1
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
2
|
Yeo SG, Oh YJ, Lee JM, Yeo JH, Kim SS, Park DC. Production and Role of Nitric Oxide in Endometrial Cancer. Antioxidants (Basel) 2025; 14:369. [PMID: 40227440 PMCID: PMC11939365 DOI: 10.3390/antiox14030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Endometrial cancer ranks as the fourth most common cancer among women in the United States. While early-stage treatment is generally effective with a cure rate of approximately 90%, the five-year survival rate dramatically decreases to 10-15% for advanced-stage diagnoses. Consequently, ongoing research seeks to improve treatment outcomes for endometrial cancer. Nitric oxide (NO) is implicated in various biological processes, including cancer progression, and is believed to play a significant role in human endometrial cancer. However, its specific function remains controversial. This study aims to elucidate the effects of NO in endometrial cancer through a comprehensive literature review. A thorough review of the literature was conducted using Cochrane Libraries, EMBASE, Google Scholar, PubMed, and SCOPUS databases to assess the induction and role of NO in the development of endometrial cancer. Out of 33 initially reviewed articles, 7 studies were included in the final review after excluding those unrelated to endometrial cancer or NO. Of these, six studies (85.7%) reported increased NO levels in endometrial cancer, whereas one study (14.3%) noted decreased NO levels or a defensive mechanism role. NO production was linked to tumor-promoting effects such as invasiveness, metastasis, angiogenesis, interaction with omental adipose stromal cells (O-ASCs), adipogenesis, and mitochondrial suppression. Conversely, NO also exhibited tumor-suppressive effects, including cell-cycle arrest, apoptosis induction, promotion of cancer stem-like cells, and upregulation of tumor suppressor genes like CDKN1A and RASSF1A. NO production is associated with the pathogenesis, development, and prognosis of endometrial cancer, with effects varying based on NO level fluctuations. Differences in NO production and function were observed according to the type of nitric oxide synthase (NOS) involved, control conditions, subtype, grade, and invasiveness of the cancer, as well as the experimental methodologies employed. NO demonstrated dual action in endometrial cancer: low concentrations promoted tumor growth by protecting cells and inhibiting apoptosis, while high concentrations exerted cytotoxic effects, suppressing tumor growth. However, no studies have precisely defined the concentration thresholds or mechanisms by which NO contributes to either tumorigenesis or tumor suppression in endometrial cancer. To effectively harness the therapeutic potential of NO in treating endometrial cancer, a deeper understanding of these dual-effect mechanisms is necessary.
Collapse
Affiliation(s)
- Seung Geun Yeo
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (S.G.Y.); (Y.J.O.); (J.M.L.)
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Ju Oh
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (S.G.Y.); (Y.J.O.); (J.M.L.)
| | - Jae Min Lee
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (S.G.Y.); (Y.J.O.); (J.M.L.)
| | - Joon Hyung Yeo
- Public Health Center, Danyang-gun 27010, Chungcheongbuk-do, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Coluzzi F, Scerpa MS, Alessandri E, Romualdi P, Rocco M. Role of TRP Channels in Cancer-Induced Bone Pain. Int J Mol Sci 2025; 26:1229. [PMID: 39940997 PMCID: PMC11818569 DOI: 10.3390/ijms26031229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The burden of cancer is growing in almost every country. Bone metastases significantly affect the prognosis and lead to an increase in mortality and morbidity. The management of cancer-induced bone pain (CIBP) still shows various unmet needs. Opioid use is burdened by a number of possible side effects. Moreover, recent progresses in cancer treatment significantly increased the life expectancy of cancer patients, even those with metastatic disease. In this narrative review, we reported the main findings regarding TRP channel function in cancer pain models. TRP cation channels play a key role in different functions of cancer cells, including the regulation of their potential for metastasization, and are the main channels involved in the pathways of pain perception, through peripheral and central effects. Genetic deletion decreased pain sensitivity following tumour cell inoculation. Preclinical data suggest a potential role for modulators of some TRP channels, such as TRPV1, TRPA1, TRPM7 and TRPM8. Clinical results are still scarce; however, the physiological role in modulating bone remodelling and the involvement of TRP channels in preclinical models of bone cancer pain have garnered interest as areas of research in the last few years, as innovative analgesic strategies that may overcome the long-term side effects of opioids.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Scerpa
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Elisa Alessandri
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | - Monica Rocco
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
4
|
Peng T, Shao X, Song W, Xu W, Xiong W, He Y, Ding Y, Huang Y. Intratumoral lactic acid neutralization strategy for boosting chemoimmunotherapy using liposomal sodium bicarbonate. Sci Bull (Beijing) 2024; 69:3936-3948. [PMID: 39547906 DOI: 10.1016/j.scib.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 11/17/2024]
Abstract
Glycolysis-related lactic acid overproduction creates an "ion-trapping" barrier and immunosuppressive tumor microenvironment that compromise effective intratumoral drug delivery and therapy. Therefore, normalization of tumor microenvironment via lactic acid neutralization can be a promising avenue for overcoming this therapeutic hurdle. In this study, the flexible liposomes loaded with sodium bicarbonate (NaHCO3@Flip) were used as a nano-adjuvant to boost chemoimmunotherapy. Their effects on assisting DOXIL and anti-programmed cell death protein 1 (PD-1) therapy were investigated. NaHCO3@Flip achieved deep tumor penetration, with the ability to neutralize lactic acid and normalize the acidic tumor microenvironment. NaHCO3@Flip is biosafe and can enhance cellular uptake efficiency of doxorubicin (DOX) by overcoming the ion-trapping barrier and amplify immunogenic cell death induced by DOX. The combination therapy of liposomal DOX and NaHCO3@Flip demonstrated enhanced inhibition of tumor growth. NaHCO3@Flip can also synergize with PD-1 antibody therapy. NaHCO3@Flip has the potential to serve as a therapeutic adjuvant for boosting chemoimmunotherapy by overcoming the ion-trapping effect and normalizing the tumor microenvironment.
Collapse
Affiliation(s)
- Taoxing Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinyue Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weihua Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Xiong
- Zhongshan Institute for Drug Discovery, Shanghai Institutes of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yihao He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Zhongshan Institute for Drug Discovery, Shanghai Institutes of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| |
Collapse
|
5
|
Stein C. Effects of pH on opioid receptor activation and implications for drug design. Biophys J 2024; 123:4158-4166. [PMID: 38970252 PMCID: PMC11700362 DOI: 10.1016/j.bpj.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
G-protein-coupled receptors are integral membrane proteins that transduce chemical signals from the extracellular matrix into the cell. Traditional drug design has considered ligand-receptor interactions only under normal conditions. However, studies on opioids indicate that such interactions are very different in diseased tissues. In such microenvironments, protons play an important role in structural and functional alterations of both ligands and receptors. The pertinent literature strongly suggests that future drug design should take these aspects into account in order to reduce adverse side effects while preserving desired effects of novel compounds.
Collapse
Affiliation(s)
- Christoph Stein
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Experimental Anaesthesiology, Berlin, Germany.
| |
Collapse
|
6
|
Daud ML, Simone GGD. Management of pain in cancer patients - an update. Ecancermedicalscience 2024; 18:1821. [PMID: 40171458 PMCID: PMC11959144 DOI: 10.3332/ecancer.2024.1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Indexed: 04/03/2025] Open
Abstract
Pain is one of the most detrimental symptoms exhibited by cancer patients, being an indication for opioid therapy in up to half of the patients receiving chemotherapy and even more for those with advanced cancer. This article aims to briefly overview current knowledge on cancer-related pain with a focus on assessment and new approaches and trends. We will also provide some insight on the lower- and middle-income countries context. Data sources A narrative review of the literature was conducted including relevant guidelines and recommendations from scientific societies and WHO. Data summary Data on the approach and assessment of cancer pain as well as current and novel approaches have been displayed with the help of tables and figures. Conclusion Since the initial recommendations of the WHO analgesic ladder method, new insights have emerged. Scientific progress reaches its maximum social sense when populations and governments prioritise the value of relief and compassion, and concrete actions are implemented with the aim of relieving cancer pain.
Collapse
Affiliation(s)
- María Laura Daud
- Instituto Pallium Latinoamérica, Av Caseros 2061, Ciudad Autónoma de Buenos Aires C1264, Argentina
- Facultad de Medicina de la Universidad del Salvador, Av Córdoba1601, Ciudad Autónoma de Buenos Aires C1055AAG, Argentina
| | - Gustavo G De Simone
- Instituto Pallium Latinoamérica, Av Caseros 2061, Ciudad Autónoma de Buenos Aires C1264, Argentina
- Facultad de Medicina de la Universidad del Salvador, Av Córdoba1601, Ciudad Autónoma de Buenos Aires C1055AAG, Argentina
- Consejo de Ética en Medicina, Academia Nacional de Medicina de Buenos Aires, Av Gral. Las Heras 3092, Ciudad Autónoma de Buenos Aires C1425ASU, Argentina
- Programa Estar, Ministerio de Salud de la Ciudad de Buenos Aires, Av Medrano 350, Ciudad Autónoma de Buenos Aires C1179AAF, Argentina
| |
Collapse
|
7
|
Trone MAR, Stover JD, Almarza A, Bowles RD. pH: A major player in degenerative intervertebral disks. JOR Spine 2024; 7:e70025. [PMID: 39703199 PMCID: PMC11655178 DOI: 10.1002/jsp2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic lower back pain is the leading cause of disability worldwide, generating a socioeconomic cost of over $100 billion annually in the United States. Among the prominent causes of low back pain (LBP) is degeneration of the intervertebral disk (IVD), a condition known as degenerative disk disease (DDD). Despite the prevalence of DDD and multiple studies demonstrating its relationship with LBP, the mechanisms by which it contributes to pain remain unknown. Previous studies have identified potential causes for this pain, such as extracellular matrix (ECM) breakdown, changes in biomechanics, and pro-inflammatory signals. Possible pain treatments targeting these factors have been developed but with limited effects. However, low pH in DDD is a potential pain generator whose role has largely been unexplored and underappreciated. This review highlights hyperacidity's effects on the IVD, such as catabolism of disk cells and ECM, neoinnervation, altered mechanical signaling, and expression of pro-inflammatory cytokines and ion channels. This review aims to discuss what is known about the contributions of acidity to DDD pain, identify the knowledge gaps on this topic, and propose what research can be conducted to fill these gaps. We must better understand the underlying mechanisms of DDD and the interaction between hyperacidity and nociception to develop better therapeutics for this disease.
