1
|
Zhang Y, El Harchi A, James AF, Oiki S, Dempsey CE, Hancox JC. Stereoselective block of the hERG potassium channel by the Class Ia antiarrhythmic drug disopyramide. Cell Mol Life Sci 2024; 81:466. [PMID: 39607488 PMCID: PMC11604869 DOI: 10.1007/s00018-024-05498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Potassium channels encoded by human Ether-à-go-go-Related Gene (hERG) are inhibited by diverse cardiac and non-cardiac drugs. Disopyramide is a chiral Class Ia antiarrhythmic that inhibits hERG at clinical concentrations. This study evaluated effects of disopyramide enantiomers on hERG current (IhERG) from hERG expressing HEK 293 cells at 37 °C. S(+) and R(-) disopyramide inhibited wild-type (WT) IhERG with IC50 values of 3.9 µM and 12.9 µM respectively. The attenuated-inactivation mutant N588K had little effect on the action of S(+) disopyramide but the IC50 for the R(-) enantiomer was ~ 15-fold that for S(+) disopyramide. The enhanced inactivation mutant N588E only slightly increased the potency of R(-) disopyramide. S6 mutation Y652A reduced S(+) disopyramide potency more than that of R(-) disopyramide (respective IC50 values ~ 49-fold and 11-fold their WT controls). The F656A mutation also exerted a stronger effect on S(+) than R(-) disopyramide, albeit with less IC50 elevation. A WT-Y652A tandem dimer exhibited a sensitivity to the enantiomers that was intermediate between that of WT and Y652A, suggesting Y652 groups on adjacent subunits contribute to the binding. Moving the Y (normally at site 652) one residue in the N- terminal (up) direction in N588K hERG markedly increased the blocking potency of R(-) disopyramide. Molecular dynamics simulations using a hERG pore model produced different binding modes for S(+) and R(-) disopyramide consistent with the experimental observations. In conclusion, S(+) disopyramide interacts more strongly with S6 aromatic binding residues on hERG than does R(-) disopyramide, whilst optimal binding of the latter is more reliant on intact inactivation.
Collapse
Affiliation(s)
- Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Shigetoshi Oiki
- Biomedical Imaging Research Centre, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Christopher E Dempsey
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
2
|
Zhang Y, Grimwood AL, Hancox JC, Harmer SC, Dempsey CE. Evolutionary coupling analysis guides identification of mistrafficking-sensitive variants in cardiac K + channels: Validation with hERG. Front Pharmacol 2022; 13:1010119. [PMID: 36339618 PMCID: PMC9632996 DOI: 10.3389/fphar.2022.1010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 09/27/2023] Open
Abstract
Loss of function (LOF) mutations of voltage sensitive K+ channel proteins hERG (Kv11.1) and KCNQ1 (Kv7.1) account for the majority of instances of congenital Long QT Syndrome (cLQTS) with the dominant molecular phenotype being a mistrafficking one resulting from protein misfolding. We explored the use of Evolutionary Coupling (EC) analysis, which identifies evolutionarily conserved pairwise amino acid interactions that may contribute to protein structural stability, to identify regions of the channels susceptible to misfolding mutations. Comparison with published experimental trafficking data for hERG and KCNQ1 showed that the method strongly predicts "scaffolding" regions of the channel membrane domains and has useful predictive power for trafficking phenotypes of individual variants. We identified a region in and around the cytoplasmic S2-S3 loop of the hERG Voltage Sensor Domain (VSD) as susceptible to destabilising mutation, and this was confirmed using a quantitative LI-COR ® based trafficking assay that showed severely attenuated trafficking in eight out of 10 natural hERG VSD variants selected using EC analysis. Our analysis highlights an equivalence in the scaffolding structures of the hERG and KCNQ1 membrane domains. Pathogenic variants of ion channels with an underlying mistrafficking phenotype are likely to be located within similar scaffolding structures that are identifiable by EC analysis.
Collapse
Affiliation(s)
- Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Amy L. Grimwood
- School of Biological Sciences, Life Sciences Building, Bristol, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Stephen C. Harmer
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Christopher E. Dempsey
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| |
Collapse
|
3
|
Cornean A, Gierten J, Welz B, Mateo JL, Thumberger T, Wittbrodt J. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. eLife 2022; 11:e72124. [PMID: 35373735 PMCID: PMC9033269 DOI: 10.7554/elife.72124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Single nucleotide variants (SNVs) are prevalent genetic factors shaping individual trait profiles and disease susceptibility. The recent development and optimizations of base editors, rubber and pencil genome editing tools now promise to enable direct functional assessment of SNVs in model organisms. However, the lack of bioinformatic tools aiding target prediction limits the application of base editing in vivo. Here, we provide a framework for adenine and cytosine base editing in medaka (Oryzias latipes) and zebrafish (Danio rerio), ideal for scalable validation studies. We developed an online base editing tool ACEofBASEs (a careful evaluation of base-edits), to facilitate decision-making by streamlining sgRNA design and performing off-target evaluation. We used state-of-the-art adenine (ABE) and cytosine base editors (CBE) in medaka and zebrafish to edit eye pigmentation genes and transgenic GFP function with high efficiencies. Base editing in the genes encoding troponin T and the potassium channel ERG faithfully recreated known cardiac phenotypes. Deep-sequencing of alleles revealed the abundance of intended edits in comparison to low levels of insertion or deletion (indel) events for ABE8e and evoBE4max. We finally validated missense mutations in novel candidate genes of congenital heart disease (CHD) dapk3, ube2b, usp44, and ptpn11 in F0 and F1 for a subset of these target genes with genotype-phenotype correlation. This base editing framework applies to a wide range of SNV-susceptible traits accessible in fish, facilitating straight-forward candidate validation and prioritization for detailed mechanistic downstream studies.
