1
|
More S, Bonnereau J, Wouters D, Spotbeen X, Karras P, Rizzollo F, Killian T, Venken T, Naulaerts S, Vervoort E, Ganne M, Nittner D, Verhoeven J, Bechter O, Bosisio F, Lambrechts D, Sifrim A, Stockwell BR, Swinnen JV, Marine JC, Agostinis P. Secreted Apoe rewires melanoma cell state vulnerability to ferroptosis. SCIENCE ADVANCES 2024; 10:eadp6164. [PMID: 39413195 PMCID: PMC11808924 DOI: 10.1126/sciadv.adp6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
A major therapeutic barrier in melanoma is the coexistence of diverse cellular states marked by distinct metabolic traits. Transitioning from a proliferative to an invasive melanoma phenotype is coupled with increased ferroptosis vulnerability. However, the regulatory circuits controlling ferroptosis susceptibility across melanoma cell states are unknown. In this work, we identified Apolipoprotein E (APOE) as the top lipid-metabolism gene segregating the melanoma MITFhigh/AXLlow proliferative/ferroptosis-resistant from MITFlow/AXLhigh invasive/ferroptosis-sensitive state. Mechanistically, ApoE secreted by the MITFhigh/AXLlow cells protects the invasive phenotype from ferroptosis-inducing agents by reducing the content of peroxidation-prone polyunsaturated fatty acids and boosting GPX4 levels both in vitro and in vivo. Whole-exome sequencing indicates that APOEhigh expression in patients with melanoma is associated with resistance to ferroptosis, regardless of APOE germline status. In aggregate, we found a ferroptosis-resistance mechanism between melanoma cell states relying on secreted ApoE and APOEhigh expression as a potential biomarker for poor ferroptosis response in melanoma.
Collapse
Affiliation(s)
- Sanket More
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Julie Bonnereau
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Wouters
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Xander Spotbeen
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Theo Killian
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven, Leuven, Belgium
| | - Tom Venken
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Nittner
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Spatial Multiomics Expertise Center, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
| | - Jelle Verhoeven
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Oliver Bechter
- LKI, Department of General Medical Oncology, Department of Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Diether Lambrechts
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Brent R. Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jean Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Han M, Niu H, Duan F, Wang Z, Zhang Z, Ren H. Research status and development trends of omics in neuroblastoma a bibliometric and visualization analysis. Front Oncol 2024; 14:1383805. [PMID: 39450262 PMCID: PMC11499224 DOI: 10.3389/fonc.2024.1383805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background Neuroblastoma (NB), a prevalent extracranial solid tumor in children, stems from the neural crest. Omics technologies are extensively employed in NB, and We analyzed published articles on NB omics to understand the research trends and hot topics in NB omics. Method We collected all articles related to NB omics published from 2005 to 2023 from the Web of Science Core Collection database. Subsequently, we conducted analyses using VOSviewer, CiteSpace, Bibliometrix, and the Bibliometric online analysis platform (https://bibliometric.com/ ). Results We included a total of 514 articles in our analysis. The increasing number of publications in this field since 2020 indicates growing attention to NB omics, gradually entering a mature development stage. These articles span 50 countries and 1,000 institutions, involving 3,669 authors and 292 journals. The United States has the highest publication output and collaboration with other countries, with Germany being the most frequent collaborator. Capital Medical University and the German Cancer Research Center are the institutions with the highest publication count. The Journal of Proteome Research and the Journal of Biological Chemistry are the most prolific journal and most co-cited journal, respectively. Wang, W, and Maris, JM are the scholars with the highest publication count and co-citations in this field. "Neuroblastoma" and "Expression" are the most frequent keywords, while "classification," "Metabolism," "Cancer," and "Diagnosis" are recent key terms. The article titled "Neuroblastoma" by John M. Maris is the most cited reference in this analysis. Conclusion The continuous growth in NB omics research underscores its increasing significance in the scientific community. Omics technologies have facilitated the identification of potential biomarkers, advancements in personalized medicine, and the development of novel therapeutic strategies. Despite these advancements, the field faces significant challenges, including tumor heterogeneity, data standardization issues, and the translation of research findings into clinical practice.