Collapse
Affiliation(s)
| | - Joshua D. Stover
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alejandro Almarza
- Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Robert D. Bowles
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
8
|
Wei Y, Lin D, Lian Y, Wei Q, Zheng L, Yuan K, Zhao J, Kuang K, Tang Y, Gao Y. Population data study reveals pain as a possible protective factor against cerebrovascular disease in cancer patients. Sci Rep 2024; 14:29471. [PMID: 39604497 PMCID: PMC11603069 DOI: 10.1038/s41598-024-80668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
The purpose of this study is to investigate the relationship between chronic pain and the mortality rate of cerebrovascular disease (CVD) in cancer patients. Thus, we performed a case-control investigation was conducted by utilizing data from the Surveillance, Epidemiology, and End Results (SEER) database between 1975 and 2019. Multiple demographics, pain rating and other clinical characteristics were extracted to assess predictors for the death from CVD in cancer patients. Different machine learning algorithms were applied to construct pain-related prediction model. The analysis involved 16,850 case patients and 710,729 controls. Among cancer patients, approximately 2.3% succumbed to subsequent CVD. Cancer pain (Pain rating II) was associated with a decreased risk of CVD. Univariate and multivariate COX analyses indicated that older age at cancer diagnosis, male gender, single marital status, Black or Other race, and lack of systemic therapy correlated with a higher risk of CVD-related death. Propensity score matching revealed a significantly lower proportion of Pain rating II in the case group. The logistic regression algorithm demonstrated superior predictive ability for 5-year and 10-year CVD risk in cancer patients. Notably, survival time, age, and pain rating emerged as the top three crucial variables. This study firstly investigated pain and various risk factors for CVD in cancer patients, highlighting pain as a novel and possible protective factor for CVD. The development of a risk model based on pain could aid in identifying individuals at high risk for CVD and may inspire innovative strategies for preventing CVD in cancer patients.
Collapse
Affiliation(s)
- Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Department of Urology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No.134, Dong Street, Fuzhou, 350001, People's Republic of China
| | - Deng Lin
- Shengli Clinical Medical College of Fujian Medical University, Department of Urology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No.134, Dong Street, Fuzhou, 350001, People's Republic of China
| | - Yangpeng Lian
- Center for Information Management , Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No.134, Dong Street, Fuzhou, 350001, People's Republic of China
| | - Qichen Wei
- Department of Urology, Gutian County Hospital, Ningde, 352200, People's Republic of China
| | - Longbao Zheng
- Department of Urology, The 907nd Hospital of PLA, Nanping, 353000, Fujian, People's Republic of China
| | - Kun Yuan
- Department of Urology, Zhuzhou People's Hospital , Zhuzhou, People's Republic of China
| | - Jiayang Zhao
- Newland Education, Fuzhou, 350015, People's Republic of China
| | - Kaijin Kuang
- College of Finance, Fujian Jiang Xia University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Yuanyuan Tang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Mental Disorders, Changsha, People's Republic of China.
- Hunan Clinical Research Center of Minimally Invasive Urology, Changsha, People's Republic of China.
| |
Collapse
|
9
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
10
|
Xinyi X, Gong Y. The role of ATP-binding cassette subfamily G member 1 in tumor progression. Cancer Med 2024; 13:e7285. [PMID: 38896016 PMCID: PMC11187935 DOI: 10.1002/cam4.7285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND ATP-binding cassette subfamily G member 1 is mostly known as a transporter for intracellular cholesterol efflux, and a number of studies indicate that ABCG1 also functions actively in tumor initiation and progression. This review aimed to provide an overall review of how ABCG1 acts in tumor progression. METHOD A comprehensive searching about ABCG1 and tumor was conducted up to November 2023 using proper keywords through databases including PubMed and Web of Science. RESULT Overall, ABCG1 plays a crucial role in the development of multiple tumorigenesis. ABCG1 enhances tumor-promoting ability through conferring stem-like properties to cancer cells and mediates chemoresistance in multiple cancers. Additionally, ABCG1 may act as a kinase to phosphorylate downstream molecules and induces tumor growth. In tumor microenvironment, ABCG1 plays a substantial role in immunity response through macrophages to create a tumor-favoring circumstance. CONCLUSION High expression of ABCG1 is usually associated with poor prognosis, which means ABCG1 may be a potential biomarker for early diagnosis and prognosis of various cancers. ABCG1-targeted therapy may provide a novel treatment for cancer patients.
Collapse
Affiliation(s)
- Xu Xinyi
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Yang Gong
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyFudan University Shanghai Medical SchoolShanghaiChina
| |
Collapse
|
11
|
Han J, Dong H, Zhu T, Wei Q, Wang Y, Wang Y, Lv Y, Mu H, Huang S, Zeng K, Xu J, Ding J. Biochemical hallmarks-targeting antineoplastic nanotherapeutics. Bioact Mater 2024; 36:427-454. [PMID: 39044728 PMCID: PMC11263727 DOI: 10.1016/j.bioactmat.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 07/25/2024] Open
Abstract
Tumor microenvironments (TMEs) have received increasing attention in recent years as they play pivotal roles in tumorigenesis, progression, metastases, and resistance to the traditional modalities of cancer therapy like chemotherapy. With the rapid development of nanotechnology, effective antineoplastic nanotherapeutics targeting the aberrant hallmarks of TMEs have been proposed. The appropriate design and fabrication endow nanomedicines with the abilities for active targeting, TMEs-responsiveness, and optimization of physicochemical properties of tumors, thereby overcoming transport barriers and significantly improving antineoplastic therapeutic benefits. This review begins with the origins and characteristics of TMEs and discusses the latest strategies for modulating the TMEs by focusing on the regulation of biochemical microenvironments, such as tumor acidosis, hypoxia, and dysregulated metabolism. Finally, this review summarizes the challenges in the development of smart anti-cancer nanotherapeutics for TME modulation and examines the promising strategies for combination therapies with traditional treatments for further clinical translation.
Collapse
Affiliation(s)
- Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - He Dong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Ke Zeng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
12
|
Yang L, Li H, Luo A, Zhang Y, Chen H, Zhu L, Yang D. Macrophage membrane-camouflaged pH-sensitive nanoparticles for targeted therapy of oral squamous cell carcinoma. J Nanobiotechnology 2024; 22:168. [PMID: 38610015 PMCID: PMC11015647 DOI: 10.1186/s12951-024-02433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Oral cancer is the most common malignant tumor of the head and neck, and 90% of cases are oral squamous cell carcinoma (OSCC). Chemotherapy is an important component of comprehensive treatment for OSCC. However, the clinical treatment effect of chemotherapy drugs, such as doxorubicin (DOX), is limited due to the lack of tumor targeting and rapid clearance by the immune system. Thus, based on the tumor-targeting and immune evasion abilities of macrophages, macrophage membrane-encapsulated poly(methyl vinyl ether alt maleic anhydride)-phenylboronic acid-doxorubicin nanoparticles (MM@PMVEMA-PBA-DOX NPs), briefly as MM@DOX NPs, were designed to target OSCC. The boronate ester bonds between PBA and DOX responded to the low pH value in the tumor microenvironment, selectively releasing the loaded DOX. RESULTS The results showed that MM@DOX NPs exhibited uniform particle size and typical core-shell structure. As the pH decreased from 7.4 to 5.5, drug release increased from 14 to 21%. The in vitro targeting ability, immune evasion ability, and cytotoxicity of MM@DOX NPs were verified in HN6 and SCC15 cell lines. Compared to free DOX, flow cytometry and fluorescence images demonstrated higher uptake of MM@DOX NPs by tumor cells and lower uptake by macrophages. Cell toxicity and live/dead staining experiments showed that MM@DOX NPs exhibited stronger in vitro antitumor effects than free DOX. The targeting and therapeutic effects were further confirmed in vivo. Based on in vivo biodistribution of the nanoparticles, the accumulation of MM@DOX NPs at the tumor site was increased. The pharmacokinetic results demonstrated a longer half-life of 9.26 h for MM@DOX NPs compared to 1.94 h for free DOX. Moreover, MM@DOX NPs exhibited stronger tumor suppression effects in HN6 tumor-bearing mice and good biocompatibility. CONCLUSIONS Therefore, MM@DOX NPs is a safe and efficient therapeutic platform for OSCC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Hongjiao Li
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Aihua Luo
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Yao Zhang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
13
|
Maruhashi T, Miki H, Sogabe K, Oda A, Sumitani R, Oura M, Takahashi M, Harada T, Fujii S, Nakamura S, Kurahashi K, Endo I, Abe M. Acute suppression of translation by hyperthermia enhances anti-myeloma activity of carfilzomib. Int J Hematol 2024; 119:291-302. [PMID: 38252236 DOI: 10.1007/s12185-023-03706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Hyperthermia is a unique treatment option for cancers. Multiple myeloma (MM) remains incurable and innovative therapeutic options are needed. We investigated the efficacy of hyperthermia and carfilzomib in combination against MM cells. Although MM cell lines exhibited different susceptibilities to pulsatile carfilzomib treatment, mild hyperthermia at 43℃ induced MM cell death in all cell lines in a time-dependent manner. Hyperthermia and carfilzomib cooperatively induced MM cell death even under suboptimal conditions. The pro-survival mediators PIM2 and NRF2 accumulated in MM cells due to inhibition of their proteasomal degradation by carfilzomib; however, hyperthermia acutely suppressed translation in parallel with phosphorylation of eIF2α to reduce these proteins in MM cells. Recovery of β5 subunit enzymatic activity from its immediate inhibition by carfilzomib was observed at 24 h in carfilzomib-insusceptible KMS-11, OPM-2, and RPMI8226 cells, but not in carfilzomib-sensitive MM.1S cells. However, heat treatment suppressed the recovery of β5 subunit activity in these carfilzomib-insusceptible cells. Therefore, hyperthermia re-sensitized MM cells to carfilzomib. Our results support the treatment of MM with hyperthermia in combination with carfilzomib. Further research is warranted on hyperthermia for drug-resistant extramedullary plasmacytoma.