Collapse
Affiliation(s)
- Alex Cornean
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Department of Pediatric Cardiology, University Hospital HeidelbergHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Bettina Welz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Juan Luis Mateo
- Deparment of Computer Science, University of OviedoOviedoSpain
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| |
Collapse
|
4
|
Du C, Zhang H, Harmer SC, Hancox JC. Identification through action potential clamp of proarrhythmic consequences of the short QT syndrome T618I hERG 'hotspot' mutation. Biochem Biophys Res Commun 2022; 596:49-55. [PMID: 35114584 PMCID: PMC8865743 DOI: 10.1016/j.bbrc.2022.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
The T618I KCNH2-encoded hERG mutation is the most frequently observed mutation in genotyped cases of the congenital short QT syndrome (SQTS), a cardiac condition associated with ventricular fibrillation and sudden death. Most T618I hERG carriers exhibit a pronounced U wave on the electrocardiogram and appear vulnerable to ventricular, but not atrial fibrillation (AF). The basis for these effects is unclear. This study used the action potential (AP) voltage clamp technique to determine effects of the T618I mutation on hERG current (IhERG) elicited by APs from different cardiac regions. Whole-cell patch-clamp recordings were made at 37 °C of IhERG from hERG-transfected HEK-293 cells. Maximal IhERG during a ventricular AP command was increased ∼4-fold for T618I IhERG and occurred much earlier during AP repolarization. The mutation also increased peak repolarizing currents elicited by Purkinje fibre (PF) APs. Maximal wild-type (WT) IhERG current during the PF waveform was 87.2 ± 4.5% of maximal ventricular repolarizing current whilst for the T618I mutant, the comparable value was 47.7 ± 2.7%. Thus, the T618I mutation exacerbated differences in repolarizing IhERG between PF and ventricular APs; this could contribute to heterogeneity of ventricular-PF repolarization and consequently to the U waves seen in T618I carriers. The comparatively shorter duration and lack of pronounced plateau of the atrial AP led to a smaller effect of the T618I mutation during the atrial AP, which may help account for the lack of reported AF in T618I carriers. Use of a paired ventricular AP protocol revealed an alteration to protective IhERG transients that affect susceptibility to premature excitation late in AP repolarization/early in diastole. These observations may help explain altered arrhythmia susceptibility in this form of the SQTS. T618I is a ‘hotspot’ hERG potassium channel mutation in the congenital short QT syndrome. Differences in hERG current during ventricular and Purkinje fibre action potentials are exacerbated by the T618I mutation. T618I has more modest effects on current during atrial action potentials. T618I modifies the protective response of hERG to premature ventricular excitation. These alterations to hERG function help explain ECG changes reported in T618I-hERG carriers.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK; Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
5
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
6
|
Toplak Ž, Hendrickx LA, Abdelaziz R, Shi X, Peigneur S, Tomašič T, Tytgat J, Peterlin-Mašič L, Pardo LA. Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Med Res Rev 2021; 42:183-226. [PMID: 33945158 DOI: 10.1002/med.21808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Two decades of research have proven the relevance of ion channel expression for tumor progression in virtually every indication, and it has become clear that inhibition of specific ion channels will eventually become part of the oncology therapeutic arsenal. However, ion channels play relevant roles in all aspects of physiology, and specificity for the tumor tissue remains a challenge to avoid undesired effects. Eag1 (KV 10.1) is a voltage-gated potassium channel whose expression is very restricted in healthy tissues outside of the brain, while it is overexpressed in 70% of human tumors. Inhibition of Eag1 reduces tumor growth, but the search for potent inhibitors for tumor therapy suffers from the structural similarities with the cardiac HERG channel, a major off-target. Existing inhibitors show low specificity between the two channels, and screenings for Eag1 binders are prone to enrichment in compounds that also bind HERG. Rational drug design requires knowledge of the structure of the target and the understanding of structure-function relationships. Recent studies have shown subtle structural differences between Eag1 and HERG channels with profound functional impact. Thus, although both targets' structure is likely too similar to identify leads that exclusively bind to one of the channels, the structural information combined with the new knowledge of the functional relevance of particular residues or areas suggests the possibility of selective targeting of Eag1 in cancer therapies. Further development of selective Eag1 inhibitors can lead to first-in-class compounds for the treatment of different cancers.
Collapse
Affiliation(s)
- Žan Toplak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Louise A Hendrickx
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Reham Abdelaziz
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Xiaoyi Shi
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | | | - Luis A Pardo
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
7
|
Computational analysis of the effect of KCNH2 L532P mutation on ventricular electromechanical behaviors. J Electrocardiol 2021; 66:24-32. [PMID: 33721574 DOI: 10.1016/j.jelectrocard.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
The KCNH2 L532P mutation is an alteration in the IKr channel that is associated with short QT syndrome and atrial fibrillation in zebrafish. In preliminary studies, the electrophysiological effects of the hERG L532P mutation were investigated using a mathematical model in a single-cell and 2D sheet medium. The objective of this study was to quantify the effects of the KCNH2 L532P mutation on the 3D ventricular electrophysiological behavior and the mechanical pumping responses. We used a realistic three-dimensional ventricular electrophysiological-mechanical model, which was adjusted into two conditions: the wild-type (WT) condition, i.e., the original case of the Tusscher et al. model, and the L532P mutation condition, with modification of the original IKr equation. The action potential duration (APD) in the mutant ventricle was reduced by 73% owing to the significant increase of the IKr current density. In the 3D simulation, the L532P mutation maintained the sustainability of reentrant waves; however, the reentry was terminated in the WT condition. The contractility of the ventricle with L532P mutation was significantly reduced compared with that in WT which results in sustain shivering heart during reentry condition. The reduction of the contractility was associated with the shortening APD which simultaneously shortened the duration of the Ca2+ channel opening. In conclusion, the ventricle with KCNH2 L532P mutation is prone to reentry generation with a sustained chaotic condition, and the mutation significantly reduced the pumping performance of the ventricles.
Collapse
|
8
|
Simpson KE, Venkateshappa R, Pang ZK, Faizi S, Tibbits GF, Claydon TW. Utility of Zebrafish Models of Acquired and Inherited Long QT Syndrome. Front Physiol 2021; 11:624129. [PMID: 33519527 PMCID: PMC7844309 DOI: 10.3389/fphys.2020.624129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Long-QT Syndrome (LQTS) is a cardiac electrical disorder, distinguished by irregular heart rates and sudden death. Accounting for ∼40% of cases, LQTS Type 2 (LQTS2), is caused by defects in the Kv11.1 (hERG) potassium channel that is critical for cardiac repolarization. Drug block of hERG channels or dysfunctional channel variants can result in acquired or inherited LQTS2, respectively, which are typified by delayed repolarization and predisposition to lethal arrhythmia. As such, there is significant interest in clear identification of drugs and channel variants that produce clinically meaningful perturbation of hERG channel function. While toxicological screening of hERG channels, and phenotypic assessment of inherited channel variants in heterologous systems is now commonplace, affordable, efficient, and insightful whole organ models for acquired and inherited LQTS2 are lacking. Recent work has shown that zebrafish provide a viable in vivo or whole organ model of cardiac electrophysiology. Characterization of cardiac ion currents and toxicological screening work in intact embryos, as well as adult whole hearts, has demonstrated the utility of the zebrafish model to contribute to the development of therapeutics that lack hERG-blocking off-target effects. Moreover, forward and reverse genetic approaches show zebrafish as a tractable model in which LQTS2 can be studied. With the development of new tools and technologies, zebrafish lines carrying precise channel variants associated with LQTS2 have recently begun to be generated and explored. In this review, we discuss the present knowledge and questions raised related to the use of zebrafish as models of acquired and inherited LQTS2. We focus discussion, in particular, on developments in precise gene-editing approaches in zebrafish to create whole heart inherited LQTS2 models and evidence that zebrafish hearts can be used to study arrhythmogenicity and to identify potential anti-arrhythmic compounds.