Collapse
Affiliation(s)
| | - Huizhong Niu
- First Department of General Surgery, Hebei Children’s Hospital,
Shijiazhuang, Hebei, China
| | | | | | | | | |
Collapse
|
3
|
den Hoedt S, Crivelli SM, Dorst-Lagerwerf KY, Leijten FPJ, Losen M, de Vries HE, Sijbrands EJG, Verhoeven AJM, Martinez-Martinez P, Mulder MT. The effects of APOE4 and familial Alzheimer's disease mutations on free fatty acid profiles in mouse brain are age- and sex-dependent. J Neurochem 2024; 168:3063-3075. [PMID: 39001667 DOI: 10.1111/jnc.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024]
Abstract
APOE4 encoding apolipoprotein (Apo)E4 is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE is key in intercellular lipid trafficking. Fatty acids are essential for brain integrity and cognitive performance and are implicated in neurodegeneration. We determined the sex- and age-dependent effect of AD and APOE4 on brain free fatty acid (FFA) profiles. FFA profiles were determined by LC-MS/MS in hippocampus, cortex, and cerebellum of female and male, young (≤3 months) and older (>5 months), transgenic APOE3 and APOE4 mice with and without five familial AD (FAD) mutations (16 groups; n = 7-10 each). In the different brain regions, females had higher levels than males of either saturated or polyunsaturated FFAs or both. In the hippocampus of young males, but not of older males, APOE4 and FAD each induced 1.3-fold higher levels of almost all FFAs. In young and older females, FAD and to a less extent APOE4-induced shifts among saturated, monounsaturated, and polyunsaturated FFAs without affecting total FFA levels. In cortex and cerebellum, APOE4 and FAD had only minor effects on individual FFAs. The effects of APOE4 and FAD on FFA levels and FFA profiles in the three brain regions were strongly dependent of sex and age, particularly in the hippocampus. Here, most FFAs that are affected by FAD are similarly affected by APOE4. Since APOE4 and FAD affected hippocampal FFA profiles already at young age, these APOE4-induced alterations may modulate the pathogenesis of AD.
Collapse
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Simone M Crivelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Frank P J Leijten
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mario Losen
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Helga E de Vries
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, VU Medical Center, Amsterdam, the Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adrie J M Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Lazar AN, Hanbouch L, Boussicaut L, Fourmaux B, Daira P, Millan MJ, Bernoud-Hubac N, Potier MC. Lipid Dys-Homeostasis Contributes to APOE4-Associated AD Pathology. Cells 2022; 11:cells11223616. [PMID: 36429044 PMCID: PMC9688773 DOI: 10.3390/cells11223616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The association of the APOE4 (vs. APOE3) isoform with an increased risk of Alzheimer's disease (AD) is unequivocal, but the underlying mechanisms remain incompletely elucidated. A prevailing hypothesis incriminates the impaired ability of APOE4 to clear neurotoxic amyloid-β peptides (Aβ) from the brain as the main mechanism linking the apolipoprotein isoform to disease etiology. The APOE protein mediates lipid transport both within the brain and from the brain to the periphery, suggesting that lipids may be potential co-factors in APOE4-associated physiopathology. The present study reveals several changes in the pathways of lipid homeostasis in the brains of mice expressing the human APOE4 vs. APOE3 isoform. Carriers of APOE4 had altered cholesterol turnover, an imbalance in the ratio of specific classes of phospholipids, lower levels of phosphatidylethanolamines bearing polyunsaturated fatty acids and an overall elevation in levels of monounsaturated fatty acids. These modifications in lipid homeostasis were related to increased production of Aβ peptides as well as augmented levels of tau and phosphorylated tau in primary neuronal cultures. This suite of APOE4-associated anomalies in lipid homeostasis and neurotoxic protein levels may be related to the accrued risk for AD in APOE4 carriers and provides novel insights into potential strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Adina-Nicoleta Lazar
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
- Correspondence: (A.-N.L.); (M.-C.P.)
