1
|
Welker L, Paillart JC, Bernacchi S. Importance of Viral Late Domains in Budding and Release of Enveloped RNA Viruses. Viruses 2021; 13:1559. [PMID: 34452424 PMCID: PMC8402826 DOI: 10.3390/v13081559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023] Open
Abstract
Late assembly (L) domains are conserved sequences that are necessary for the late steps of viral replication, acting like cellular adaptors to engage the ESCRT membrane fission machinery that promote virion release. These short sequences, whose mutation or deletion produce the accumulation of immature virions at the plasma membrane, were firstly identified within retroviral Gag precursors, and in a further step, also in structural proteins of many other enveloped RNA viruses including arenaviruses, filoviruses, rhabdoviruses, reoviruses, and paramyxoviruses. Three classes of L domains have been identified thus far (PT/SAP, YPXnL/LXXLF, and PPxY), even if it has recently been suggested that other motifs could act as L domains. Here, we summarize the current state of knowledge of the different types of L domains and their cellular partners in the budding events of RNA viruses, with a particular focus on retroviruses.
Collapse
Affiliation(s)
| | | | - Serena Bernacchi
- Architecture et Réactivité de l’ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, F-67000 Strasbourg, France; (L.W.); (J.-C.P.)
| |
Collapse
|
2
|
Alix-Mediated Rescue of Feline Immunodeficiency Virus Budding Differs from That Observed with Human Immunodeficiency Virus. J Virol 2020; 94:JVI.02019-19. [PMID: 32213612 DOI: 10.1128/jvi.02019-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
The structural protein Gag is the only viral component required for retroviral budding from infected cells. Each of the three conserved domains-the matrix (MA), capsid (CA), and nucleocapsid (NC) domains-drives different phases of viral particle assembly and egress. Once virus assembly is complete, retroviruses, like most enveloped viruses, utilize host proteins to catalyze membrane fission and to free progeny virions. These proteins are members of the endosomal sorting complex required for transport (ESCRT), a cellular machinery that coats the inside of budding necks to perform membrane-modeling events necessary for particle abscission. The ESCRT is recruited through interactions with PTAP and LYPXnL, two highly conserved sequences named late (L) domains, which bind TSG101 and Alix, respectively. A TSG101-binding L-domain was identified in the p2 region of the feline immunodeficiency virus (FIV) Gag protein. Here, we show that the human protein Alix stimulates the release of virus from FIV-expressing human cells. Furthermore, we demonstrate that the Alix Bro1 domain rescues FIV mutants lacking a functional TSG101-interacting motif, independently of the entire p2 region and of the canonical Alix-binding L-domain(s) in FIV Gag. However, in contrast to the effect on human immunodeficiency virus type 1 (HIV-1), the C377,409S double mutation, which disrupts both CCHC zinc fingers in the NC domain, does not abrogate Alix-mediated virus rescue. These studies provide insight into conserved and divergent mechanisms of lentivirus-host interactions involved in virus budding.IMPORTANCE FIV is a nonprimate lentivirus that infects domestic cats and causes a syndrome that is reminiscent of AIDS in humans. Based on its similarity to HIV with regard to different molecular and biochemical properties, FIV represents an attractive model for the development of strategies to prevent and/or treat HIV infection. Here, we show that the Bro1 domain of the human cellular protein Alix is sufficient to rescue the budding of FIV mutants devoid of canonical L-domains. Furthermore, we demonstrate that the integrity of the CCHC motifs in the Gag NC domain is dispensable for Alix-mediated rescue of virus budding, suggesting the involvement of other regions of the Gag viral protein. Our research is pertinent to the identification of a conserved yet mechanistically divergent ESCRT-mediated lentivirus budding process in general, and to the role of Alix in particular, which underlies the complex viral-cellular network of interactions that promote late steps of the retroviral life cycle.