Collapse
Affiliation(s)
- Kyle E. Simpson
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ravichandra Venkateshappa
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Zhao Kai Pang
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Shoaib Faizi
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Cardiovascular Science, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Tom W. Claydon
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
9
|
Zhang Y, Dempsey CE, Hancox JC. Electrophysiological characterization of the modified hERG T potassium channel used to obtain the first cryo-EM hERG structure. Physiol Rep 2020; 8:e14568. [PMID: 33091232 PMCID: PMC7580876 DOI: 10.14814/phy2.14568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/02/2023] Open
Abstract
The voltage-gated hERG (human-Ether-à-go-go Related Gene) K+ channel plays a fundamental role in cardiac action potential repolarization. Loss-of-function mutations or pharmacological inhibition of hERG leads to long QT syndrome, whilst gain-of-function mutations lead to short QT syndrome. A recent open channel cryo-EM structure of hERG represents a significant advance in the ability to interrogate hERG channel structure-function. In order to suppress protein aggregation, a truncated channel construct of hERG (hERGT ) was used to obtain this structure. In hERGT cytoplasmic domain residues 141 to 350 and 871 to 1,005 were removed from the full-length channel protein. There are limited data on the electrophysiological properties of hERGT channels. Therefore, this study was undertaken to determine how hERGT influences channel function at physiological temperature. Whole-cell measurements of hERG current (IhERG ) were made at 37°C from HEK 293 cells expressing wild-type (WT) or hERGT channels. With a standard +20 mV activating command protocol, neither end-pulse nor tail IhERG density significantly differed between WT and hERGT . However, the IhERG deactivation rate was significantly slower for hERGT . Half-maximal activation voltage (V0.5 ) was positively shifted for hERGT by ~+8 mV (p < .05 versus WT), without significant change to the activation relation slope factor. Neither the voltage dependence of inactivation, nor time course of development of inactivation significantly differed between WT and hERGT , but recovery of IhERG from inactivation was accelerated for hERGT (p < .05 versus WT). Steady-state "window" current was positively shifted for hERGT with a modest increase in the window current peak. Under action potential (AP) voltage clamp, hERGT IhERG showed modestly increased current throughout the AP plateau phase with a significant increase in current integral during the AP. The observed consequences for hERGT IhERG of deletion of the two cytoplasmic regions may reflect changes to electrostatic interactions influencing the voltage sensor domain.
Collapse
Affiliation(s)
- Yihong Zhang
- School of Physiology and Pharmacology and NeuroscienceBiomedical Sciences BuildingThe University of BristolUniversity WalkBristolUK
| | - Christopher E. Dempsey
- School of BiochemistryBiomedical Sciences BuildingThe University of BristolUniversity WalkBristolUK
| | - Jules C. Hancox
- School of Physiology and Pharmacology and NeuroscienceBiomedical Sciences BuildingThe University of BristolUniversity WalkBristolUK
| |
Collapse
|
10
|
Heikhmakhtiar AK, Abrha AT, Jeong DU, Lim KM. Proarrhythmogenic Effect of the L532P and N588K KCNH2 Mutations in the Human Heart Using a 3D Electrophysiological Model. J Korean Med Sci 2020; 35:e238. [PMID: 32715669 PMCID: PMC7384902 DOI: 10.3346/jkms.2020.35.e238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Atrial arrhythmia is a cardiac disorder caused by abnormal electrical signaling and transmission, which can result in atrial fibrillation and eventual death. Genetic defects in ion channels can cause myocardial repolarization disorders. Arrhythmia-associated gene mutations, including KCNH2 gene mutations, which are one of the most common genetic disorders, have been reported. This mutation causes abnormal QT intervals by a gain of function in the rapid delayed rectifier potassium channel (IKr). In this study, we demonstrated that mutations in the KCNH2 gene cause atrial arrhythmia. METHODS The N588K and L532P mutations were induced in the Courtemanche-Ramirez-Nattel (CRN) cell model, which was subjected to two-dimensional and three-dimensional simulations to compare the electrical conduction patterns of the wild-type and mutant-type genes. RESULTS In contrast to the early self-termination of the wild-type conduction waveforms, the conduction waveform of the mutant-type retained the reentrant wave (N588K) and caused a spiral break-up, resulting in irregular wave generation (L532P). CONCLUSION The present study confirmed that the KCNH2 gene mutation increases the vulnerability of the atrial tissue for arrhythmia.
Collapse
Affiliation(s)
- Aulia Khamas Heikhmakhtiar
- School of Computing, Telkom University, Bandung, Jawa Barat, Indonesia
- Research Center of Human Centric Engineering (HUMIC), Telkom University, Bandung, Jawa Barat, Indonesia
| | - Abebe Tekle Abrha
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Korea
| | - Da Un Jeong
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Korea.
| |
Collapse
|
11
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
12
|
Al-Moubarak E, Zhang Y, Dempsey CE, Zhang H, Harmer SC, Hancox JC. Serine mutation of a conserved threonine in the hERG K + channel S6-pore region leads to loss-of-function through trafficking impairment. Biochem Biophys Res Commun 2020; 526:1085-1091. [PMID: 32321643 PMCID: PMC7237882 DOI: 10.1016/j.bbrc.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
The human Ether-à-go-go Related Gene (hERG) encodes a potassium channel responsible for the cardiac rapid delayed rectifier K+ current, IKr, which regulates ventricular repolarization. Loss-of-function hERG mutations underpin the LQT2 form of congenital long QT syndrome. This study was undertaken to elucidate the functional consequences of a variant of uncertain significance, T634S, located at a highly conserved position at the top of the S6 helix of the hERG channel. Whole-cell patch-clamp recordings were made at 37 °C of hERG current (IhERG) from HEK 293 cells expressing wild-type (WT) hERG, WT+T634S and hERG-T634S alone. When the T634S mutation was expressed alone little or no IhERG could be recorded. Co-expressing WT and hERG-T634S suppressed IhERG tails by ∼57% compared to WT alone, without significant alteration of voltage dependent activation of IhERG. A similar suppression of IhERG was observed under action potential voltage clamp. Comparable reduction of IKr in a ventricular AP model delayed repolarization and led to action potential prolongation. A LI-COR® based On/In-Cell Western assay showed that cell surface expression of hERG channels in HEK 293 cells was markedly reduced by the T634S mutation, whilst total cellular hERG expression was unaffected, demonstrating impaired trafficking of the hERG-T634S mutant. Incubation with E−4031, but not lumacaftor, rescued defective hERG-T634S channel trafficking and IhERG density. In conclusion, these data identify hERG-T634S as a rescuable trafficking defective mutation that reduces IKr sufficiently to delay repolarization and, thereby, potentially produce a LQT2 phenotype. hERG potassium channel variants can cause dangerous ventricular arrhythmias. An S6 helix threonine in hERG, T634, is highly conserved amongst potassium channels. The T634S mutation reduces hERG current and its contribution to ventricular repolarization. The T634S mutation decreases hERG channel surface expression but not synthesis. T634S-induced hERG trafficking impairment is pharmacologically rescuable.