Collapse
Affiliation(s)
- Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mamiko Takahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Community Medicine for Respirology, Hematology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
- Department of Hematology, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, 770-0011, Japan.
| |
Collapse
|
14
|
Shah S, Famta P, Kumar R, Sharma A, Vambhurkar G, Pandey G, Singh G, Kumar P, Mehra A, Mourya A, Srinivasarao DA, Shinde A, Prasad SB, Khatri DK, Madan J, Srivastava S. Quality by design fostered fabrication of cabazitaxel loaded pH-responsive Improved nanotherapeutics against prostate cancer. Colloids Surf B Biointerfaces 2024; 234:113732. [PMID: 38181691 DOI: 10.1016/j.colsurfb.2023.113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Cabazitaxel has been approved for the treatment of prostate cancer since 2010. However, its poor solubility and permeability pitfalls prevent its accumulation at the target site and promote severe adverse effects. About 90% of prostate cancer (PCa) patients suffer from bone metastasis. This advent reports the development of CBZ-loaded pH-responsive polydopamine nanoparticles (CBZ NP) against metastatic PCa cells. Quality by design (QbD) and multivariate analysis tools were employed for the optimization of CBZ NP. Amorphisation of CBZ along with metastatic microenvironment responsive release was observed thereby imparting spatial release and circumventing solubility pitfalls. CBZ NP retained its cytotoxic potential, with a significant increase in quantitative cellular uptake. Apoptotic markers observed from nuclear staining with elevated reactive oxygen species (ROS) and mitochondrial damage revealed by JC-1 staining demonstrated the efficacy of CBZ NP against PC-3 cells with good serum stability and diminished hemolysis. Cell cycle analysis revealed substantial S and G2/M phase arrest with enhancement in apoptosis was observed. Western blot studies revealed an elevation in caspase-1 and suppression in Bcl-2 indicating enhanced apoptosis compared to the control group. Substantial reduction in the diameter of 3D-Tumoroid and enhanced cell proliferation inhibition indicated the efficacy of CBZ NP in PCa. Thus, we conclude that CBZ NP could be a promising Nanotherapeutic approach for PCa.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gurpreet Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Prakash Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ankit Mehra
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Atul Mourya
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jitender Madan
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
15
|
Jimenez-Andrade JM, Ramírez-Rosas MB, Hee Park S, Parker R, Eber MR, Cain R, Newland M, Hsu FC, Kittel CA, Martin TJ, Muñoz-Islas E, Shiozawa Y, Peters CM. Evaluation of pain related behaviors and disease related outcomes in an immunocompetent mouse model of prostate cancer induced bone pain. J Bone Oncol 2023; 43:100510. [PMID: 38075938 PMCID: PMC10701434 DOI: 10.1016/j.jbo.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and devastating symptom of bone metastatic cancer that substantially disrupts patients' quality of life. Currently, there are few effective analgesic treatments for CIBP other than opioids which come with severe side effects. In order to better understand the factors and mechanisms responsible for CIBP it is essential to have clinically relevant animal models that mirror pain-related symptoms and disease progression observed in patients with bone metastatic cancer. In the current study, we characterize a syngeneic mouse model of prostate cancer induced bone pain. We transfected a prostate cancer cell line (RM1) with green fluorescent protein (GFP) and luciferase reporters in order to visualize tumor growth longitudinally in vivo and to assess the relationship between sensory neurons and tumor cells within the bone microenvironment. Following intra-femoral injection of the RM1 prostate cancer cell line into male C57BL/6 mice, we observed a progressive increase in spontaneous guarding of the inoculated limb between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. Daily running wheel performance was evaluated as a measure of functional impairment and potentially movement evoked pain. We observed a progressive reduction in the distance traveled and percentage of time at optimal velocity between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. We utilized histological, radiographic and μCT analysis to examine tumor induced bone remodeling and observed osteolytic lesions as well as extra-periosteal aberrant bone formation in the tumor bearing femur, similar to clinical findings in patients with bone metastatic prostate cancer. Within the tumor bearing femur, we observed reorganization of blood vessels, macrophage and nerve fibers within the intramedullary space and periosteum adjacent to tumor cells. Tumor bearing mice displayed significant increases in the injury marker ATF3 and upregulation of the neuropeptides SP and CGRP in the ipsilateral DRG as well as increased measures of central sensitization and glial activation in the ipsilateral spinal cord. This immunocompetent mouse model will be useful when combined with cell type selective transgenic mice to examine tumor, immune cell and sensory neuron interactions in the bone microenvironment and their role in pain and disease progression associated with bone metastatic prostate cancer.
Collapse
Affiliation(s)
| | - Martha B. Ramírez-Rosas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Sun Hee Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Renee Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Matthew R. Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rebecca Cain
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mary Newland
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carol A. Kittel
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Enriqueta Muñoz-Islas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Christopher M. Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
16
|
Daniluk J, Voets T. pH-dependent modulation of TRPV1 by modality-selective antagonists. Br J Pharmacol 2023; 180:2750-2761. [PMID: 37350138 DOI: 10.1111/bph.16173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/10/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Antagonists of TRPV1 that inhibit all activation modes cause hyperthermia, hampering their medical use as novel analgesics. TRPV1 antagonists that do not (fully) inhibit responses to low pH do not cause hyperthermia, but it remains incompletely understood how such antagonists affect channel gating. We tested the hypothesis that pH-sparing antagonists act in a modality-selective manner on TRPV1, differentially affecting channel activation by protons and capsaicin. EXPERIMENTAL APPROACH Using whole-cell patch-clamp and calcium imaging to measure channel activity in cells expressing wild type human TRPV1 or the pH-insensitive mutant F660A. Responses to protons and capsaicin were measured at different pH values in the presence of antagonists that reportedly partially spare (A-1165442) or potentiate (AMG7905) acid-evoked channel activation. KEY RESULTS At pH 5.5, A-1165442 was equipotent at blocking acid- and capsaicin-evoked responses of wild type TRPV1. Its potency to inhibit acid-evoked responses was attenuated at pH ≤ 5.0. AMG7905, at a concentration (1 μM) that fully inhibits capsaicin-evoked responses, potentiated proton-evoked (pH 5.5) responses of wild type TRPV1. In the F660A mutant, the inhibitory efficacy of A-1165442 and AMG7905 towards capsaicin-evoked responses was reduced at lower pH values and AMG7905 acted as a partial agonist. CONCLUSION AND IMPLICATIONS Our findings show that A-1165442 and AMG7905 interact in a pH-dependent manner with TRPV1, but this pH dependence is not strictly modality-selective. Reduced TRPV1 antagonism at acidic pH may limit analgesic efficacy in injured tissue and needs to be considered in models explaining the effects of antagonists on core body temperature.
Collapse
Affiliation(s)
- Jan Daniluk
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Lee J, Choi MK, Song IS. Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting. Pharmaceuticals (Basel) 2023; 16:802. [PMID: 37375753 PMCID: PMC10301446 DOI: 10.3390/ph16060802] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX), a widely used drug in cancer chemotherapy, induces cell death via multiple intracellular interactions, generating reactive oxygen species and DNA-adducted configurations that induce apoptosis, topoisomerase II inhibition, and histone eviction. Despite its wide therapeutic efficacy in solid tumors, DOX often induces drug resistance and cardiotoxicity. It shows limited intestinal absorption because of low paracellular permeability and P-glycoprotein (P-gp)-mediated efflux. We reviewed various parenteral DOX formulations, such as liposomes, polymeric micelles, polymeric nanoparticles, and polymer-drug conjugates, under clinical use or trials to increase its therapeutic efficacy. To improve the bioavailability of DOX in intravenous and oral cancer treatment, studies have proposed a pH- or redox-sensitive and receptor-targeted system for overcoming DOX resistance and increasing therapeutic efficacy without causing DOX-induced toxicity. Multifunctional formulations of DOX with mucoadhesiveness and increased intestinal permeability through tight-junction modulation and P-gp inhibition have also been used as orally bioavailable DOX in the preclinical stage. The increasing trends of developing oral formulations from intravenous formulations, the application of mucoadhesive technology, permeation-enhancing technology, and pharmacokinetic modulation with functional excipients might facilitate the further development of oral DOX.
Collapse
Affiliation(s)
- Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea;
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
18
|
Wei X, Yang M. Cell- and subcellular organelle-targeting nanoparticle-mediated breast cancer therapy. Front Pharmacol 2023; 14:1180794. [PMID: 37089933 PMCID: PMC10117787 DOI: 10.3389/fphar.2023.1180794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignant tumor, surpassing lung cancer as the most frequent malignancy in women. Drug resistance, metastasis, and immune escape are the major factors affecting patient survival and represent a huge challenge in BC treatment in clinic. The cell- and subcellular organelle-targeting nanoparticles-mediated targeted BC therapy may be an effective modality for immune evasion, metastasis, and drug resistance. Nanocarriers, efficiently delivering small molecules and macromolecules, are used to target subcellular apparatuses with excellent targeting, controlled delivery, and fewer side effects. This study summarizes and critically analyzes the latest organic nanoparticle-mediated subcellular targeted therapeutic based on chemotherapy, gene therapy, immunotherapy, and combination therapy in detail, and discusses the challenges and opportunities of nanoparticle therapy.
Collapse
Affiliation(s)
- Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Ming Yang,
| |
Collapse
|
19
|
Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab 2022; 34:1914-1931. [PMID: 36257317 PMCID: PMC9742337 DOI: 10.1016/j.cmet.2022.09.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023]
Abstract
Accumulating evidence indicates that interoception maintains proper physiological status and orchestrates metabolic homeostasis by regulating feeding behaviors, glucose balance, and lipid metabolism. Continuous skeletal remodeling consumes a tremendous amount of energy to provide skeletal scaffolding, support muscle movement, store vital minerals, and maintain a niche for hematopoiesis, which are processes that also contribute to overall metabolic balance. Although skeletal innervation has been described for centuries, recent work has shown that skeletal metabolism is tightly regulated by the nervous system and that skeletal interoception regulates bone homeostasis. Here, we provide a general discussion of interoception and its effects on the skeleton and whole-body metabolism. We also discuss skeletal interoception-mediated regulation in the context of pathological conditions and skeletal pain as well as future challenges to our understanding of these process and how they can be leveraged for more effective therapy.
Collapse
Affiliation(s)
- Xiao Lv
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Gao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Neto E, Monteiro AC, Leite Pereira C, Simões M, Conde JP, Chu V, Sarmento B, Lamghari M. Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Adv Healthc Mater 2022; 11:e2102305. [PMID: 35158409 PMCID: PMC11468530 DOI: 10.1002/adhm.202102305] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-a-chip in vitro platforms accurately mimic complex microenvironments offering the ability to recapitulate and dissect mechanisms of physiological and pathological settings, revealing their major importance to develop new therapeutic targets. Bone diseases, such as osteoarthritis, are extremely complex, comprising of the action of inflammatory mediators leading to unbalanced bone homeostasis and de-regulation of sensory innervation and angiogenesis. Although there are models to mimic bone vascularization or innervation, in vitro platforms merging the complexity of bone, vasculature, innervation, and inflammation are missing. Therefore, in this study a microfluidic-based neuro-vascularized bone chip (NVB chip) is proposed to 1) model the mechanistic interactions between innervation and angiogenesis in the inflammatory bone niche, and 2) explore, as a screening tool, novel strategies targeting inflammatory diseases, using a nano-based drug delivery system. It is possible to set the design of the platform and achieve the optimized conditions to address the neurovascular network under inflammation. Moreover, this system is validated by delivering anti-inflammatory drug-loaded nanoparticles to counteract the neuronal growth associated with pain perception. This reliable in vitro tool will allow understanding the bone neurovascular system, enlightening novel mechanisms behind the inflammatory bone diseases, bone destruction, and pain opening new avenues for new therapies discovery.