| | - Linda Hanbouch
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
| | - Lydie Boussicaut
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
| | - Baptiste Fourmaux
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
| | - Patricia Daira
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
| | - Mark J. Millan
- Institut De Recherche Servier IDRS, Neuroscience Inflammation Thérapeutic Area, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
- Institute of Neuroscience and Psychology, College of Medical, Vet and life Sciences, Glasgow University, 68 Hillhead Street, Glasgow G12 8QB, Scotland, UK
| | | | - Marie-Claude Potier
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
- Correspondence: (A.-N.L.); (M.-C.P.)
| |
Collapse
|
6
|
Krokidis MG, Prasinou P, Efthimiadou EK, Boari A, Ferreri C, Chatgilialoglu C. Effects of Aging and Disease Conditions in Brain of Tumor-Bearing Mice: Evaluation of Purine DNA Damages and Fatty Acid Pool Changes. Biomolecules 2022; 12:1075. [PMID: 36008969 PMCID: PMC9405824 DOI: 10.3390/biom12081075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The consequences of aging and disease conditions in tissues involve reactive oxygen species (ROS) and related molecular alterations of different cellular compartments. We compared a murine model of immunodeficient (SCID) xenografted young (4 weeks old) and old (17 weeks old) mice with corresponding controls without tumor implantation and carried out a compositional evaluation of brain tissue for changes in parallel DNA and lipids compartments. DNA damage was measured by four purine 5',8-cyclo-2'-deoxynucleosides, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA). In brain lipids, the twelve most representative fatty acid levels, which were mostly obtained from the transformation of glycerophospholipids, were followed up during the aging and disease progressions. The progressive DNA damage due to age and tumoral conditions was confirmed by raised levels of 5'S-cdG and 5'S-cdA. In the brain, the remodeling involved a diminution of palmitic acid accompanied by an increase in arachidonic acid, along both age and tumor progressions, causing increases in the unsaturation index, the peroxidation index, and total TFA as indicators of increased oxidative and free radical reactivity. Our results contribute to the ongoing debate on the central role of DNA and genome instability in the aging process, and on the need for a holistic vision, which implies choosing the best biomarkers for such monitoring. Furthermore, our data highlight brain tissue for its lipid remodeling response and inflammatory signaling, which seem to prevail over the effects of DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Paraskevi Prasinou
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Eleni K. Efthimiadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
7
|
Ferreri C, Sansone A, Krokidis MG, Masi A, Pascucci B, D’Errico M, Chatgilialoglu C. Effects of Oxygen Tension for Membrane Lipidome Remodeling of Cockayne Syndrome Cell Models. Cells 2022; 11:1286. [PMID: 35455966 PMCID: PMC9032135 DOI: 10.3390/cells11081286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Oxygen is important for lipid metabolism, being involved in both enzymatic transformations and oxidative reactivity, and is particularly influent when genetic diseases impair the repair machinery of the cells, such as described for Cockayne syndrome (CS). We used two cellular models of transformed fibroblasts defective for CSA and CSB genes and their normal counterparts, grown for 24 h under various oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%) to examine the fatty acid-based membrane remodeling by GC analysis of fatty acid methyl esters derived from membrane phospholipids. Overall, we first distinguished differences due to oxygen tensions: (a) hyperoxia induced a general boost of desaturase enzymatic activity in both normal and defective CSA and CSB cell lines, increasing monounsaturated fatty acids (MUFA), whereas polyunsaturated fatty acids (PUFA) did not undergo oxidative consumption; (b) hypoxia slowed down desaturase activities, mostly in CSA cell lines and defective CSB, causing saturated fatty acids (SFA) to increase, whereas PUFA levels diminished, suggesting their involvement in hypoxia-related signaling. CSB-deprived cells are the most sensitive to oxidation and CSA-deprived cells are the most sensitive to the radical-based formation of trans fatty acids (TFA). The results point to the need to finely differentiate biological targets connected to genetic impairments and, consequently, suggest the better definition of cell protection and treatments through accurate molecular profiling that includes membrane lipidomes.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
| | - Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, Athens 15310, Greece;
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy;
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy;
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Marron MM, Moore SC, Wendell SG, Boudreau RM, Miljkovic I, Sekikawa A, Newman AB. Using lipid profiling to better characterize metabolic differences in apolipoprotein E (APOE) genotype among community-dwelling older Black men. GeroScience 2021; 44:1083-1094. [PMID: 33991295 DOI: 10.1007/s11357-021-00382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/03/2021] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein E (APOE) allelic variation is associated with differences in overall circulating lipids and risks of major health outcomes. Lipid profiling provides the opportunity for a more detailed description of lipids that differ by APOE, to potentially inform therapeutic targets for mitigating higher morbidity and mortality associated with certain APOE genotypes. Here, we sought to identify lipids, lipid-like molecules, and important mediators of fatty acid metabolism that differ by APOE among 278 Black men ages 70-81. Using liquid chromatography-mass spectrometry methods, 222 plasma metabolites classified as lipids, lipid-like molecules, or essential in fatty acid metabolism were detected. We applied principal factor analyses to calculate a factor score for each main lipid category. APOE was categorized as ε4 carriers (n = 83; ε3ε4 or ε4ε4), ε2 carriers (n = 58; ε2ε3 or ε2ε2), or ε3 homozygotes (n = 137; ε3ε3). Using analysis of variance, the monoacylglycerol factor, cholesterol ester factor, the factor for triacylglycerols that consist mostly of polyunsaturated fatty acids, sphingosine, and free carnitine significantly differed by APOE (p < 0.05, false discovery rate < 0.30). The monoacylglycerol factor, cholesterol ester factor, and sphingosine were lower, whereas the factor for triacylglycerols that consisted mostly of polyunsaturated fatty acids was higher among ε2 carriers than remaining participants. Free carnitine was lower among ε4 carriers than ε3 homozygotes. Lower monoacylglycerols and cholesteryl esters and higher triacylglycerols that consist mostly of polyunsaturated fatty acids may be protective metabolic characteristics of APOE ε2 carriers, whereas lower carnitine may reflect altered mitochondrial functioning among ε4 carriers in this cohort of older Black men.
Collapse
Affiliation(s)
- Megan M Marron
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA.
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stacy G Wendell
- Departments of Pharmacology and Chemical Biology and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert M Boudreau
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA
| | - Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA
| | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA.,Departments of Medicine and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Krokidis MG, Louka M, Efthimiadou EK, Ferreri C, Chatgilialoglu C. Fatty Acid Remodeling of Membrane Glycerophospholipids Induced by Bleomycin and Iron Oxide Nanoparticles in Human Embryonic Kidney Cells. Chem Res Toxicol 2020; 33:2565-2572. [PMID: 32865980 DOI: 10.1021/acs.chemrestox.0c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bleomycin has a long-studied mechanism of action through the formation of a complex with metals, such as iron. The bleomycin-iron complex was recently shown to induce membrane damage by free radical reactivity. Because the use of Fe nanoparticles is spreading for drug delivery strategies, molecular mechanisms of cell damage must include different compartments in order to observe the progression of the cell reactivity. In this study, human embryonic kidney (HEK-293) cells were exposed for 24 h to bleomycin and polymeric iron oxide nanoparticles (Fe-NPs), alone or in combination. The fatty acid-based membrane lipidomic analysis evidenced the fatty acid remodeling in response to the treatments. Bleomycin alone caused the increase of saturated fatty acid (SFA) moieties in cell membrane glycerophospholipids with concomitant diminution of monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acid levels. Under Fe-NPs treatment, omega-6 PUFA decreased and trans fatty acid isomers increased. Under coadministration bleomycin and Fe-NPs, all membrane remodeling changes disappeared compared to those of the controls, with only an increase of omega-6 PUFA that elevates peroxidation index remaining. Our results highlight the important role of fatty-acid-based membrane lipidome monitoring to follow up the fatty acid reorganization induced by the drug, to be considered as a side effect of the pharmacological activity, suggesting the need of an integrated approach for the investigation of drug and carrier molecular mechanisms.