Collapse
Affiliation(s)
- Ehab Al-Moubarak
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Christopher E Dempsey
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
13
|
El Harchi A, Butler AS, Zhang Y, Dempsey CE, Hancox JC. The macrolide drug erythromycin does not protect the hERG channel from inhibition by thioridazine and terfenadine. Physiol Rep 2020; 8:e14385. [PMID: 32147975 PMCID: PMC7061092 DOI: 10.14814/phy2.14385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
The macrolide antibiotic erythromycin has been associated with QT interval prolongation and inhibition of the hERG-encoded channels responsible for the rapid delayed rectifier K+ current I(Kr ). It has been suggested that low concentrations of erythromycin may have a protective effect against hERG block and associated drug-induced arrhythmia by reducing the affinity of the pore-binding site for high potency hERG inhibitors. This study aimed to explore further the notion of a potentially protective effect of erythromycin. Whole-cell patch-clamp experiments were performed in which hERG-expressing mammalian (Human Embryonic Kidney; HEK) cells were preincubated with low to moderate concentrations of erythromycin (3 or 30 µM) prior to whole-cell patch clamp recordings of hERG current (IhERG ) at 37°C. In contrast to a previous report, exposure to low concentrations of erythromycin did not reduce pharmacological sensitivity of hERG to the antipsychotic thioridazine and antihistamine terfenadine. The IC50 value for IhERG tail inhibition by terfenadine was decreased by ~32-fold in the presence of 3 µM erythromycin (p < .05 vs. no preincubation). Sensitivity to thioridazine remained unchanged (p > .05 vs. no preincubation). The effects of low concentrations of erythromycin were investigated for a series of pore blocking drugs, and the results obtained were consistent with additive and/or synergistic effects. Experiments with the externally acting blocker BeKm-1 on WT hERG and a pore mutant (F656V) were used to explore the location of the binding site for erythromycin. Our data are inconsistent with the use of erythromycin for the management of drug-induced QT prolongation.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Andrew S Butler
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Yihong Zhang
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Christopher E Dempsey
- School of Biochemistry, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Jules C Hancox
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
14
|
Butler A, Helliwell MV, Zhang Y, Hancox JC, Dempsey CE. An Update on the Structure of hERG. Front Pharmacol 2020; 10:1572. [PMID: 32038248 PMCID: PMC6992539 DOI: 10.3389/fphar.2019.01572] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023] Open
Abstract
The human voltage-sensitive K+ channel hERG plays a fundamental role in cardiac action potential repolarization, effectively controlling the QT interval of the electrocardiogram. Inherited loss- or gain-of-function mutations in hERG can result in dangerous “long” (LQTS) or “short” QT syndromes (SQTS), respectively, and the anomalous susceptibility of hERG to block by a diverse range of drugs underlies an acquired LQTS. A recent open channel cryo-EM structure of hERG should greatly advance understanding of the molecular basis of hERG channelopathies and drug-induced LQTS. Here we describe an update of recent research that addresses the nature of the particular gated state of hERG captured in the new structure, and the insight afforded by the structure into the molecular basis for high affinity drug block of hERG, the binding of hERG activators and the molecular basis of hERG's peculiar gating properties. Interpretation of the pharmacology of natural SQTS mutants in the context of the structure is a promising approach to understanding the molecular basis of hERG inactivation, and the structure suggests how voltage-dependent changes in the membrane domain may be transmitted to an extracellular “turret” to effect inactivation through aromatic side chain motifs that are conserved throughout the KCNH family of channels.
Collapse
Affiliation(s)
- Andrew Butler
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, Bristol, United Kingdom
| | - Matthew V Helliwell
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, Bristol, United Kingdom
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, Bristol, United Kingdom
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, Bristol, United Kingdom
| | | |
Collapse
|
15
|
Potent hERG channel inhibition by sarizotan, an investigative treatment for Rett Syndrome. J Mol Cell Cardiol 2019; 135:22-30. [PMID: 31362019 PMCID: PMC6856717 DOI: 10.1016/j.yjmcc.2019.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
Abstract
Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder associated with respiratory abnormalities and, in up to ~40% of patients, with prolongation of the cardiac QTc interval. QTc prolongation calls for cautious use of drugs with a propensity to inhibit hERG channels. The STARS trial has been undertaken to investigate the efficacy of sarizotan, a 5-HT1A receptor agonist, at correcting RTT respiratory abnormalities. The present study investigated whether sarizotan inhibits hERG potassium channels and prolongs ventricular repolarization. Whole-cell patch-clamp measurements were made at 37 °C from hERG-expressing HEK293 cells. Docking analysis was conducted using a recent cryo-EM structure of hERG. Sarizotan was a potent inhibitor of hERG current (IhERG; IC50 of 183 nM) and of native ventricular IKr from guinea-pig ventricular myocytes. 100 nM and 1 μM sarizotan prolonged ventricular action potential (AP) duration (APD90) by 14.1 ± 3.3% (n = 6) and 29.8 ± 3.1% (n = 5) respectively and promoted AP triangulation. High affinity IhERG inhibition by sarizotan was contingent upon channel gating and intact inactivation. Mutagenesis experiments and docking analysis implicated F557, S624 and Y652 residues in sarizotan binding, with weaker contribution from F656. In conclusion, sarizotan inhibits IKr/IhERG, accessing key binding residues on channel gating. This action and consequent ventricular AP prolongation occur at concentrations relevant to those proposed to treat breathing dysrhythmia in RTT. Sarizotan should only be used in RTT patients with careful evaluation of risk factors for QTc prolongation.