Collapse
Affiliation(s)
- Estrela Neto
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Ana Carolina Monteiro
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Catarina Leite Pereira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Miguel Simões
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores (INESC)Microsystems and NanotechnologiesRua Alves Redol, 91000‐029LisboaPortugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- CESPUInstituto de Investigação e Formação Avançada em Ciências e Tecnologias da SaúdeRua Central da Gandra, 137Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- INEB – Instituto Nacional de Engenharia BiomédicaUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| |
Collapse
|
21
|
pH-Sensitive Liposomes for Enhanced Cellular Uptake and Cytotoxicity of Daunorubicin in Melanoma (B16-BL6) Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14061128. [PMID: 35745701 PMCID: PMC9228428 DOI: 10.3390/pharmaceutics14061128] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Daunorubicin (DNR) was delivered using a pH-sensitive liposomal system in B16-BL6 melanoma cell lines for enhanced cytotoxic effects. DNR was encapsulated within liposomes and CL as a component of the lipid bilayer. PEGylated pH-sensitive liposomes, containing CL, were prepared in the molar ratio of 40:30:5:17:8 for DOPE/cholesterol/DSPE-mPEG (2000)/CL/SA using the lipid film hydration method and loaded with DNR (drug: lipid ratio of 1:5). The CL liposomes exhibited high drug encapsulation efficiency (>90%), a small size (~94 nm), narrow size distribution (polydispersity index ~0.16), and a rapid release profile at acidic pH (within 1 h). Furthermore, the CL liposomes exhibited 12.5- and 2.5-fold higher cytotoxicity compared to DNR or liposomes similar to DaunoXome®. This study provides a basis for developing DNR pH-sensitive liposomes for melanoma treatment.
Collapse
|
22
|
Rahman MA, Ochiai B. A facile aqueous production of bisphosphonated-polyelectrolyte functionalized magnetite nanoparticles for pH-specific targeting of acidic-bone cells. RSC Adv 2022; 12:8043-8058. [PMID: 35424742 PMCID: PMC8982438 DOI: 10.1039/d1ra09445a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
Bone malignancy treatment is being hindered due to the insufficient selectivity of therapeutic nanoparticles towards malignant bone sites. Polyelectrolyte functionalized magnetic nanoparticles having dually specific pH-sensing ability and bisphosphonate moieties, can be an effective solution for selective targeting of bone malignancies. First, polyelectrolyte was prepared via N-carboxycitraconyzation of chitosan (NCCS) followed by successive functionalization with alendronic acid (AL) and fluorescein isothiocyanate (FITC). Then, Fe3O4-NCCS-FITC-AL nanoparticles were synthesized by a facile one-step microwave-assisted aqueous method via in situ surface functionalization. The formation, crystal structure, and surface conjugation of Fe3O4 nanoparticles with polyelectrolytic stabilizer were confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses. Synthesized Fe3O4-NCCS-FITC-AL nanoparticles were superparamagnetic, colloidally stable and highly hemocompatible under physiological conditions. Moreover, at pH 5.0, Fe3O4-NCCS-FITC-AL nanoparticles formed a precipitate due to inversion of their surface charge. This pH-dependent charge-inversion drastically changed the interactions with erythrocytes and bones. Selective membranolysis of erythrocytes occurred at pH 5.0. The designed nanoparticles showed enough potential for selective targeting of pathological bone sites in early-stage magnetofluorescent imaging and as a therapeutics carrier to treat malignant bone diseases.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
- Polymer Colloids and Nanomaterials Lab, Department of Chemistry, Faculty of Science, Rajshahi University Rajshahi 6205 Bangladesh
| | - Bungo Ochiai
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
23
|
Oral bone biology. J Oral Biosci 2022; 64:8-17. [DOI: 10.1016/j.job.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022]
|
24
|
Radulescu A, White FA, Chenu C. What Did We Learn About Fracture Pain from Animal Models? J Pain Res 2022; 15:2845-2856. [PMID: 36124034 PMCID: PMC9482434 DOI: 10.2147/jpr.s361826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Progress in bone fracture repair research has been made possible due to the development of reproducible models of fracture in rodents with more clinically relevant fracture fixation, where there is considerably better assessment of the factors that affect fracture healing and/or novel therapeutics. However, chronic or persistent pain is one of the worst, longest-lasting and most difficult symptoms to manage after fracture repair, and an ongoing challenge remains for animal welfare as limited information exists regarding pain scoring and management in these rodent fracture models. This failure of adequate pre-clinical pain assessment following osteotomy in the rodent population may not only subject the animal to severe pain states but may also affect the outcome of the bone healing study. Animal models to study pain were also mainly developed in rodents, and there is increasing validation of fracture and pain models to quantitatively evaluate fracture pain and to study the factors that generate and maintain fracture pain and develop new therapies for treating fracture pain. This review aims to discuss the different animal models for fracture pain research and characterize what can be learned from using animal models of fracture regarding behavioral pain states and new molecular targets for future management of these behaviors.
Collapse
Affiliation(s)
- Andreea Radulescu
- Royal Veterinary College, Department of Comparative Biomedical Sciences, London, NW1 OTU, UK
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Medical Center, Indianapolis, IN, USA
| | - Chantal Chenu
- Royal Veterinary College, Department of Comparative Biomedical Sciences, London, NW1 OTU, UK
- Correspondence: Chantal Chenu, Royal Veterinary College, Department of Comparative Biological Sciences, Royal College Street, London, NW1 0TU, UK, Tel +44 207 468 5045, Email
| |
Collapse
|
25
|
Lv Z, Yang YX, Li J, Fei Y, Guo H, Sun Z, Lu J, Xu X, Jiang Q, Ikegawa S, Shi D. Molecular Classification of Knee Osteoarthritis. Front Cell Dev Biol 2021; 9:725568. [PMID: 34513847 PMCID: PMC8429960 DOI: 10.3389/fcell.2021.725568] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 01/15/2023] Open
Abstract
Knee osteoarthritis (KOA) is the most common form of joint degeneration with increasing prevalence and incidence in recent decades. KOA is a molecular disorder characterized by the interplay of numerous molecules, a considerable number of which can be detected in body fluids, including synovial fluid, urine, and blood. However, the current diagnosis and treatment of KOA mainly rely on clinical and imaging manifestations, neglecting its molecular pathophysiology. The mismatch between participants' molecular characteristics and drug therapeutic mechanisms might explain the failure of some disease-modifying drugs in clinical trials. Hence, according to the temporal alteration of representative molecules, we propose a novel molecular classification of KOA divided into pre-KOA, early KOA, progressive KOA, and end-stage KOA. Then, progressive KOA is furtherly divided into four subtypes as cartilage degradation-driven, bone remodeling-driven, inflammation-driven, and pain-driven subtype, based on the major pathophysiology in patient clusters. Multiple clinical findings of representatively investigated molecules in recent years will be reviewed and categorized. This molecular classification allows for the prediction of high-risk KOA individuals, the diagnosis of early KOA patients, the assessment of therapeutic efficacy, and in particular, the selection of homogenous patients who may benefit most from the appropriate therapeutic agents.
Collapse
Affiliation(s)
- Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yannick Xiaofan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuxiang Fei
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo, Japan
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
26
|
Di Pompo G, Errani C, Gillies R, Mercatali L, Ibrahim T, Tamanti J, Baldini N, Avnet S. Acid-Induced Inflammatory Cytokines in Osteoblasts: A Guided Path to Osteolysis in Bone Metastasis. Front Cell Dev Biol 2021; 9:678532. [PMID: 34124067 PMCID: PMC8194084 DOI: 10.3389/fcell.2021.678532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis (BM) is a dismal complication of cancer that frequently occurs in patients with advanced carcinomas and that often manifests as an osteolytic lesion. In bone, tumor cells promote an imbalance in bone remodeling via the release of growth factors that, directly or indirectly, stimulate osteoclast resorption activity. However, carcinoma cells are also characterized by an altered metabolism responsible for a decrease of extracellular pH, which, in turn, directly intensifies osteoclast bone erosion. Here, we speculated that tumor-derived acidosis causes the osteoblast–osteoclast uncoupling in BM by modulating the pro-osteoclastogenic phenotype of osteoblasts. According to our results, a low pH recruits osteoclast precursors and promotes their differentiation through the secretome of acid-stressed osteoblasts that includes pro-osteoclastogenic factors and inflammatory mediators, such as RANKL, M-CSF, TNF, IL-6, and, above the others, IL-8. The treatment with the anti-IL-6R antibody tocilizumab or with an anti-IL-8 antibody reverted this effect. Finally, in a series of BM patients, circulating levels of the osteolytic marker TRACP5b significantly correlated with IL-8. Our findings brought out that tumor-derived acidosis promotes excessive osteolysis at least in part by inducing an inflammatory phenotype in osteoblasts, and these results strengthen the use of anti-IL-6 or anti-IL-8 strategies to treat osteolysis in BM.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Robert Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jacopo Tamanti
- National Tumor Assistance (ANT) Foundation, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Wang C, Luo D. The metabolic adaptation mechanism of metastatic organotropism. Exp Hematol Oncol 2021; 10:30. [PMID: 33926551 PMCID: PMC8082854 DOI: 10.1186/s40164-021-00223-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Metastasis is a complex multistep cascade of cancer cell extravasation and invasion, in which metabolism plays an important role. Recently, a metabolic adaptation mechanism of cancer metastasis has been proposed as an emerging model of the interaction between cancer cells and the host microenvironment, revealing a deep and extensive relationship between cancer metabolism and cancer metastasis. However, research on how the host microenvironment affects cancer metabolism is mostly limited to the impact of the local tumour microenvironment at the primary site. There are few studies on how differences between the primary and secondary microenvironments promote metabolic changes during cancer progression or how secondary microenvironments affect cancer cell metastasis preference. Hence, we discuss how cancer cells adapt to and colonize in the metabolic microenvironments of different metastatic sites to establish a metastatic organotropism phenotype. The mechanism is expected to accelerate the research of cancer metabolism in the secondary microenvironment, and provides theoretical support for the generation of innovative therapeutic targets for clinical metastatic diseases.
