1
|
Su X, Cui Y, Gong H, Xu T, Sun Y. The gene characteristics and adaptive evolution of the tumor necrosis factor superfamily (TNFSF) in miiuy croaker, Miichthysmiiuy. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110369. [PMID: 40288618 DOI: 10.1016/j.fsi.2025.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The tumor necrosis factor superfamily (TNFSF) is crucial in regulating immune responses, with its members mediating various biological functions through key signaling pathways. However, the gene characteristics of this family and their comparative and evolutionary analysis across species remain limited. In this study, 12 TNFSF genes were identified in the genome-wide of miiuy croaker. Analyses were conducted on evolutionary relationships, conserved motifs, gene duplication, and selection pressure. Conserved motif analyses revealed that the C-terminal motifs of vertebrate TNFSF proteins were more conserved than the N-terminus. Sequence alignment and conservation analysis identified an unrecognized helix structure within the TNF homology domain, which exhibited structural conservation among vertebrates. Synteny and selection pressure analyses indicated that the TNFSF in miiuy croaker exhibited tandem and segmental duplication events. Evolutionary selection pressures may contributed to the functional differentiation of this family. These findings could enhance the understanding of TNFSF gene characteristics and evolutionary relationships, and provide new insights for studying immune-related TNFSF genes.
Collapse
Affiliation(s)
- Xiaoqin Su
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanqiu Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanfu Gong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
2
|
Lasorsa A, van der Wel PCA. Solid-state NMR protocols for unveiling dynamics and (drug) interactions of membrane-bound proteins. Protein Sci 2025; 34:e70102. [PMID: 40099898 PMCID: PMC11915643 DOI: 10.1002/pro.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Magic angle spinning solid-state NMR (MAS ssNMR) is a versatile tool for studying the structure and dynamics of membrane proteins, as well as their interactions with ligands and drugs. Its power lies in the ability to provide atomic-level information on samples under physiological-like conditions. Moreover, it can illuminate dynamics across a wide range of timescales with great relevance to membrane protein function and dysfunction. In this protocol paper, we highlight key aspects of sample preparation, data acquisition, and interpretation, based on our own experience and the broader literature. We discuss key protocol steps along with important considerations for sample preparation and parameters for ssNMR measurements, with reference to the special requirements of membrane-based samples. Such samples display physiologically relevant dynamics across different motional regimes that can be probed by NMR but also can interfere with certain NMR measurements. We guide the reader through the whole process from sample preparation to complex NMR characterization techniques. Throughout the report, we refer back to examples from our own prior work on the interactions between cytochrome c and cardiolipin-containing membranes, with a discussion of the lipid dependence and interactions with a peroxidase-activity inhibitor. We conclude with a short discussion of alternative and new methods that are further boosting the power and versatility of ssNMR as a tool to study membrane-bound proteins and their ligands or drug interactions.
Collapse
Affiliation(s)
- Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
4
|
Wang Y, Shi D, Zou W, Jiang Y, Wang T, Chen X, Ma C, Li W, Chen T, Burrows JF, Wang L, Zhou M. An Effective Modification Strategy to Build Multifunctional Peptides Based on a Trypsin Inhibitory Peptide of the Kunitz Family. Pharmaceutics 2024; 16:597. [PMID: 38794259 PMCID: PMC11125039 DOI: 10.3390/pharmaceutics16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Peptides with antimicrobial activity or protease inhibitory activity are potential candidates to supplement traditional antibiotics or cancer chemotherapies. However, the potential of many peptides are limited by drawbacks such as cytotoxicity or susceptibility to hydrolysis. Therefore, strategies to modify the structure of promising peptides may represent an effective approach for developing more promising clinical candidates. In this study, the mature peptide OSTI-1949, a Kunitz-type inhibitor from Odorrana schmackeri, and four designed analogues were successfully synthesised. In contrast to the parent peptide, the analogues showed impressive multi-functionality including antimicrobial, anticancer, and trypsin inhibitory activities. In terms of safety, there were no obvious changes observed in the haemolytic activity at the highest tested concentration, and the analogue OSTI-2461 showed an increase in activity against cancer cell lines without cytotoxicity to normal cells (HaCaT). In summary, through structural modification of a natural Kunitz-type peptide, the biological activity of analogues was improved whilst retaining low cytotoxicity. The strategy of helicity enhancement by forming an artificial α-helix and ß-sheet structure provides a promising way to develop original bioactive peptides for clinical therapeutics.
