, but only a few genes encoding potential precursor peptides have been identified. Moreover, the relevance of neighboring genes in these genomes has been unclear. Results The potential for Mbn production in a wider range of bacterial species was assessed by mining microbial genomes. Operons encoding Mbn-like precursor peptides, MbnAs, were identified in 16 new species, including both methanotrophs and, surprisingly, non-methanotrophs. Along with MbnA, the core of the operon is formed by two putative biosynthetic genes denoted MbnB and MbnC. The species can be divided into five groups on the basis of their MbnA and MbnB sequences and their operon compositions. Additional biosynthetic proteins, including aminotransferases, sulfotransferases and flavin adenine dinucleotide (FAD)-dependent oxidoreductases were also identified in some families. Beyond biosynthetic machinery, a conserved set of transporters was identified, including MATE multidrug exporters and TonB-dependent transporters. Additional proteins of interest include a di-heme cytochrome c peroxidase and a partner protein, the roles of which remain a mystery. Conclusions This study indicates that Mbn-like compounds may be more widespread than previously thought, but are not present in all methanotrophs. This distribution of species suggests a broader role in metal homeostasis. These data provide a link between precursor peptide sequence and Mbn structure, facilitating predictions of new Mbn structures and supporting a post-translational modification biosynthetic pathway. In addition, testable models for Mbn transport and for methanotrophic copper regulation have emerged. Given the unusual modifications observed in Mbns characterized thus far, understanding the roles of the putative biosynthetic proteins is likely to reveal novel pathways and chemistry.
Collapse
Affiliation(s)
- Grace E Kenney
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
45
|
Giacani L, Denisenko O, Tompa M, Centurion-Lara A. Identification of the Treponema pallidum subsp. pallidum TP0092 (RpoE) regulon and its implications for pathogen persistence in the host and syphilis pathogenesis. J Bacteriol 2013; 195:896-907. [PMID: 23243302 PMCID: PMC3562100 DOI: 10.1128/jb.01973-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/06/2012] [Indexed: 12/16/2022] Open
Abstract
Bacteria often respond to harmful environmental stimuli with the induction of extracytoplasmic function (ECF) sigma (σ) factors that in turn direct RNA polymerase to transcribe specific groups of response genes (or regulons) to minimize cellular damage and favor adaptation to the changed extracellular milieu. In Treponema pallidum subsp. pallidum, the agent of syphilis, the TP0092 gene is predicted to code for the pathogen's only annotated ECF σ factor, homologous to RpoE, known in Escherichia coli to control a key transduction pathway for maintenance of envelope homeostasis in response to external stress and cell growth. Here we have shown that TP0092 is highly transcribed during experimental syphilis. Furthermore, TP0092 transcription levels significantly increase as infection progresses toward immune clearance of the pathogen, suggesting a role for TP0092 in helping T. pallidum respond to harmful stimuli in the host environment. To investigate this hypothesis, we determined the TP0092 regulon at two different time points during infection using chromatin immunoprecipitation followed by high-throughput sequencing. A total of 22 chromosomal regions, all containing putative TP0092-binding sites and corresponding to as many T. pallidum genes, were identified. Noteworthy among them are the genes encoding desulfoferrodoxin and thioredoxin, involved in detoxification of reactive oxygen species (ROS). Because T. pallidum does not possess other enzymes for ROS detoxification, such as superoxide dismutase, catalase, or glutathione peroxidase, our results suggest that the TP0092 regulon is important in protecting the syphilis spirochete from damage caused by ROS produced at the site of infection during the inflammatory response.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Departments of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
46
|
Flores-Kim J, Darwin AJ. Links between type III secretion and extracytoplasmic stress responses in Yersinia. Front Cell Infect Microbiol 2012; 2:125. [PMID: 23087910 PMCID: PMC3467454 DOI: 10.3389/fcimb.2012.00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