Collapse
Affiliation(s)
- Chao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
28
|
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80:413-422. [PMID: 33158879 PMCID: PMC7958096 DOI: 10.1136/annrheumdis-2020-218089] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the elderly. Although OA has been considered as primarily a disease of the articular cartilage, the participation of subchondral bone in the pathogenesis of OA has attracted increasing attention. This review summarises the microstructural and histopathological changes in subchondral bone during OA progression that are due, at the cellular level, to changes in the interactions among osteocytes, osteoblasts, osteoclasts (OCs), endothelial cells and sensory neurons. Therefore, we focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction at different stages of OA progression. In addition, the limited amount of research on the communication between OCs in subchondral bone and chondrocytes (CCs) in articular cartilage during OA progression is reviewed. We propose the concept of 'OC-CC crosstalk' and describe the various pathways by which the two cell types might interact. Based on the 'OC-CC crosstalk', we elaborate potential therapeutic strategies for the treatment of OA, including restoring abnormal subchondral bone remodelling and blocking the bridge-subchondral type H vessels. Finally, the review summarises the current understanding of how the subchondral bone microenvironment is related to OA pain and describes potential interventions to reduce OA pain by targeting the subchondral bone microenvironment.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
29
|
de Clauser L, Luiz AP, Santana-Varela S, Wood JN, Sikandar S. Sensitization of Cutaneous Primary Afferents in Bone Cancer Revealed by In Vivo Calcium Imaging. Cancers (Basel) 2020; 12:cancers12123491. [PMID: 33255209 PMCID: PMC7760605 DOI: 10.3390/cancers12123491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer-induced bone pain severely impairs the quality of life of cancer patients, many of whom suffer from inadequate pain relief. The development of new analgesic therapies depends on the identification of the cells and mechanisms involved in cancer-induced bone pain. Bone marrow innervating sensory neurons have been proposed to contribute to this debilitating disease, but their role remains unexplored. Here we used in vivo calcium imaging to determine the functional role of bone innervating and skin innervating neurons in contributing to pain at an advanced stage of bone cancer. Our results indicate increased excitability of skin innervating neurons, while those innervating bone are unaffected. Our data suggests skin-innervating neurons become hyperexcitable in cancer-induced bone pain and are a potential target for pain relief. Abstract Cancer-induced bone pain (CIBP) is a complex condition, comprising components of inflammatory and neuropathic processes, but changes in the physiological response profiles of bone-innervating and cutaneous afferents remain poorly understood. We used a combination of retrograde labelling and in vivo calcium imaging of bone marrow-innervating dorsal root ganglia (DRG) neurons to determine the contribution of these cells in the maintenance of CIBP. We found a majority of femoral bone afferent cell bodies in L3 dorsal root ganglia (DRG) that also express the sodium channel subtype Nav1.8—a marker of nociceptive neurons—and lack expression of parvalbumin—a marker for proprioceptive primary afferents. Surprisingly, the response properties of bone marrow afferents to both increased intraosseous pressure and acid were unchanged by the presence of cancer. On the other hand, we found increased excitability and polymodality of cutaneous afferents innervating the ipsilateral paw in cancer bearing animals, as well as a behavioural phenotype that suggests changes at the level of the DRG contribute to secondary hypersensitivity. This study demonstrates that cutaneous afferents at distant sites from the tumour bearing tissue contribute to mechanical hypersensitivity, highlighting these cells as targets for analgesia.
Collapse
Affiliation(s)
- Larissa de Clauser
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE1 1UL, UK
| | - Ana P. Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
| | - Shafaq Sikandar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; (L.d.C.); (A.P.L.); (S.S.-V.); (J.N.W.)
- William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| |
Collapse
|
30
|
Characterization of the Subchondral Bone and Pain Behavior Changes in a Novel Bipedal Standing Mouse Model of Facet Joint Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8861347. [PMID: 33224982 PMCID: PMC7669340 DOI: 10.1155/2020/8861347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Background The subchondral bone parallels with the progression of osteoarthritis (OA). However, the biomechanical properties and histopathological changes of subchondral bone changes in the lumbar facet joint (LFJ) after long-term axial loading on the spine have not been explored. In this study, we aimed to investigate the subchondral bone histopathological changes that occur in the LFJ and pain behaviors in a novel bipedal standing mouse model. Methods Sixteen 8-week-old male C57BL/6 mice were randomly assigned into bipedal standing and control groups. A finite element stimulate model based on the micro-CT data was generated to simulate the von Mises stress distribution on the LFJ during different positions. The spine pain behaviors tests were analysis. In addition, the change in the subchondral bone of the LFJ was assessed by histological and immunohistochemistry staining. Results The computerized simulation of the von Mises stress distribution in the superior articular process of LFJ at the spine level 5 in the lying position increased and reached a maximum value at the bipedal standing posture. The spine pain behavior test revealed that the threshold of pressure tolerance decreased significantly in bipedal groups relative to control groups, whereas the mechanical hyperalgesia of the hind paw increased significantly in bipedal groups relative to control groups. The axial load accelerates LFJ degeneration with increased histological scores in bipedal groups. The expression of type II collagen and aggrecan (ACAN) was significantly decreased in the bipedal groups compared with the control groups, whereas the expression of MMP13 was increased. Compared with the control groups, the osteoclast activity was activated with higher TRAP-positive staining and associated with increased CD-31-positive vessels and GCRP-positive nerve ending expression in the subchondral bone of LFJ. Conclusion Collectively, long-term axial loading induces the development of spine hyperalgesia in mice associate with increased osteoclast activity and aberrant angiogenesis and nerve invasion into the subchondral bone of LFJ that stimulates the natural pathological change in human LFJ OA. These results indicate that aberrant bone remodeling associate with aberrant nerve innervation in the subchondral bone has a potential as a therapeutic target in LFJ OA pain.
Collapse
|
31
|
Nakamura T, Okui T, Hasegawa K, Ryumon S, Ibaragi S, Ono K, Kunisada Y, Obata K, Masui M, Shimo T, Sasaki A. High mobility group box 1 induces bone pain associated with bone invasion in a mouse model of advanced head and neck cancer. Oncol Rep 2020; 44:2547-2558. [PMID: 33125145 PMCID: PMC7640359 DOI: 10.3892/or.2020.7788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Advanced head and neck cancer (HNC) can invade facial bone and cause bone pain, thus posing a significant challenge to the quality of life of patients presenting with advanced HNC. The present study was designed to investigate HNC bone pain (HNC-BP) in an intratibial mouse xenograft model that utilized an HNC cell line (SAS cells). These mice develop HNC-BP that is associated with an expression of phosphorylated ERK1/2 (pERK1/2), which is a molecular indicator of neuron excitation in dorsal root ganglia (DRG) sensory neurons. Our experiments demonstrated that the inhibition of high mobility group box 1 (HMGB1) by short hairpin (shRNA) transduction, HMGB1 neutralizing antibody, and HMGB1 receptor antagonist suppressed the HNC-BP and the pERK1/2 expression in DRG. It was also observed that HNC-derived HMGB1 increased the expression of the acid-sensing nociceptor, transient receptor potential vanilloid 1 (TRPV1), which is a major cause of osteoclastic HNC-BP in DRG. Collectively, our results demonstrated that HMGB1 originating in HNC evokes HNC-BP via direct HMGB1 signaling and hypersensitization for the acid environment in sensory neurons.
Collapse
Affiliation(s)
- Tomoya Nakamura
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Kazuaki Hasegawa
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Shoji Ryumon
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Yuki Kunisada
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Masanori Masui
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061‑0293, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| |
Collapse
|
32
|
Ponzetti M, Rucci N. Switching Homes: How Cancer Moves to Bone. Int J Mol Sci 2020; 21:E4124. [PMID: 32527062 PMCID: PMC7313057 DOI: 10.3390/ijms21114124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastases (BM) are a very common complication of the most prevalent human cancers. BM are extremely painful and may be life-threatening when associated with hypercalcaemia. BM can lead to kidney failure and cardiac arrhythmias and arrest, but why and how do cancer cells decide to "switch homes" and move to bone? In this review, we will present what answers science has provided so far, with focus on the molecular mechanisms and cellular aspects of well-established findings, such as the concept of "vicious cycle" and "osteolytic" vs. "osteosclerotic" bone metastases; as well as on novel concepts, such as cellular dormancy and extracellular vesicles. At the molecular level, we will focus on hypoxia-associated factors and angiogenesis, the Wnt pathway, parathyroid hormone-related peptide (PTHrP) and chemokines. At the supramolecular/cellular level, we will discuss tumour dormancy, id est the mechanisms through which a small contingent of tumour cells coming from the primary site may be kept dormant in the endosteal niche for many years. Finally, we will present a potential role for the multimolecular mediators known as extracellular vesicles in determining bone-tropism and establishing a premetastatic niche by influencing the bone microenvironment.
Collapse
Affiliation(s)
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
33
|
Ribeiro P, Leitão L, Monteiro AC, Bortolin A, Moura B, Lamghari M, Neto E. Microfluidic-based models to address the bone marrow metastatic niche complexity. Semin Cell Dev Biol 2020; 112:27-36. [PMID: 32513499 DOI: 10.1016/j.semcdb.2020.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Bone marrow (BM) is a preferential metastatic site for solid cancers, contributing to higher morbidity and mortality among millions of oncologic patients worldwide. There are no current efficient therapies to minimize this health burden. Microfluidic based in vitro models emerge as powerful alternatives to animal testing, as well as promising tools for the development of personalized medicine solutions. The complexity associated with the BM metastatic niche originated a wide variety of microfluidic platforms designed to mimic this microenvironment. This review gathers the essential parameters to design an accurate in vitro microfluidic device, based on a comparative analysis of existing models created to address the different steps of the metastatic cascade.