Collapse
|
16
|
Staudacher I, Seehausen S, Illg C, Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Cardiac K2P13.1 (THIK-1) two-pore-domain K+ channels: Pharmacological regulation and remodeling in atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:128-138. [DOI: 10.1016/j.pbiomolbio.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 01/30/2023]
|
17
|
Butler A, Zhang Y, Stuart AG, Dempsey CE, Hancox JC. Functional and pharmacological characterization of an S5 domain hERG mutation associated with short QT syndrome. Heliyon 2019; 5:e01429. [PMID: 31049424 PMCID: PMC6479114 DOI: 10.1016/j.heliyon.2019.e01429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/21/2019] [Accepted: 03/22/2019] [Indexed: 11/18/2022] Open
Abstract
Congenital short QT syndrome (SQTS) is a repolarization disorder characterized by abbreviated QT intervals, atrial and ventricular arrhythmias and a risk of sudden death. This study characterized a missense mutation (I560T) in the S5 domain of the hERG K+ channel that has been associated with variant 1 of the SQTS. Whole cell patch clamp recordings of wild-type (WT) and I560T hERG current (IhERG) were made at 37 °C from hERG expressing HEK 293 cells, and the structural context of the mutation was investigated using a recently reported cryo-EM structure of hERG. Under conventional voltage clamp, the I560T mutation increased IhERG amplitude without altering the voltage-dependence of activation, although it accelerated activation time-course and also slowed deactivation time-course at some voltages. The voltage dependence of IhERG inactivation was positively shifted (by ∼24 mV) and the time-course of inactivation was slowed by the I560T mutation. There was also a modest decrease in K+ over Na+ ion selectivity with the I560T mutation. Under action potential (AP) voltage clamp, the net charge carried by hERG was significantly increased during ventricular, Purkinje fibre and atrial APs, with maximal IhERG also occurring earlier during the plateau phase of ventricular and Purkinje fibre APs. The I560T mutation exerted only a modest effect on quinidine sensitivity of IhERG: the IC50 for mutant IhERG was 2.3 fold that for WT IhERG under conventional voltage clamp. Under AP voltage clamp the inhibitory effect of 1 μM quinidine was largely retained for I560T hERG and the timing of peak I560T IhERG was altered towards that of the WT channel. In both the open channel structure and a closed hERG channel model based on the closely-related EAG structure, I560T side-chains were oriented towards membrane lipid and away from adjacent domains of the channel, contrasting with previous predictions based on homology modelling. In summary, the I560T mutation produces multiple effects on hERG channel operation that result in a gain-of-function that is expected to abbreviate ventricular, atrial and Purkinje fibre repolarization. Quinidine is likely to be of value in offsetting the increase in IhERG and altered IhERG timing during ventricular APs in SQTS with this mutation.
Collapse
Affiliation(s)
- Andrew Butler
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Corresponding author.
| | - A. Graham Stuart
- Bristol Heart Institute, University of Bristol, Bristol, BS2 8HW, United Kingdom
| | - Christopher E. Dempsey
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Bristol Heart Institute, University of Bristol, Bristol, BS2 8HW, United Kingdom
- Corresponding author.
| |
Collapse
|
18
|
Butler A, Zhang Y, Stuart AG, Dempsey CE, Hancox JC. Action potential clamp characterization of the S631A hERG mutation associated with short QT syndrome. Physiol Rep 2018; 6:e13845. [PMID: 30175559 PMCID: PMC6119704 DOI: 10.14814/phy2.13845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 11/27/2022] Open
Abstract
The hERG potassium channel is critical to normal repolarization of cardiac action potentials (APs) and loss- and gain-of-function hERG mutations are associated, respectively, with long and short QT syndromes, pathological conditions that can lead to arrhythmias and sudden death. hERG current (IhERG ) exhibits uniquely fast inactivation involving conformational changes to the channel pore. The S631A hERG pore mutation was originally engineered to interrogate hERG channel inactivation, but has very recently been found in a family with short QT syndrome (SQTS). Accordingly, this study characterized the effects of the S631A mutation on IhERG profile during ventricular, atrial, and Purkinje fiber (PF) AP waveforms, using patch clamp recording from hERG expressing HEK 293 cells at 37°C. Under conventional voltage clamp, the current-voltage (I-V) relation for IhERG exhibited a marked right-ward shift in the region of negative slope at positive membrane potentials. Under ventricular AP clamp, the S631A mutation resulted in augmented IhERG , which also peaked much earlier during the AP plateau than did wild-type (WT) IhERG . Instantaneous I-V relations showed a marked positive shift in peak repolarizing current during the ventricular AP in the S631A setting, while the instantaneous conductance-voltage relation showed an earlier and more sustained rise in S631A compared to WT IhERG conductance during ventricular repolarization. Experiments with atrial and PF APs in each case also showed augmented and positively shifted IhERG in the S631A setting, indicating that the S631A mutation is likely to accelerate repolarization in all three cardiac regions. Ventricular AP clamp experiments showed retained effectiveness of the class Ia antiarrhythmic drug quinidine (1 μmol/L) against S631A IhERG . Quinidine is thus likely to be effective in reducing excessively fast repolarization in SQTS resulting from the S631A hERG mutation.
Collapse
Affiliation(s)
- Andrew Butler
- School of PhysiologyPharmacology and NeuroscienceMedical Sciences BuildingUniversity WalkBristolUnited Kingdom
| | - Yihong Zhang
- School of PhysiologyPharmacology and NeuroscienceMedical Sciences BuildingUniversity WalkBristolUnited Kingdom
| | - Alan G. Stuart
- Bristol Heart InstituteUniversity of BristolBristolUnited Kingdom
| | | | - Jules C. Hancox
- School of PhysiologyPharmacology and NeuroscienceMedical Sciences BuildingUniversity WalkBristolUnited Kingdom
- Bristol Heart InstituteUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
19
|
Cardiovascular pharmacology of K 2P17.1 (TASK-4, TALK-2) two-pore-domain K + channels. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1119-1131. [PMID: 30008082 DOI: 10.1007/s00210-018-1535-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
K2P17.1 (TASK-4, TALK-2) potassium channels are expressed in the heart and represent potential targets for pharmacological management of atrial and ventricular arrhythmias. Reduced K2P17.1 expression was found in atria and ventricles of heart failure (HF) patients. Modulation of K2P17.1 currents by antiarrhythmic compounds has not been comprehensively studied to date. The objective of this study was to investigate acute effects of clinically relevant antiarrhythmic drugs on human K2P17.1 channels to provide a more complete picture of K2P17.1 electropharmacology. Whole-cell patch clamp and two-electrode voltage clamp electrophysiology was employed to study human K2P17.1 channel pharmacology. K2P17.1 channels expressed in Xenopus laevis oocytes were screened for sensitivity to antiarrhythmic drugs, revealing significant activation by propafenone (+ 296%; 100 μM), quinidine (+ 58%; 100 μM), mexiletine (+ 21%; 100 μM), propranolol (+ 139%; 100 μM), and metoprolol (+ 17%; 100 μM) within 60 min. In addition, the currents were inhibited by amiodarone (- 13%; 100 μM), sotalol (- 10%; 100 μM), verapamil (- 21%; 100 μM), and ranolazine (- 8%; 100 μM). K2P17.1 channels were not significantly affected by ajmaline and carvedilol. Concentration-dependent K2P17.1 activation by propafenone was characterized in more detail. The onset of activation was fast, and current-voltage relationships were not modulated by propafenone. K2P17.1 activation was confirmed in mammalian Chinese hamster ovary cells, revealing 7.8-fold current increase by 100 μM propafenone. Human K2P17.1 channels were sensitive to multiple antiarrhythmic drugs. Differential pharmacological regulation of repolarizing K2P17.1 background K+ channels may be employed for personalized antiarrhythmic therapy.