Collapse
Affiliation(s)
- Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece
| | - Maria Louka
- Lipidomics Laboratory, Lipinutragen Srl, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Eleni K Efthimiadou
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Carla Ferreri
- Lipidomics Laboratory, Lipinutragen Srl, Via Piero Gobetti 101, 40129 Bologna, Italy.,ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Lipidomics Laboratory, Lipinutragen Srl, Via Piero Gobetti 101, 40129 Bologna, Italy.,ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy.,Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
10
|
Piccarducci R, Daniele S, Fusi J, Chico L, Baldacci F, Siciliano G, Bonuccelli U, Franzoni F, Martini C. Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes. Antioxidants (Basel) 2019; 8:E538. [PMID: 31717561 PMCID: PMC6912376 DOI: 10.3390/antiox8110538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
The allele epsilon 4 (ε4) of apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE protein plays a pivotal role in the synthesis and metabolism of amyloid beta (Aβ), the major component of the extracellular plaques that constitute AD pathological hallmarks. Regular exercise is an important preventive/therapeutic tool in aging and AD. Nevertheless, the impact of physical exercise on the well-being of erythrocytes, a good model of oxidative stress and neurodegenerative processes, remains to be investigated, particularly depending on ApoE polymorphism. Herein, we evaluate the oxidative status, Aβ levels, and the membrane's composition of erythrocytes in a cohort of human subjects. In our hands, the plasma antioxidant capability (AOC), erythrocytes membrane fluidity, and the amount of phosphatidylcholine (PC) were demonstrated to be significantly decreased in the ApoE ε4 genotype and non-active subjects. In contrast, erythrocyte Aβ content and lipid peroxidation increased in ε4 carriers. Regular physical exercise was associated with an increased plasma AOC and membrane fluidity, as well as to a reduced amount of erythrocytes Aβ. Altogether, these data highlight the influence of the ApoE genotype on erythrocytes' well-being and confirm the positive impact of regular physical exercise.
Collapse
Affiliation(s)
- Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| |
Collapse
|
11
|
Purine DNA Lesions at Different Oxygen Concentration in DNA Repair-Impaired Human Cells (EUE-siXPA). Cells 2019; 8:cells8111377. [PMID: 31683970 PMCID: PMC6912421 DOI: 10.3390/cells8111377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Xeroderma Pigmentosum (XP) is a DNA repair disease characterized by nucleotide excision repair (NER) malfunction, leading to photosensitivity and increased incidence of skin malignancies. The role of XP-A in NER pathways has been well studied while discrepancies associated with ROS levels and the role of radical species between normal and deficient XPA cell lines have been observed. Using liquid chromatography tandem mass spectrometry we have determined the four 5’,8-cyclopurines (cPu) lesions (i.e., 5′R-cdG, 5′S-cdG, 5′R-cdA and 5′S-cdA), 8-oxo-dA and 8-oxo-dG in wt (EUE-pBD650) and XPA-deficient (EUE-siXPA) human embryonic epithelial cell lines, under different oxygen tension (hyperoxic 21%, physioxic 5% and hypoxic 1%). The levels of Fe and Cu were also measured. The main findings of our study were: (i) the total amount of cPu (1.82–2.52 lesions/106 nucleotides) is the same order of magnitude as 8-oxo-Pu (3.10–4.11 lesions/106 nucleotides) in both cell types, (ii) the four cPu levels are similar in hyperoxic and physioxic conditions for both wt and deficient cell lines, whereas 8-oxo-Pu increases in all cases, (iii) both wt and deficient cell lines accumulated high levels of cPu under hypoxic compared to physioxic conditions, whereas the 8-oxo-Pu levels show an opposite trend, (iv) the diastereoisomeric ratios 5′R/5′S are independent of oxygen concentration being 0.29 for cdG and 2.69 for cdA for EUE-pBD650 (wt) and 0.32 for cdG and 2.94 for cdA for EUE-siXPA (deficient), (v) in deficient cell lines Fe levels were significantly higher. The data show for the first time the connection of oxygen concentration in cells with different DNA repair ability and the levels of different DNA lesions highlighting the significance of cPu. Membrane lipidomic data at 21% O2 indicated differences in the fatty acid contents between wild type and deficient cells, envisaging functional effects on membranes associated with the different repair capabilities, to be further investigated.