The cell envelope of pathogenic bacteria is a barrier against host environmental conditions and immunity molecules, as well as the site where many virulence factors are assembled. Extracytoplasmic stress responses (ESRs) have evolved to help maintain its integrity in conditions where it might be compromised. These ESRs also have important links to the production of envelope-associated virulence systems by the bacteria themselves. One such virulence factor is the type III secretion system (T3SS), the first example of which was provided by the pathogenic Yersinia. This article reviews the reported links between four different ESRs and T3SS function in Yersinia. Components of three of these ESRs affect the function and/or regulation of two different T3SSs. The response regulator of the Rcs ESR is involved in positive regulation of the Ysa-Ysp T3SS found in the highly pathogenic 1B biogroup of Y. enterocolitica. Conversely, the response regulator of the Y. pseudotuberculosis Cpx ESR can down-regulate production of the Ysc-Yop T3SS, and at least one other envelope virulence factor (invasin), by direct repression. Also in Y. pseudotuberculosis, there is some evidence suggesting that an intact RpoE ESR might be important for normal Yersinia outer proteins (Yop) production and secretion. Besides these regulatory links between ESRs and T3SSs, perhaps the most striking connection between T3SS function and an ESR is that between the phage shock protein (Psp) and Ysc-Yop systems of Y. enterocolitica. The Psp response does not affect the regulation or function of the Ysc-Yop system. Instead, Ysc-Yop T3SS production induces the Psp system, which then mitigates T3SS-induced envelope stress. Consequently, the Y. enterocolitica Psp system is essential when the Ysc-Yop T3SS is produced.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, New York University School of Medicine New York, NY, USA
| | | |
Collapse
|
47
|
Liu J, Li J, Wu Z, Pei H, Zhou J, Xiang H. Identification and characterization of the cognate anti-sigma factor and specific promoter elements of a T. tengcongensis ECF sigma factor. PLoS One 2012; 7:e40885. [PMID: 22815853 PMCID: PMC3397946 DOI: 10.1371/journal.pone.0040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
Extracytoplasmic function (ECF) σ factors, the largest group of alternative σ factors, play important roles in response to environmental stresses. Tt-RpoE1 is annotated as an ECF σ factor in Thermoanaerobacter tengcongensis. In this study, we revealed that the Tt-tolB gene located downstream of the Tt-rpoE1 gene encoded the cognate anti-σ factor, which could inhibit the transcription activity of Tt-RpoE1 by direct interaction with Tt-RpoE1 via its N-terminal domain. By in vitro transcription assay, the auto-regulation ability of Tt-RpoE1 was determined, and band shift assay showed that Tt-RpoE1 preferred to bind a fork-junction promoter DNA. With truncation or base-specific scanning mutations, the contribution of the nucleotides in −35 and −10 regions to interaction between Tt-RpoE1 and promoter DNA was explored. The promoter recognition pattern of Tt-RpoE1 was determined as 5′ tGTTACN16CGTC 3′, which was further confirmed by in vitro transcription assays. This result showed that the Tt-RpoE1-recognized promoter possessed a distinct −10 motif (−13CGTC−10) as the recognition determinant, which is distinguished from the −10 element recognized by σ70. Site-directed mutagenesis in Region 2.4 of Tt-RpoE1 indicated that the “D” residue of DXXR motif was responsible for recognizing the −12G nucleotide. Our results suggested that distinct −10 motif may be an efficient and general strategy used by ECF σ factors in adaptive response regulation of the related genes.
Collapse
Affiliation(s)
- Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhenfang Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Huadong Pei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
48
|
Richet E, Davidson AL, Joly N. The ABC transporter MalFGK(2) sequesters the MalT transcription factor at the membrane in the absence of cognate substrate. Mol Microbiol 2012; 85:632-47. [PMID: 22715926 DOI: 10.1111/j.1365-2958.2012.08137.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MalK, the cytoplasmic component of the maltose ABC transporter from Escherichia coli is known to control negatively the activity of MalT, the activator of the maltose regulon, through complex formation. Here we further investigate this regulatory process by monitoring MalT activity and performing fluorescence microscopy analyses under various conditions. We establish that, under physiological conditions, the molecular entity that interacts with MalT is not free MalK, but the maltose transporter, MalFGK(2) , which sequesters MalT to the membrane. Furthermore, we provide compelling evidence that the transporter's ability to bind MalT is not constitutive, but strongly diminished when MalFGK(2) is engaged in sugar transport. Notably, the outward-facing transporter, i.e. the catalytic intermediate, is ineffective in inhibiting MalT compared to the inward-facing state, i.e. the resting form. Analyses of available genetic and structural data suggest how the interaction between one inactive MalT molecule and MalFGK(2) would be sensitive to the transporter state, thereby allowing MalT release upon maltose entrance. A related mechanism may underpin signalling by other ABC transporters.