Collapse
|
20
|
Helliwell MV, Zhang Y, El Harchi A, Du C, Hancox JC, Dempsey CE. Structural implications of hERG K + channel block by a high-affinity minimally structured blocker. J Biol Chem 2018; 293:7040-7057. [PMID: 29545312 PMCID: PMC5936838 DOI: 10.1074/jbc.ra117.000363] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/06/2018] [Indexed: 11/29/2022] Open
Abstract
Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block.
Collapse
Affiliation(s)
- Matthew V Helliwell
- From the Schools of Biochemistry and.,Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Yihong Zhang
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Aziza El Harchi
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Chunyun Du
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jules C Hancox
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
21
|
Zhang Y, Colenso CK, El Harchi A, Cheng H, Witchel HJ, Dempsey CE, Hancox JC. Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking. Biochem Pharmacol 2016; 113:24-35. [PMID: 27256139 PMCID: PMC4959829 DOI: 10.1016/j.bcp.2016.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/27/2016] [Indexed: 02/04/2023]
Abstract
The antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (IKr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37 °C of ionic current (IhERG) carried by wild-type (WT) or mutant hERG channels expressed in HEK293 cells. Alanine mutagenesis and ligand docking were used to investigate the roles of pore cavity amino-acid residues in amiodarone binding. Amiodarone inhibited WT outward IhERG tails with a half-maximal inhibitory concentration (IC50) of ∼45 nM, whilst inward IhERG tails in a high K+ external solution ([K+]e) of 94 mM were blocked with an IC50 of 117.8 nM. Amiodarone’s inhibitory action was contingent upon channel gating. Alanine-mutagenesis identified multiple residues directly or indirectly involved in amiodarone binding. The IC50 for the S6 aromatic Y652A mutation was increased to ∼20-fold that of WT IhERG, similar to the pore helical mutant S624A (∼22-fold WT control). The IC50 for F656A mutant IhERG was ∼17-fold its corresponding WT control. Computational docking using a MthK-based hERG model differentiated residues likely to interact directly with drug and those whose Ala mutation may affect drug block allosterically. The requirements for amiodarone block of aromatic residues F656 and Y652 within the hERG pore cavity are smaller than for other high affinity IhERG inhibitors, with relative importance to amiodarone binding of the residues investigated being S624A ∼ Y652A > F656A > V659A > G648A > T623A.
Collapse
Affiliation(s)
- Yihong Zhang
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Charlotte K Colenso
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Hongwei Cheng
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Harry J Witchel
- Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PX, UK
| | - Chris E Dempsey
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
22
|
Melgari D, Zhang Y, El Harchi A, Dempsey CE, Hancox JC. Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J Mol Cell Cardiol 2015; 86:42-53. [PMID: 26159617 PMCID: PMC4564290 DOI: 10.1016/j.yjmcc.2015.06.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 11/02/2022]
Abstract
The class Ic antiarrhythmic drug flecainide inhibits KCNH2-encoded "hERG" potassium channels at clinically relevant concentrations. The aim of this study was to elucidate the underlying molecular basis of this action. Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Wild-type (WT) IhERG was inhibited with an IC50 of 1.49μM and this was not significantly altered by reversing the direction of K(+) flux or raising external [K(+)]. The use of charged and uncharged flecainide analogues showed that the charged form of the drug accesses the channel from the cell interior to produce block. Promotion of WT IhERG inactivation slowed recovery from inhibition, whilst the N588K and S631A attenuated-inactivation mutants exhibited IC50 values 4-5 fold that of WT IhERG. The use of pore-helix/selectivity filter (T623A, S624A V625A) and S6 helix (G648A, Y652A, F656A) mutations showed <10-fold shifts in IC50 for all but V625A and F656A, which respectively exhibited IC50s 27-fold and 142-fold their WT controls. Docking simulations using a MthK-based homology model suggested an allosteric effect of V625A, since in low energy conformations flecainide lay too low in the pore to interact directly with that residue. On the other hand, the molecule could readily form π-π stacking interactions with aromatic residues and particularly with F656. We conclude that flecainide accesses the hERG channel from the cell interior on channel gating, binding low in the inner cavity, with the S6 F656 residue acting as a principal binding determinant.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Christopher E Dempsey
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
23
|
Melgari D, Brack KE, Zhang C, Zhang Y, El Harchi A, Mitcheson JS, Dempsey CE, Ng GA, Hancox JC. hERG potassium channel blockade by the HCN channel inhibitor bradycardic agent ivabradine. J Am Heart Assoc 2015; 4:jah3927. [PMID: 25911606 PMCID: PMC4579960 DOI: 10.1161/jaha.115.001813] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Ivabradine is a specific bradycardic agent used in coronary artery disease and heart failure, lowering heart rate through inhibition of sinoatrial nodal HCN‐channels. This study investigated the propensity of ivabradine to interact with KCNH2‐encoded human Ether‐à‐go‐go–Related Gene (hERG) potassium channels, which strongly influence ventricular repolarization and susceptibility to torsades de pointes arrhythmia. Methods and Results Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. IhERG was inhibited with an IC50 of 2.07 μmol/L for the hERG 1a isoform and 3.31 μmol/L for coexpressed hERG 1a/1b. The voltage and time‐dependent characteristics of IhERG block were consistent with preferential gated‐state‐dependent channel block. Inhibition was partially attenuated by the N588K inactivation‐mutant and the S624A pore‐helix mutant and was strongly reduced by the Y652A and F656A S6 helix mutants. In docking simulations to a MthK‐based homology model of hERG, the 2 aromatic rings of the drug could form multiple π‐π interactions with the aromatic side chains of both Y652 and F656. In monophasic action potential (MAP) recordings from guinea‐pig Langendorff‐perfused hearts, ivabradine delayed ventricular repolarization and produced a steepening of the MAPD90 restitution curve. Conclusions Ivabradine prolongs ventricular repolarization and alters electrical restitution properties at concentrations relevant to the upper therapeutic range. In absolute terms ivabradine does not discriminate between hERG and HCN channels: it inhibits IhERG with similar potency to that reported for native If and HCN channels, with S6 binding determinants resembling those observed for HCN4. These findings may have important implications both clinically and for future bradycardic drug design.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - Kieran E Brack
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.)