Collapse
|
12
|
Membrane Lipidome Reorganization and Accumulation of Tissue DNA Lesions in Tumor-Bearing Mice: An Exploratory Study. Cancers (Basel) 2019; 11:cancers11040480. [PMID: 30987375 PMCID: PMC6520748 DOI: 10.3390/cancers11040480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
Increased rates of reactive oxygen/nitrogen species (ROS/RNS) are involved in almost all cancer types, associated with tumor development and progression, causing damage to biomolecules such as proteins, nucleic acids and membrane lipids, in different biological compartments. We used a human tumor xenograft mouse model to evaluate for the first time in parallel the remodeling of fatty acid moieties in erythrocyte membrane phospholipids and the level of ROS-induced DNA lesions in liver and kidney tissues. Using liquid chromatography tandem mass spectrometry the 5'R and 5'S diastereoisomers of 5',8-cyclo-2'-deoxyadenosine and 5',8-cyclo-2'-deoxyguanosine, together with 8-oxo-7,8-dihydro-2'-deoxyadenosine, were determined in mice at young (4- and 5-weeks) and old (17-weeks) ages and compared with control SCID mice without tumor implantation. Tumor-bearing mice showed a higher level of ROS-damaged nucleosides in genomic DNA as the age and tumor progress, compared to controls (1.07-1.53-fold in liver and 1.1-1.4-fold in kidney, respectively). The parallel fatty acid profile of erythrocyte membranes showed a profound lipid remodeling during tumor and age progression consisting of PUFA consumption and SFA enrichment (ca 28% and 58%, respectively, in late stage tumor-bearing mice), markers of enhanced oxidative and proliferative processes, respectively. Membrane lipid remodeling and ROS-induced DNA lesions may be combined to afford an integrated scenario of cancer progression and ageing, reinforcing a holistic vision among molecular markers rather than the biomarker identification in a single compartment.
Collapse
|
13
|
Scanferlato R, Bortolotti M, Sansone A, Chatgilialoglu C, Polito L, De Spirito M, Maulucci G, Bolognesi A, Ferreri C. Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20040832. [PMID: 30769921 PMCID: PMC6412212 DOI: 10.3390/ijms20040832] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.