Collapse
Affiliation(s)
- Evelyne Richet
- Institut Pasteur, Unité de Génétique Moléculaire, Département de Microbiologie, 25 rue du Dr. Roux, F-75015 Paris, France.
| | | | | |
Collapse
|
49
|
Structural basis for sigma factor mimicry in the general stress response of Alphaproteobacteria. Proc Natl Acad Sci U S A 2012; 109:E1405-14. [PMID: 22550171 DOI: 10.1073/pnas.1117003109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reprogramming gene expression is an essential component of adaptation to changing environmental conditions. In bacteria, a widespread mechanism involves alternative sigma factors that redirect transcription toward specific regulons. The activity of sigma factors is often regulated through sequestration by cognate anti-sigma factors; however, for most systems, it is not known how the activity of the anti-sigma factor is controlled to release the sigma factor. Recently, the general stress response sigma factor in Alphaproteobacteria, σ(EcfG), was identified. σ(EcfG) is inactivated by the anti-sigma factor NepR, which is itself regulated by the response regulator PhyR. This key regulator sequesters NepR upon phosphorylation of its PhyR receiver domain via its σ(EcfG) sigma factor-like output domain (PhyR(SL)). To understand the molecular basis of the PhyR-mediated partner-switching mechanism, we solved the structure of the PhyR(SL)-NepR complex using NMR. The complex reveals an unprecedented anti-sigma factor binding mode: upon PhyR(SL) binding, NepR forms two helices that extend over the surface of the PhyR(SL) subdomains. Homology modeling and comparative analysis of NepR, PhyR(SL), and σ(EcfG) mutants indicate that NepR contacts both proteins with the same determinants, showing sigma factor mimicry at the atomic level. A lower density of hydrophobic interactions, together with the absence of specific polar contacts in the σ(EcfG)-NepR complex model, is consistent with the higher affinity of NepR for PhyR compared with σ(EcfG). Finally, by reconstituting the partner switch in vitro, we demonstrate that the difference in affinity of NepR for its partners is sufficient for the switch to occur.
Collapse
|
50
|
Stockwell SB, Reutimann L, Guerinot ML. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:119-28. [PMID: 21879796 DOI: 10.1094/mpmi-07-11-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alternative sigma (σ) factors, proteins that recruit RNA polymerase core enzyme to target promoters, are one mechanism by which bacteria transcriptionally regulate groups of genes in response to environmental stimuli. A class of σ(70) proteins, termed extracytoplasmic function (ECF) σ factors, are involved in cellular processes such as bacterial stress responses and virulence. Here, we describe an ECF16 σ factor, EcfS (Blr4928) from the gram-negative soil bacterium Bradyrhizobium japonicum USDA110, that plays a critical role in the establishment of a functional symbiosis with soybean. Nonpolar insertional mutants of ecfS form immature nodules that do not fix nitrogen, a defect that can be successfully complemented by expression of ecfS. Overexpression of the cocistronic gene, tmrS (blr4929), phenocopies the ecfS mutant in planta and, therefore, we propose that TmrS is a negative regulator of EcfS, a determination consistent with the prediction that it encodes an anti-σ factor. Microarray analysis of the ecfS mutant and tmrS overexpressor was used to identify 40 transcripts misregulated in both strains. These transcripts primarily encode proteins of unknown and transport-related functions and may provide insights into the symbiotic defect in these strains.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bradyrhizobium/genetics
- Bradyrhizobium/metabolism
- Bradyrhizobium/physiology
- DNA, Complementary/genetics
- Gene Expression/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genetic Complementation Test
- Mutagenesis, Insertional
- Nitrogen Fixation
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Plant Leaves/microbiology
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Root Nodules, Plant/microbiology
- Root Nodules, Plant/ultrastructure
- Sigma Factor/genetics
- Sigma Factor/metabolism
- Glycine max/microbiology
- Glycine max/ultrastructure
- Stress, Physiological
- Symbiosis
- Transcription, Genetic
- Transcriptome
Collapse
Affiliation(s)
- S B Stockwell
- Biological Sciences Department, Dartmouth College, Hanover, NH, USA.
| | | | | |
Collapse
|