| | - Chuan Zhang
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.)
| | - Yihong Zhang
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - Aziza El Harchi
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - John S Mitcheson
- Department of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, Leicester, United Kingdom (J.S.M.)
| | | | - G André Ng
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.) NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, United Kingdom (A.N.)
| | - Jules C Hancox
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| |
Collapse
|
24
|
Melgari D, Du C, El Harchi A, Zhang Y, Hancox JC. Suppression of the hERG potassium channel response to premature stimulation by reduction in extracellular potassium concentration. Physiol Rep 2014; 2:2/10/e12165. [PMID: 25318749 PMCID: PMC4254092 DOI: 10.14814/phy2.12165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Potassium channels encoded by human ether‐à‐go‐go‐related gene (hERG) mediate the cardiac rapid delayed rectifier K+ current (IKr), which participates in ventricular repolarization and has a protective role against unwanted premature stimuli late in repolarization and early in diastole. Ionic current carried by hERG channels (IhERG) is known to exhibit a paradoxical dependence on external potassium concentration ([K+]e), but effects of acute [K+]e changes on the response of IhERG to premature stimulation have not been characterized. Whole‐cell patch‐clamp measurements of hERG current were made at 37°C from hERG channels expressed in HEK293 cells. Under conventional voltage‐clamp, both wild‐type (WT) and S624A pore‐mutant IhERG during depolarization to +20 mV and subsequent repolarization to −40 mV were decreased when superfusate [K+]e was decreased from 4 to 1 mmol/L. When [K+]e was increased from 4 to 10 mmol/L, pulse current was increased and tail IhERG was decreased. Increasing [K+]e produced a +10 mV shift in voltage‐dependent inactivation of WT IhERG and slowed inactivation time course, while lowering [K+]e from 4 to 1 mmol/L produced little change in inactivation voltage dependence, but accelerated inactivation time course. Under action potential (AP) voltage‐clamp, lowering [K+]e reduced the amplitude of IhERG during the AP and suppressed the maximal IhERG response to premature stimuli. Raising [K+]e increased IhERG early during the AP and augmented the IhERG response to premature stimuli. Our results are suggestive that during hypokalemia not only is the contribution of IKr to ventricular repolarization reduced but its ability to protect against unwanted premature stimuli also becomes impaired. hERG potassium channels are important for ventricular repolarization and for protecting the ventricles of the heart from unwanted premature stimuli. This study shows that, in addition to reducing the contribution of hERG channel current to ventricular repolarization, hypokalemia impairs the protective response of hERG to premature stimulation.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Chunyun Du
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| |
Collapse
|
25
|
Inhibition of cardiac two-pore-domain K+ (K2P) channels – an emerging antiarrhythmic concept. Eur J Pharmacol 2014; 738:250-5. [DOI: 10.1016/j.ejphar.2014.05.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
|
26
|
Ranolazine inhibition of hERG potassium channels: drug-pore interactions and reduced potency against inactivation mutants. J Mol Cell Cardiol 2014; 74:220-30. [PMID: 24877995 PMCID: PMC4121676 DOI: 10.1016/j.yjmcc.2014.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 01/06/2023]
Abstract
The antianginal drug ranolazine, which combines inhibitory actions on rapid and sustained sodium currents with inhibition of the hERG/IKr potassium channel, shows promise as an antiarrhythmic agent. This study investigated the structural basis of hERG block by ranolazine, with lidocaine used as a low potency, structurally similar comparator. Recordings of hERG current (IhERG) were made from cell lines expressing wild-type (WT) or mutant hERG channels. Docking simulations were performed using homology models built on MthK and KvAP templates. In conventional voltage clamp, ranolazine inhibited IhERG with an IC50 of 8.03 μM; peak IhERG during ventricular action potential clamp was inhibited ~ 62% at 10 μM. The IC50 values for ranolazine inhibition of the S620T inactivation deficient and N588K attenuated inactivation mutants were respectively ~ 73-fold and ~ 15-fold that for WT IhERG. Mutations near the bottom of the selectivity filter (V625A, S624A, T623A) exhibited IC50s between ~ 8 and 19-fold that for WT IhERG, whilst the Y652A and F656A S6 mutations had IC50s ~ 22-fold and 53-fold WT controls. Low potency lidocaine was comparatively insensitive to both pore helix and S6 mutations, but was sensitive to direction of K+ flux and particularly to loss of inactivation, with an IC50 for S620T-hERG ~ 49-fold that for WT IhERG. Docking simulations indicated that the larger size of ranolazine gives it potential for a greater range of interactions with hERG pore side chains compared to lidocaine, in particular enabling interaction of its two aromatic groups with side chains of both Y652 and F656. The N588K mutation is responsible for the SQT1 variant of short QT syndrome and our data suggest that ranolazine is unlikely to be effective against IKr/hERG in SQT1 patients. hERG K+ channels regulate cardiac action potential repolarization. The molecular basis of hERG block by ranolazine and structurally related lidocaine was studied. S6 Y652A and F656A mutations affected greatly ranolazine but not lidocaine binding. T623 and S624 residues may directly interact with ranolazine but not lidocaine. N588K and S620T attenuated inactivation mutants had reduced sensitivity to both drugs.
Collapse
|
27
|
Loewe A, Wilhelms M, Fischer F, Scholz EP, Dössel O, Seemann G. Arrhythmic potency of human ether-à-go-go-related gene mutations L532P and N588K in a computational model of human atrial myocytes. ACTA ACUST UNITED AC 2014; 16:435-43. [DOI: 10.1093/europace/eut375] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
28
|
Allocryptopine and benzyltetrahydropalmatine block hERG potassium channels expressed in HEK293 cells. Acta Pharmacol Sin 2013; 34:847-58. [PMID: 23524574 DOI: 10.1038/aps.2012.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM Allocryptopine (ALL) is an alkaloid extracted from Corydalis decumbens (Thunb) Pers. Papaveraceae, whereas benzyltetrahydropalmatine (BTHP) is a derivative of tetrahydropalmatine extracted from Corydalis ambigua (Pall) Cham et Schlecht. The aim of this study was to investigate the effects of ALL and BTHP on the human ether-a-go-go related gene (hERG) current expressed in HEK293 cells. METHODS Cultured HEK293 cells were transiently transfected with hERG channel cDNA plasmid pcDNA3.1 using Lipofectamine. The whole-cell current IHERG was evoked and recorded using Axon MultiClamp 700B amplifier. The drugs were applied via supserfusion. RESULTS Both ALL and BTHP reversibly suppressed the amplitude and density of IHERG in concentration- and voltage-dependent manners (the respective IC50 value was 49.65 and 22.38 μmol/L). BTHP (30 μmol/L) caused a significant negative shift of the steady-state inactivation curve of IHERG, while ALL (30 μmol/L) did not affect the steady-state inactivation of IHERG. Furthermore, BTHP, but not ALL, shortened the time constants of fast inactivation and slow time constants of deactivation of IHERG. But both the drugs markedly lengthened the time constants for recovery of IHERG from inactivation. Using action potential waveform pulses, it was found that both the drugs at 30 μmol/L significantly suppressed the current densities in the late phase of action potential, but did not significantly affect the current densities in the early phase of action potential. CONCLUSION Both ALL and BTHP derived from Chinese herbs potently block hERG current.