Collapse
Affiliation(s)
- Roberta Scanferlato
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | | | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Marco De Spirito
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Giuseppe Maulucci
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| |
Collapse
|
14
|
Glycerophosphatidylcholine PC(36:1) absence and 3'-phosphoadenylate (pAp) accumulation are hallmarks of the human glioma metabolome. Sci Rep 2018; 8:14783. [PMID: 30283018 PMCID: PMC6170378 DOI: 10.1038/s41598-018-32847-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Glioma is the most prevalent malignant brain tumor. A comprehensive analysis of the glioma metabolome is still lacking. This study aims to explore new special metabolites in glioma tissues. A non-targeted human glioma metabolomics was performed by UPLC-Q-TOF/MS. The gene expressions of 18 enzymes associated with 3’-phosphoadenylate (pAp) metabolism was examined by qRT-PCR. Those enzymes cover the primary metabolic pathway of pAp. We identified 15 new metabolites (13 lipids and 2 nucleotides) that were significantly different between the glioma and control tissues. Glycerophosphatidylcholine [PC(36:1)] content was high and pAp content was significantly low in the control brain (p < 0.01). In glioma tissues, PC(36:1) was not detected and pAp content was significantly increased. The gene expressions of 3′-nucleotidases (Inositol monophosphatase (IMPAD-1) and 3′(2′),5′-bisphosphate nucleotidase 1(BPNT-1)) were dramatically down-regulated. Meanwhile, the gene expression of 8 sulfotransferases (SULT), 2 phosphoadenosine phosphosulfate synthases (PAPSS-1 and PAPSS-2) and L-aminoadipate-semialdehyde dehydrogenase-phosphopante-theinyl transferase (AASDHPPT) were up-regulated. PC(36:1) absence and pAp accumulation are the most noticeable metabolic aberration in glioma. The dramatic down-regulation of IMPAD-1 and BPNT-1 are the primary cause for pAp dramatic accumulation. Our findings suggest that differential metabolites discovered in glioma could be used as potentially novel therapeutic targets or diagnostic biomarkers and that abnormal metabolism of lipids and nucleotides play roles in the pathogenesis of glioma.
Collapse
|
15
|
Morris JK, Piccolo BD, Shankar K, Thyfault JP, Adams SH. The serum metabolomics signature of type 2 diabetes is obscured in Alzheimer's disease. Am J Physiol Endocrinol Metab 2018; 314:E584-E596. [PMID: 29351484 PMCID: PMC6032067 DOI: 10.1152/ajpendo.00377.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
There is evidence for systemic metabolic impairment in Alzheimer's disease (AD), and type 2 diabetes (T2D) increases AD risk. Although studies analyzing blood metabolomics signatures have shown differences between cognitively healthy (CH) and AD subjects, these signatures have not been compared with individuals with T2D. We utilized untargeted analysis platforms (primary metabolism and complex lipids) to characterize the serum metabolome of 126 overnight-fasted elderly subjects classified into four groups based upon AD status (CH or AD) and T2D status [nondiabetic (ND) or T2D]. Cognitive diagnosis groups were a priori weighted equally with T2D subjects. We hypothesized that AD subjects would display a metabolic profile similar to cognitively normal elderly individuals with T2D. However, partial least squares-discriminant analysis (PLS-DA) modeling resulted in poor classification across the four groups (<50% classification accuracy of test subjects). Binary classification of AD vs. CH was poor, but binary classification of T2D vs. ND was good, providing >79.5% and >76.9% classification accuracy for held-out samples using primary metabolism and complex lipids, respectively. When modeling was limited to CH subjects, T2D discrimination improved for the primary metabolism platform (>89.5%) and remained accurate for complex lipids (>73% accuracy). Greater abundances of glucose, fatty acids (C20:2), and phosphatidylcholines and lower abundances of glycine, maleimide, octanol, and tryptophan, cholesterol esters, phosphatidylcholines, and sphingomyelins were identified in CH subjects with T2D relative to those without T2D. In contrast, T2D was not accurately discriminated within AD subjects. Results herein suggest that AD may obscure the typical metabolic phenotype of T2D.
Collapse
Affiliation(s)
- Jill K Morris
- University of Kansas Department of Neurology, University of Kansas Alzheimer's Disease Center , Kansas City, Kansas
- University of Kansas Alzheimer's Disease Center, Fairway, Kansas
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Kartik Shankar
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - John P Thyfault
- University of Kansas Department of Neurology, University of Kansas Alzheimer's Disease Center , Kansas City, Kansas
- University of Kansas Alzheimer's Disease Center, Fairway, Kansas
- University of Kansas Department of Molecular and Integrative Physiology , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - Sean H Adams
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|