Collapse
Affiliation(s)
- Patrícia Ribeiro
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Leitão
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C Monteiro
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrea Bortolin
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Beatriz Moura
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Associação (i3S), 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
34
|
Oostinga D, Steverink JG, van Wijck AJM, Verlaan JJ. An understanding of bone pain: A narrative review. Bone 2020; 134:115272. [PMID: 32062002 DOI: 10.1016/j.bone.2020.115272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
Skeletal pathologies are often accompanied by bone pain, which has negative effects on the quality of life and functional status of patients. Bone pain can be caused by a wide variety of injuries and diseases including (poorly healed) fractures, bone cancer, osteoarthritis and also iatrogenic by skeletal interventions. Orthopedic interventions are considered to be the most painful surgical procedures overall. Two major groups of medication currently used to attenuate bone pain are NSAIDs and opioids. However, these systemic drugs frequently introduce adverse events, emphasizing the need for alternative therapies that are directed at the pathophysiological mechanisms underlying bone pain. The periosteum, cortical bone and bone marrow are mainly innervated by sensory A-delta fibers and C-fibers. These fibers are mostly present in the periosteum rendering this structure most sensitive to nociceptive stimuli. A-delta fibers and C-fibers can be activated upon mechanical distortion, acidic environment and increased intramedullary pressure. After activation, these fibers can be sensitized by inflammatory mediators, phosphorylation of acid-sensing ion channels and cytokine receptors, or by upregulation of transcription factors. This can result in a change of pain perception such that normally non-noxious stimuli are now perceived as noxious. Pathological conditions in the bone can produce neurotrophic factors that bind to receptors on A-delta fibers and C-fibers. These fibers then start to sprout and increase the innervation density of the bone, making it more sensitive to nociceptive stimuli. In addition, repetitive painful stimuli cause neurochemical and electrophysiological alterations in afferent sensory neurons in the spinal cord, which leads to central sensitization, and can contribute to chronic bone pain. Understanding the pathophysiological mechanisms underlying bone pain in different skeletal injuries and diseases is important for the development of alternative, targeted pain treatments. These pain mechanism-based alternatives have the potential to improve the quality of life of patients suffering from bone pain without introducing undesirable systemic effects.
Collapse
Affiliation(s)
- Douwe Oostinga
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Jasper G Steverink
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Albert J M van Wijck
- Department of Anesthesiology, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Jorrit-Jan Verlaan
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| |
Collapse
|
35
|
Cortini M, Baldini N, Avnet S. New Advances in the Study of Bone Tumors: A Lesson From the 3D Environment. Front Physiol 2019; 10:814. [PMID: 31316395 PMCID: PMC6611422 DOI: 10.3389/fphys.2019.00814] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023] Open
Abstract
Bone primary tumors, such as osteosarcoma, are highly aggressive pediatric tumors that in 30% of the cases develop lung metastasis and are characterized by poor prognosis. Bone is also the third most common metastatic site in patients with advanced cancer and once tumor cells become homed to the skeleton, the disease is usually considered incurable, and treatment is only palliative. Bone sarcoma and bone metastasis share the same tissue microenvironment and niches. 3D cultures represent a new promising approach for the study of interactions between tumor cells and other cellular or acellular components of the tumor microenvironment (i.e., fibroblasts, mesenchymal stem cells, bone ECM). Indeed, 3D models can mimic physiological interactions that are crucial to modulate response to soluble paracrine factors, tumor drug resistance and aggressiveness and, in all, these innovative models might be able of bypassing the use of animal-based preclinical cancer models. To date, both static and dynamic 3D cell culture models have been shown to be particularly suited for screening of anticancer agents and might provide accurate information, translating in vitro cell cultures into precision medicine. In this mini-review, we will summarize the current state-of-the-art in the field of bone tumors, both primary and metastatic, illustrating the different methods and techniques employed to realize 3D cell culture systems and new results achieved in a field that paves the way toward personalized medicine.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
36
|
Transcriptional Regulation of Voltage-Gated Sodium Channels Contributes to GM-CSF-Induced Pain. J Neurosci 2019; 39:5222-5233. [PMID: 31015342 DOI: 10.1523/jneurosci.2204-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the production of granulocyte and macrophage populations from the hematopoietic progenitor cells; it is one of the most common growth factors in the blood. GM-CSF is also involved in bone cancer pain development by regulating tumor-nerve interactions, remodeling of peripheral nerves, and sensitization of damage-sensing (nociceptive) nerves. However, the precise mechanism for GM-CSF-dependent pain is unclear. In this study, we found that GM-CSF is highly expressed in human malignant osteosarcoma. Female Sprague Dawley rats implanted with bone cancer cells develop mechanical and thermal hyperalgesia, but antagonizing GM-CSF in these animals significantly reduced such hypersensitivity. The voltage-gated Na+ channels Nav1.7, Nav1.8, and Nav1.9 were found to be selectively upregulated in rat DRG neurons treated with GM-CSF, which resulted in enhanced excitability. GM-CSF activated the Janus kinase 2 (Jak2)-signal transducer and activator of transcription protein 3 (Stat3) signaling pathway, which promoted the transcription of Nav1.7-1.9 in DRG neurons. Accordingly, targeted knocking down of either Nav1.7-1.9 or Jak2/Stat3 in DRG neurons in vivo alleviated the hyperalgesia in male Sprague Dawley rats. Our findings describe a novel bone cancer pain mechanism and provide a new insight into the physiological and pathological functions of GM-CSF.SIGNIFICANCE STATEMENT It has been reported that granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a key role in bone cancer pain, yet the underlying mechanisms involved in the GM-CSF-mediated signaling pathway in nociceptors is not fully understood. Here, we showed that GM-CSF promotes bone cancer-associated pain by enhancing the excitability of DRG neurons via the Janus kinase 2 (Jak2)-signal transducer and activator of transcription protein 3 (Stat3)-mediated upregulation of expression of nociceptor-specific voltage-gated sodium channels. Our study provides a detailed understanding of the roles that sodium channels and the Jak2/Stat3 pathway play in the GM-CSF-mediated bone cancer pain; our data also highlight the therapeutic potential of targeting GM-CSF.
Collapse
|
37
|
Gupta N, Jangid AK, Pooja D, Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int J Biol Macromol 2019; 132:852-863. [PMID: 30926495 DOI: 10.1016/j.ijbiomac.2019.03.188] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Inulin (INU) is a flexible, fructan type polysaccharide carbohydrate, mainly obtained from the root of chicory. It is a water-soluble dietary fibre and has been recently approved by the Food and Drug Administration for improving the nutritional values of food products. INU is not digested or fermented in the initial portion of the human digestive system and directly reaches on the distal portion of the colon. Owing to this superior property, INU is specially applied to develop specific carrier systems for localized delivery of drugs related to colon diseases. Several studies proved that the fermented bi-products of INU help the growth and stimulating activity of colon bacteria e.g. Bifidobacterium and Lactobacilli. INU also has several inherent therapeutic effects like reduction of tumor risks, help in calcium ion absorption, anti-inflammatory, antioxidant properties etc. Apart from these, INU has been used for different pharmaceutical applications as a drug carrier, stabilizing agent, cryoprotectant, and an alternative to fats and sugars. Here, we review the applications of INU in different areas of biomedical science, look back into the nutritional effects of INU and outline various routes of administration of INU-based formulations.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Deep Pooja
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
38
|
Xie J, Huang Z, Yu X, Zhou L, Pei F. Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev 2019; 46:36-44. [PMID: 30910350 DOI: 10.1016/j.cytogfr.2019.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritic disease, leading to disability and impaired quality of life and no curative treatments exist. Increasing evidence indicates that low-grade inflammation plays a pivotal role in the onset and progression of OA. In this review, we summarize emerging findings on the pathological roles of synovial macrophages, adipose tissue macrophages, and osteoclasts in OA and their potential clinical implications from cell biology to preclinical and preliminary clinical trials. The failure of synovial macrophages to transition from pro-inflammatory M1 to anti-inflammatory M2 subtypes may contribute to the initiation and maintenance of synovitis in OA. M1 macrophages promote the inflammatory microenvironment and progression of OA through interactions with synovial fibroblasts and chondrocytes, thus increasing the secretion of matrix metalloproteinases. Direct inhibition of M1 or promotion of M2 polarization may be useful therapeutic interventions. Adipose tissue macrophages present in the infrapatella fat pad (IPFP) were involved in the progression of obesity-induced OA, which contributed to changes in the integrity of the IPFP. Furthermore, macrophages and osteoclasts in the subchondral bone were involved in bone remodeling and pain through uncoupled osteoclast/osteoblast activity and increased nociceptive signaling. Growing evidence has indicated an important role for macrophage-mediated low-grade inflammation in OA. Fully understanding the link between macrophages and other cells in joints will provide new insights into OA disease modification.
Collapse
Affiliation(s)
- Jinwei Xie
- Department of Orthopaedics Surgery, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zeyu Huang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Li Zhou
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fuxing Pei
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
39
|
Spadazzi C, Recine F, Mercatali L, Miserocchi G, Liverani C, De Vita A, Bongiovanni A, Fausti V, Ibrahim T. mTOR inhibitor and bone-targeted drugs break the vicious cycle between clear-cell renal carcinoma and osteoclasts in an in vitro co-culture model. J Bone Oncol 2019; 16:100227. [PMID: 30911462 PMCID: PMC6416775 DOI: 10.1016/j.jbo.2019.100227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 02/03/2023] Open
Abstract
The skeleton is one of the most common sites of metastatic spread from advanced clear-cell renal carcinoma (ccRCC). Most of the bone lesions observed in RCC patients are classified as osteolytic, causing severe pain and morbidity due to pathological bone destruction. Nowadays, it is well known that cancer induced bone loss in lytic metastasis is caused by the triggering of a vicious cycle between cancer and bone resident cells that leads to an imbalance between bone formation and degradation. Targeting the mammalian target of rapamycin (mTOR) is an efficient treatment option for metastatic renal carcinoma patients. Moreover, bone targeted therapy could benefit bone metastatic cancer patients caused by advanced RCC. However, more data is needed to support the hypothesis of the beneficial effect of a combined therapy. The aim of this work is to investigate the effect of targeting mTOR and the sequential combination with bone targeted therapy as a strategy to break the vicious cycle between ccRCC cells and osteoclasts. A previously optimized fully human co-culture model is used to mimic the crosstalk between Caki-2 cells (ccRCC) and osteoclasts. Cells are treated at fixed timing with everolimus, zoledronic acid and denosumab as single or sequential combined treatment. We show that Caki-2 cells can induce osteoclast cells differentiation from isolated human monocytes, as demonstrated by specific tartrate-resistant acid phosphatase (TRAP) staining and f-actin ring formation, in a statistically significant manner. Moreover, differentiated osteoclasts proved to be functionally active by pit formation assay. Caki-2 cells co-cultured with osteoclasts acquire a more aggressive phenotype based on gene expression analysis. Interestingly, the sequential combined treatment of everolimus and zoledronic acid is the most effective in the inhibition of both Caki-2 cells survival and osteoclastogenic potential, making it an effective strategy to inhibit the vicious cycle of bone metastasis. At preclinical level, this observation confirms the value of our co-culture model as a useful tool to mimic the bone microenvironment and to assess drug sensitivity in vitro. A better understanding of the molecular mechanisms involved in tumor-bone cells crosstalk will be investigated next.