Collapse
|
3
|
Mutations in the HIV-1 envelope glycoprotein can broadly rescue blocks at multiple steps in the virus replication cycle. Proc Natl Acad Sci U S A 2019; 116:9040-9049. [PMID: 30975760 DOI: 10.1073/pnas.1820333116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The p6 domain of HIV-1 Gag contains highly conserved peptide motifs that recruit host machinery to sites of virus assembly, thereby promoting particle release from the infected cell. We previously reported that mutations in the YPXnL motif of p6, which binds the host protein Alix, severely impair HIV-1 replication. Propagation of the p6-Alix binding site mutants in the Jurkat T cell line led to the emergence of viral revertants containing compensatory mutations not in Gag but in Vpu and the envelope (Env) glycoprotein subunits gp120 and gp41. The Env compensatory mutants replicate in Jurkat T cells and primary human peripheral blood mononuclear cells, despite exhibiting severe defects in cell-free particle infectivity and Env-mediated fusogenicity. Remarkably, the Env compensatory mutants can also rescue a replication-delayed integrase (IN) mutant, and exhibit reduced sensitivity to the IN inhibitor Dolutegravir (DTG), demonstrating that they confer a global replication advantage. In addition, confirming the ability of Env mutants to confer escape from DTG, we performed de novo selection for DTG resistance and observed resistance mutations in Env. These results identify amino acid substitutions in Env that confer broad escape from defects in virus replication imposed by either mutations in the HIV-1 genome or by an antiretroviral inhibitor. We attribute this phenotype to the ability of the Env mutants to mediate highly efficient cell-to-cell transmission, resulting in an increase in the multiplicity of infection. These findings have broad implications for our understanding of Env function and the evolution of HIV-1 drug resistance.
Collapse
|
4
|
Ikeda T, Symeonides M, Albin JS, Li M, Thali M, Harris RS. HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G. PLoS Pathog 2018; 14:e1007010. [PMID: 29677220 PMCID: PMC5931688 DOI: 10.1371/journal.ppat.1007010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023] Open
Abstract
HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Menelaos Symeonides
- Cellular, Molecular and Biomedical Sciences Graduate Program and Department of Microbiology and Molecular Genetics, Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - John S. Albin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ming Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Markus Thali
- Cellular, Molecular and Biomedical Sciences Graduate Program and Department of Microbiology and Molecular Genetics, Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
5
|
Ding S, Pan Q, Liu SL, Liang C. HIV-1 mutates to evade IFITM1 restriction. Virology 2014; 454-455:11-24. [PMID: 24725927 PMCID: PMC4274668 DOI: 10.1016/j.virol.2014.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/25/2013] [Accepted: 01/25/2014] [Indexed: 12/04/2022]
Abstract
Interferon-induced transmembrane (IFITM) proteins inhibit the infection of a wide range of viruses including human immunodeficiency virus type 1 (HIV-1). At present, little is known about how viruses overcome IFITM restriction. In this study, we have utilized HIV-1 as a model and selected IFITM1-resistant viruses after multiple passages of HIV-1 in IFITM1-expressing SupT1 cells. Sequencing the entire viral genome revealed several mutations in the vpu and envelope genes, among which mutations Vpu34 and EnvG367E together enable efficient HIV-1 replication in IFITM1-expressing cells. Vpu34 introduces a stop codon at amino acid position 35 of Vpu, whereas EnvG367E changes the G367 residue at the CD4-binding site of gp120. These two mutations do not appear to overcome the downregulation of viral p24 expression caused by IFITM1, but rather enhance HIV-1 replication by promoting cell-to-cell virus transmission. Altogether, our data demonstrate that HIV-1 can mutate to evade IFITM1 restriction by increasing cell-to-cell transmission. IFITM1 inhibits HIV-1 replication in SupT1 cells. HIV-1 evolves to escape IFITM1 inhibition by mutating Vpu and Env. The Vpu and Env mutations overcome IFITM1 through promoting HIV-1 cell to cell transmission.
Collapse
Affiliation(s)
- Shilei Ding
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada H3A 2B4
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2
| | - Shan-Lu Liu
- Department of Molecular Microbiology & Immunology, School of Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA.
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada H3A 2B4; Department of Medicine, McGill University, Montreal, QC, Canada H3A 2B4.
| |
Collapse
|