Collapse
|
29
|
Colenso CK, Sessions RB, Zhang YH, Hancox JC, Dempsey CE. Interactions between voltage sensor and pore domains in a hERG K+ channel model from molecular simulations and the effects of a voltage sensor mutation. J Chem Inf Model 2013; 53:1358-70. [PMID: 23672495 DOI: 10.1021/ci4000739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The hERG K(+) channel is important for establishing normal electrical activity in the human heart. The channel's unique gating response to membrane potential changes indicates specific interactions between voltage sensor and pore domains that are poorly understood. In the absence of a crystal structure we constructed a homology model of the full hERG membrane domain and performed 0.5 μs molecular dynamics (MD) simulations in a hydrated membrane. The simulations identify potential interactions involving residues at the extracellular surface of S1 in the voltage sensor and at the N-terminal end of the pore helix in the hERG model. In addition, a diffuse interface involving hydrophobic residues on S4 (voltage sensor) and pore domain S5 of an adjacent subunit was stable during 0.5 μs of simulation. To assess the ability of the model to give insight into the effects of channel mutation we simulated a hERG mutant that contains a Leu to Pro substitution in the voltage sensor S4 helical segment (hERG L532P). Consistent with the retention of gated K(+) conductance, the L532P mutation was accommodated in the S4 helix with little disruption of helical structure. The mutation reduced the extent of interaction across the S4-S5 interface, suggesting a structural basis for the greatly enhanced deactivation rate in hERG L532P. The study indicates that pairwise comparison of wild-type and mutated channel models is a useful approach to interpreting functional data where uncertainty in model structures exist.
Collapse
Affiliation(s)
- Charlotte K Colenso
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
30
|
He FZ, McLeod HL, Zhang W. Current pharmacogenomic studies on hERG potassium channels. Trends Mol Med 2013; 19:227-38. [PMID: 23369369 DOI: 10.1016/j.molmed.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 11/25/2022]
Abstract
Genetic polymorphisms in human ether-a-go-go-related gene (hERG) potassium channels are associated with many complex diseases and sensitivity to channel-related drugs. Genotypes may underlie different sensitivities to the same drug, and different drugs selectively repair the functional deficits caused by individual mutations. In fact, not all drugs that block hERG function have adverse effects as previously thought. This suggests that the severe adverse reactions observed clinically may only occur in subjects with a particular genotype, but to others may be safe. Similarly, a drug that is ineffective in one population may be both safe and effective in another. Therefore, detecting polymorphisms in KCNH2 encoding hERG1 is of great significance in guiding the prevention and treatment of related diseases, re-evaluating drug safety, and individualizing treatment. This article reviews current pharmacogenomic studies on hERG potassium channels to provide a reference for developing individualized treatments and evaluating their safety.
Collapse
Affiliation(s)
- Fa-Zhong He
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, PR China
| | | | | |
Collapse
|
31
|
El Harchi A, Melgari D, Zhang YH, Zhang H, Hancox JC. Action potential clamp and pharmacology of the variant 1 Short QT Syndrome T618I hERG K⁺ channel. PLoS One 2012; 7:e52451. [PMID: 23300672 PMCID: PMC3530446 DOI: 10.1371/journal.pone.0052451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The familial Short QT Syndrome (SQTS) is associated with an increased risk of cardiac arrhythmia and sudden death. Gain-of-function mutations in the hERG K(+) channel protein have been linked to variant 1 of the SQTS. A hERG channel pore (T618I) mutation has recently been identified in families with heritable SQTS. This study aimed to determine effects of the T618I-hERG mutation on (i) hERG current (I(hERG)) elicited by ventricular action potentials; (ii) the sensitivity of I(hERG) to inhibition by four clinically used antiarrhythmic drugs. METHODS Electrophysiological recordings of I(hERG) were made at 37°C from HEK 293 cells expressing wild-type (WT) or T618I hERG. Whole-cell patch clamp recording was performed using both conventional voltage clamp and ventricular action potential (AP) clamp methods. RESULTS Under conventional voltage-clamp, WT I(hERG) peaked at 0-+10 mV, whilst for T618I I(hERG) maximal current was right-ward shifted to ∼ +40 mV. Voltage-dependent activation and inactivation of T618I I(hERG) were positively shifted (respectively by +15 and ∼ +25 mV) compared to WT I(hERG). The I(hERG) 'window' was increased for T618I compared to WT hERG. Under ventricular AP clamp, maximal repolarising WT I(hERG) occurred at ∼ -30 mV, whilst for T618I hERG peak I(hERG) occurred earlier during AP repolarisation, at ∼ +5 mV. Under conventional voltage clamp, half-maximal inhibitory concentrations (IC(50)) for inhibition of I(hERG) tails by quinidine, disopyramide, D-sotalol and flecainide for T618I hERG ranged between 1.4 and 3.2 fold that for WT hERG. Under action potential voltage clamp, T618I IC(50)s ranged from 1.2 to 2.0 fold the corresponding IC(50) values for WT hERG. CONCLUSIONS The T618I mutation produces a more modest effect on repolarising I(hERG) than reported previously for the N588K-hERG variant 1 SQTS mutation. All drugs studied here appear substantially to retain their ability to inhibit I(hERG) in the setting of the SQTS-linked T618I mutation.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Bristol, United Kingdom
| | - Dario Melgari
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Bristol, United Kingdom
| | - Yi Hong Zhang
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Ion flux dependent and independent functions of ion channels in the vertebrate heart: lessons learned from zebrafish. Stem Cells Int 2012; 2012:462161. [PMID: 23213340 PMCID: PMC3504466 DOI: 10.1155/2012/462161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/14/2012] [Indexed: 12/21/2022] Open
Abstract
Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular development and disease of vertebrates. In large scale forward genetics screens, hundreds of mutant lines have been isolated with defects in cardiovascular structure and function. Detailed phenotyping of these lines and identification of the causative genetic defects revealed new insights into ion flux dependent and independent functions of various cardiac ion channels.
Collapse
|
33
|
Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1003-16. [DOI: 10.1007/s00210-012-0780-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 12/27/2022]
|
34
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|