Collapse
Key Words
- Bone metastasis
- Co-culture
- Deno, denosumab
- Eve, everolimus
- M-CSF, macrophage colony-stimulating factor
- OPG, osteoprotegerin
- Osteoclasts
- RANK-L, receptor activator of nuclear factor-kb ligand
- RCC, renal cell carcinoma
- Renal carcinoma
- Targeted therapy
- VEGF, vascular endothelial growth factor
- Vicious cycle
- Zol, zoledronic acid
- ccRCC, clear-cell renal cell carcinoma
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Valentina Fausti
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, FC, Italy
| |
Collapse
|
40
|
Abumanhal-Masarweh H, Koren L, Zinger A, Yaari Z, Krinsky N, Kaneti G, Dahan N, Lupu-Haber Y, Suss-Toby E, Weiss-Messer E, Schlesinger-Laufer M, Shainsky-Roitman J, Schroeder A. Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. J Control Release 2019; 296:1-13. [PMID: 30615983 DOI: 10.1016/j.jconrel.2019.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
Abstract
Acidic pH in the tumor microenvironment is associated with cancer metabolism and creates a physiological barrier that prevents from drugs to penetrate cells. Specifically, ionizable weak-base drugs, such as doxorubicin, freely permeate membranes in their uncharged form, however, in the acidic tumor microenvironment these drugs become charged and their cellular permeability is retarded. In this study, 100-nm liposomes loaded with sodium bicarbonate were used as adjuvants to elevate the tumor pH. Combined treatment of triple-negative breast cancer cells (4T1) with doxorubicin and sodium-bicarbonate enhanced drug uptake and increased its anti-cancer activity. In vivo, mice bearing orthotropic 4T1 breast cancer tumors were administered either liposomal or free bicarbonate intravenously. 3.7 ± 0.3% of the injected liposomal dose was detected in the tumor after twenty-four hours, compared to 0.17% ± 0.04% in the group injected free non-liposomal bicarbonate, a 21-fold increase. Analyzing nanoparticle biodistribution within the tumor tissue revealed that 93% of the PEGylated liposomes accumulated in the extracellular matrix, while 7% were detected intracellularly. Mice administered bicarbonate-loaded liposomes reached an intra-tumor pH value of 7.38 ± 0.04. Treating tumors with liposomal bicarbonate combined with a sub-therapeutic dose of doxorubicin achieved an improved therapeutic outcome, compared to mice treated with doxorubicin or bicarbonate alone. Interestingly, analysis of the tumor microenvironment demonstrated an increase in immune cell' population (T-cell, B-cell and macrophages) in tumors treated with liposomal bicarbonate. This study demonstrates that targeting metabolic adjuvants with nanoparticles to the tumor microenvironment can enhance anticancer drug activity and improve treatment.
Collapse
Affiliation(s)
- Hanan Abumanhal-Masarweh
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, The Norman Seiden Multidisciplinary Graduate Program, Technion - Israel Institute of Technology, Haifa 3200, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Zvi Yaari
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel; The Interdisciplinary Program for Biotechnology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Galoz Kaneti
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nitsan Dahan
- Life Sciences and Engineering Infrastructure Center, Lorry I. Lokey Interdisciplinary Center, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Lupu-Haber
- Life Sciences and Engineering Infrastructure Center, Lorry I. Lokey Interdisciplinary Center, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Edith Suss-Toby
- Bioimging Center, Biomedical Core Facility, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Esther Weiss-Messer
- Bioimging Center, Biomedical Core Facility, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Michal Schlesinger-Laufer
- The Pre-Clinical Research Authority Unit, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
41
|
Gornet MG, Peacock J, Claude J, Schranck FW, Copay AG, Eastlack RK, Benz R, Olshen A, Lotz JC. Magnetic resonance spectroscopy (MRS) can identify painful lumbar discs and may facilitate improved clinical outcomes of lumbar surgeries for discogenic pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:674-687. [PMID: 30610465 DOI: 10.1007/s00586-018-05873-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The goal of this study was to refine clinical MRS to optimize performance and then determine whether MRS-derived biomarkers reliably identify painful discs, quantify degeneration severity, and forecast surgical outcomes for chronic low back pain (CLBP) patients. METHODS We performed an observational diagnostic development and accuracy study. Six hundred and twenty-three (623) discs in 139 patients were scanned using MRS, with 275 discs also receiving provocative discography (PD). MRS data were used to quantify spectral features related to disc structure (collagen and proteoglycan) and acidity (lactate, alanine, propionate). Ratios of acidity to structure were used to calculate pain potential. MRS-SCOREs were compared to PD and Pfirrmann grade. Clinical utility was judged by evaluating surgical success for 75 of the subjects who underwent lumbar surgery. RESULTS Two hundred and six (206) discs had both a successful MRS and independent pain diagnosis. When comparing to PD, MRS had a total accuracy of 85%, sensitivity of 82%, and specificity of 88%. These increased to 93%, 91%, and 93% respectively, in non-herniated discs. The MRS structure measures differed significantly between Pfirrmann grades, except grade I versus grade II. When all MRS positive discs were treated, surgical success was 97% versus 57% when the treated level was MRS negative, or 54% when the non-treated adjacent level was MRS positive. CONCLUSION MRS correlates with PD and may support improved surgical outcomes for CLBP patients. Noninvasive MRS is a potentially valuable approach to clarifying pain mechanisms and designing CLBP therapies that are customized to the patient. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryan Benz
- SoCal Bioinformatics, Inc, Glendale, CA, USA
| | - Adam Olshen
- University of California at San Francisco, San Francisco, CA, USA
| | - Jeffrey C Lotz
- University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
Jie Z, Xie Z, Xu W, Zhao X, Jin G, Sun X, Huang B, Tang P, Wang G, Shen S, Qin A, Fan S. SREBP-2 aggravates breast cancer associated osteolysis by promoting osteoclastogenesis and breast cancer metastasis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:115-125. [PMID: 30394316 DOI: 10.1016/j.bbadis.2018.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Bone is one of the most common sites of breast cancer metastasis and a major cause of high mortality in these patients. Thus, further understanding the molecular mechanisms regulating breast cancer-induced osteolysis is critical for the development of more effective treatments. In this study, we demonstrated that important roles sterol regulatory element-binding protein 2 (SREBP-2) play in osteoclast formation a function, and in breast cancer metastasis. SREBP-2 expression was found to be induced during the early stages of osteoclast formation under the control of the RANKL/cAMP-response element binding protein (CREB) signaling cascade. SREBP-2 is subsequently translocated into the nucleus where it participates with other transcriptional factors to induce the expression of NFATc1 required for mature osteoclast formation. Additionally, SREBP-2 was also found to be highly expressed in breast cancer tissues and correlated with a poor prognosis. SREBP-2 was similarly under the transcriptional control of CREB and its induction regulates the expression of matrix metalloproteinases (MMPs), key degradative enzymes involved in bone metastases by breast cancer cells. Accordingly, targeting of SREBP-2 with Fatostatin which specifically inhibits SCAP (SREBP cleavage-activating protein) and prevents SREBP activation, attenuated breast cancer-induced osteolysis in vivo. Collectively, our results suggest that SREBP-2 plays a critical role in regulating osteoclastogenesis and contributes to breast cancer-induced osteolysis. Thus, SREBP-2 inhibition is a potential therapeutic approach for breast cancer patients with osteolytic bone lesions.
Collapse
Affiliation(s)
- Zhiwei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Ziang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Wenbin Xu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Xiangde Zhao
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Gu Jin
- Department of Bone and Soft Tissue Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xuewu Sun
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Bao Huang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Pan Tang
- Department of Orthopedic, Zhejiang University Huzhou Hospital, Huzhou 313003, China
| | - Gangliang Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Shuying Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
43
|
Namba Y, Sogawa C, Okusha Y, Kawai H, Itagaki M, Ono K, Murakami J, Aoyama E, Ohyama K, Asaumi JI, Takigawa M, Okamoto K, Calderwood SK, Kozaki KI, Eguchi T. Depletion of Lipid Efflux Pump ABCG1 Triggers the Intracellular Accumulation of Extracellular Vesicles and Reduces Aggregation and Tumorigenesis of Metastatic Cancer Cells. Front Oncol 2018; 8:376. [PMID: 30364132 PMCID: PMC6191470 DOI: 10.3389/fonc.2018.00376] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
The ATP-binding cassette transporter G1 (ABCG1) is a cholesterol lipid efflux pump whose role in tumor growth has been largely unknown. Our transcriptomics revealed that ABCG1 was powerfully expressed in rapidly metastatic, aggregative colon cancer cells, in all the ABC transporter family members. Coincidently, genetic amplification of ABCG1 is found in 10–35% of clinical samples of metastatic cancer cases. Expression of ABCG1 was further elevated in three-dimensional tumoroids (tumor organoids) within stemness-enhancing tumor milieu, whereas depletion of ABCG1 lowered cellular aggregation and tumoroid growth in vitro as well as hypoxia-inducible factor 1α in cancer cells around the central necrotic areas in tumors in vivo. Notably, depletion of ABCG1 triggered the intracellular accumulation of extracellular vesicles (EVs) and regression of tumoroids. Collectively, these data suggest that ABCG1 plays a crucial role in tumorigenesis in metastatic cancer and that depletion of ABCG1 triggers tumor regression with the accumulation of EVs and their derivatives and cargos, implicating a novel ABCG1-targeting therapeutic strategy by which redundant and toxic substances may be accumulated in tumors leading to their regression.
Collapse
Affiliation(s)
- Yuri Namba
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Itagaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Murakami
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun-Ichi Asaumi
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Stuart K Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ken-Ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
44
|
Wakabayashi H, Wakisaka S, Hiraga T, Hata K, Nishimura R, Tominaga M, Yoneda T. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J Bone Miner Metab 2018; 36:274-285. [PMID: 28516219 DOI: 10.1007/s00774-017-0842-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
Bone pain is one of the most common and life-limiting complications of cancer metastasis to bone. Although the mechanism of bone pain still remains poorly understood, bone pain is evoked as a consequence of sensitization and excitation of sensory nerves (SNs) innervating bone by noxious stimuli produced in the microenvironment of bone metastases. We showed that bone is innervated by calcitonin gene-related protein (CGRP)+ SNs extending from dorsal root ganglia (DRG), the cell body of SNs, in mice. Mice intratibially injected with Lewis lung cancer (LLC) cells showed progressive bone pain evaluated by mechanical allodynia and flinching with increased CGRP+ SNs in bone and augmented SN excitation in DRG as indicated by elevated numbers of pERK- and pCREB-immunoreactive neurons. Immunohistochemical examination of LLC-injected bone revealed that the tumor microenvironment is acidic. Bafilomycin A1, a selective inhibitor of H+ secretion from vacuolar proton pump, significantly alleviated bone pain, indicating that the acidic microenvironment contributes to bone pain. We then determined whether the transient receptor potential vanilloid 1 (TRPV1), a major acid-sensing nociceptor predominantly expressed on SNs, plays a role in bone pain by intratibially injecting LLC cells in TRPV1-deficient mice. Bone pain and SN excitation in the DRG and spinal dorsal horn were significantly decreased in TRPV1 -/- mice compared with wild-type mice. Our results suggest that TRPV1 activation on SNs innervating bone by the acidic cancer microenvironment in bone contributes to SN activation and bone pain. Targeting acid-activated TRPV1 is a potential therapeutic approach to cancer-induced bone pain.
Collapse
Affiliation(s)
- Hiroki Wakabayashi
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Hiraga
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Histology and Cell Biology, Matsumoto Dental University, 1780 Gobara‑Hirooka, Shiojiri, Nagano, 399‑0781, Japan
| | - Kenji Hata
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Riko Nishimura
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Tominaga
- Okazaki Institute of Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi, 444-8787, Japan
| | - Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Division of Hematology and Oncology, Indiana University School of Medicine, 980 W Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
45
|
Cooperative electrogenic proton transport pathways in the plasma membrane of the proton-secreting osteoclast. Pflugers Arch 2018; 470:851-866. [PMID: 29550927 DOI: 10.1007/s00424-018-2137-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
A proton is a ubiquitous signaling ion. Many transmembrane H+ transport pathways either maintain pH homeostasis or generate acidic compartments. The osteoclast is a bone-resorbing cell, which degrades bone tissues by secreting protons and lysosomal enzymes into the resorption pit. The plasma membrane facing bone tissue (ruffled border), generated partly by fusion of lysosomes, may mimic H+ flux mechanisms regulating acidic vesicles. We identified three electrogenic H+-fluxes in osteoclast plasma membranes-a vacuolar H+-ATPase (V-ATPase), a voltage-gated proton channel (Hv channel) and an acid-inducible H+-leak-whose electrophysiological profiles and regulation mechanisms differed. V-ATPase and Hv channel, both may have intracellular reservoirs, but the recruitment/internalization is regulated independently. V-ATPase mediates active H+ efflux, acidifying the resorption pit, while acid-inducible H+ leak, activated at an extracellular pH < 5.5, diminishes pit acidification, possibly to protect bone from excess degradation. The two-way H+ flux mechanisms in opposite directions may have advantages in fine regulation of pit pH. Hv channel mediates passive H+ efflux. Although its working ranges are limited, the amount of H+ extrusion is 100 times larger than those of the V-ATPase and may support reactive oxygen species production during osteoclastogenesis. Extracellular Ca2+, H+ and inorganic phosphate, which accumulate in the resorption pit, will either stimulate or inhibit these H+ fluxes. Skeletal integration is disrupted by too much or too less of bone resorption. Diversities in plasma membrane H+ flux pathways, which may co-operate or compete, are essential to adjust osteoclast functions in variable conditions.
Collapse
|
46
|
Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, Sun T, Huang Y, Cheng J, Jiang C. Macrophage-Membrane-Coated Nanoparticles for Tumor-Targeted Chemotherapy. NANO LETTERS 2018; 18:1908-1915. [PMID: 29473753 PMCID: PMC7470025 DOI: 10.1021/acs.nanolett.7b05263] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various delivery vectors have been integrated within biologically derived membrane systems to extend their residential time and reduce their reticuloendothelial system (RES) clearance during systemic circulation. However, rational design is still needed to further improve the in situ penetration efficiency of chemo-drug-loaded membrane delivery-system formulations and their release profiles at the tumor site. Here, a macrophage-membrane-coated nanoparticle is developed for tumor-targeted chemotherapy delivery with a controlled release profile in response to tumor microenvironment stimuli. Upon fulfilling its mission of tumor homing and RES evasion, the macrophage-membrane coating can be shed via morphological changes driven by extracellular microenvironment stimuli. The nanoparticles discharged from the outer membrane coating show penetration efficiency enhanced by their size advantage and surface modifications. After internalization by the tumor cells, the loaded drug is quickly released from the nanoparticles in response to the endosome pH. The designed macrophage-membrane-coated nanoparticle (cskc-PPiP/PTX@Ma) exhibits an enhanced therapeutic effect inherited from both membrane-derived tumor homing and step-by-step controlled drug release. Thus, the combination of a biomimetic cell membrane and a cascade-responsive polymeric nanoparticle embodies an effective drug delivery system tailored to the tumor microenvironment.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xi He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Corresponding Author: ,
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding Author: ,
| |
Collapse
|
47
|
Amachi R, Hiasa M, Teramachi J, Harada T, Oda A, Nakamura S, Hanson D, Watanabe K, Fujii S, Miki H, Kagawa K, Iwasa M, Endo I, Kondo T, Yoshida S, Aihara KI, Kurahashi K, Kuroda Y, Horikawa H, Tanaka E, Matsumoto T, Abe M. A vicious cycle between acid sensing and survival signaling in myeloma cells: acid-induced epigenetic alteration. Oncotarget 2018; 7:70447-70461. [PMID: 27626482 PMCID: PMC5342564 DOI: 10.18632/oncotarget.11927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023] Open
Abstract
Myeloma (MM) cells and osteoclasts are mutually interacted to enhance MM growth while creating acidic bone lesions. Here, we explored acid sensing of MM cells and its role in MM cell response to acidic conditions. Acidic conditions activated the PI3K-Akt signaling in MM cells while upregulating the pH sensor transient receptor potential cation channel subfamily V member 1 (TRPV1) in a manner inhibitable by PI3K inhibition. The acid-activated PI3K-Akt signaling facilitated the nuclear localization of the transcription factor Sp1 to trigger the expression of its target genes, including TRPV1 and HDAC1. Consistently, histone deacetylation was enhanced in MM cells in acidic conditions, while repressing a wide variety of genes, including DR4. Indeed, acidic conditions deacetylated histone H3K9 in a DR4 gene promoter and curtailed DR4 expression in MM cells. However, inhibition of HDAC as well as either Sp1 or PI3K was able to restore DR4 expression in MM cells suppressed in acidic conditions. These results collectively demonstrate that acid activates the TRPV1-PI3K-Akt-Sp1 signaling in MM cells while inducing HDAC-mediated gene repression, and suggest that a positive feedback loop between acid sensing and the PI3K-Akt signaling is formed in MM cells, leading to MM cell response to acidic bone lesions.
Collapse
Affiliation(s)
- Ryota Amachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan.,Department of Biomaterials and Bioengineerings, Tokushima University Graduate School, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Histology and Oral Histology, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Derek Hanson
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Keiichiro Watanabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Miki
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Division of Transfusion medicine and cell therapy, Tokushima University hospital, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Iwasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Itsuro Endo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Kondo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshiaki Kuroda
- Department of Hematology and Oncology, RIRBM, Hiroshima University, Hiroshima, Japan
| | - Hideaki Horikawa
- Support Center for Advanced Medical Sciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Toshio Matsumoto
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Fujii Memorial Institute for Medical Research Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
48
|
Vaysbrot EE, Osani MC, Musetti MC, McAlindon TE, Bannuru RR. Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthritis Cartilage 2018; 26:154-164. [PMID: 29222056 DOI: 10.1016/j.joca.2017.11.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/25/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To clarify the effects of bisphosphonates in knee osteoarthritis (OA) using an up-to-date meta-analysis of randomized controlled trials (RCTs). DESIGN The protocol is registered in PROSPERO (CRD42017073449). We searched MEDLINE, EMBASE, Google Scholar, Web of Science, and Cochrane Database from inception until August 2017. We included only RCTs comparing any bisphosphonates vs placebo in knee OA patients and reporting validated pain and function scales, radiographic progression, and adverse events (AEs) outcomes. We excluded studies using active comparators or concomitant medications besides non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen. We calculated standardized mean differences (SMDs) to account for variation in outcome scales. Random effects meta-analyses were performed. RESULTS We included seven RCTs (3013 patients, 69% female); most patients (N = 2767) received oral risedronate. No pain or function outcomes, regardless of dose, route, time point or measuring instrument, revealed statistically significant results (end of trial pain SMD = -0.16 [95% confidence interval (CI): -0.34, 0.02]). Similarly, we found no statistically significant effect on radiographic progression (risk ratio = 0.98 [95% CI: 0.77, 1.26]). One small RCT in patients with bone marrow lesions (BMLs) suggested a reduction in BML size at 6 months. Bisphosphonates displayed good tolerability, with no statistically significant differences in AE outcomes vs placebo. CONCLUSIONS Contrary to prior reviews, our analysis showed that bisphosphonates neither provide symptomatic relief nor defer radiographic progression in knee OA. However, these agents may still be beneficial in certain subsets of patients who display high rates of subchondral bone turnover. Future studies should be directed at defining such OA subsets and investigating the effects of bisphosphonates in those patients.
Collapse
Affiliation(s)
- E E Vaysbrot
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA
| | - M C Osani
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA
| | - M-C Musetti
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA
| | - T E McAlindon
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA
| | - R R Bannuru
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, 800 Washington Street, 02111 Boston, MA, USA.
| |
Collapse
|
49
|
Milovanović P, Đurić M. Innervation of bones: Why it should not be neglected? MEDICINSKI PODMLADAK 2018. [DOI: 10.5937/mp69-18404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
50
|
Matsumoto A, Miyahara Y. 'Borono-lectin' based engineering as a versatile platform for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:18-30. [PMID: 29296128 PMCID: PMC5738650 DOI: 10.1080/14686996.2017.1411143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Boronic acids are well known for their ability to reversibly interact with the diol groups, a common motif of biomolecules including sugars and ribose. Due to their ability to interact with carbohydrates, they can be regarded as synthetic mimics of lectins, termed 'borono-lectins'. The borono-lectins can be tailored to elicit a broad profile of binding strength and specificity. This special property has been translated into many creative biomedical applications in a way interactive with biology. This review provides a brief overview of recent efforts of polymeric materials-based engineering taking advantage of such virtue of 'borono-lectins' chemistry, related to the field of biomaterials and drug delivery applications.
Collapse
Affiliation(s)
- Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC-KAST), Kawasaki, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|