Collapse
Affiliation(s)
- Ying Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Wanchen Zou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - James F. Burrows
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| |
Collapse
|
5
|
Lu H, Wang C, Lu W, Li X, Wang G, Dong W, Wang X, Chen H, Tan C. Antibacterial efficacy and mechanism of Cyprinus carpio chemokine-derived L-10 against multidrug-resistant Escherichia coli infections. Int J Antimicrob Agents 2024; 63:107104. [PMID: 38325720 DOI: 10.1016/j.ijantimicag.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES Antimicrobial resistance has raised concerns regarding untreatable infections and poses a growing threat to public health. Rational design of new AMPs is an ideal solution to this threat. METHODS In this study, we designed, modified, and synthesised an excellent AMP, L-10, based on the original sequence of the Cyprinus carpio chemokine. All experimental data were presented as the mean ± standard deviation (SD), and the two-tailed unpaired T-test method was used to analyze all data. RESULTS L-10 exhibited excellent antibacterial activity with negligible toxicity and improved the efficacy of a broad class of antibiotics against MDR Gram-negative pathogens, including tetracycline, meropenem, levofloxacin, and rifampin. Mechanistic studies have suggested that L-10 targets the bacterial membrane components, LPS and PG, to disrupt bacterial membrane integrity, thereby exerting antibacterial effects and enhancing the efficacy of antibiotics. Moreover, in animal infection models, L-10 significantly increased the survival rate of infected animals and effectively reduced the tissue bacterial load and inflammatory factor levels. In addition to its direct antibacterial activity, L-10 dramatically reduced pulmonary pathological alterations in a mouse model of endotoxemia and suppressed LPS-induced proinflammatory cytokines in vitro and in vivo. Lastly, L-10 was successfully expressed in Pichia pastoris and maintained antimicrobial activity against MDR Gram-negative pathogens in vivo and in vitro. CONCLUSION Collectively, these results reveal the potential of L-10 as an ideal candidate against MDR bacterial infections and provide new insights into the design, development, and clinical application of AMPs.
Collapse
Affiliation(s)
- Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiaodan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Tang Z, Jiang W, Li S, Huang X, Yang Y, Chen X, Qiu J, Xiao C, Xie Y, Zhang X, Li J, Verma CS, He Y, Yang A. Design and evaluation of tadpole-like conformational antimicrobial peptides. Commun Biol 2023; 6:1177. [PMID: 37980400 PMCID: PMC10657444 DOI: 10.1038/s42003-023-05560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Antimicrobial peptides are promising alternatives to conventional antibiotics. Herein, we report a class of "tadpole-like" peptides consisting of an amphipathic α-helical head and an aromatic tail. A structure-activity relationship (SAR) study of "tadpole-like" temporin-SHf and its analogs revealed that increasing the number of aromatic residues in the tail, introducing Arg to the α-helical head and rearranging the peptide topology dramatically increased antimicrobial activity. Through progressive structural optimization, we obtained two peptides, HT2 and RI-HT2, which exhibited potent antimicrobial activity, no hemolytic activity and cytotoxicity, and no propensity to induce resistance. NMR and molecular dynamics simulations revealed that both peptides indeed adopted "tadpole-like" conformations. Fluorescence experiments and electron microscopy confirmed the membrane targeting mechanisms of the peptides. Our studies not only lead to the discovery of a series of ultrashort peptides with potent broad-spectrum antimicrobial activities, but also provide a new strategy for rational design of novel "tadpole-like" antimicrobial peptides.
Collapse
Affiliation(s)
- Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wuqiao Jiang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuangli Li
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Yi Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chuyu Xiao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Ying Xie
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xu Zhang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jianguo Li
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
7
|
Dennison SR, Morton LH, Badiani K, Harris F, Phoenix DA. Bacterial susceptibility and resistance to modelin-5. SOFT MATTER 2023; 19:8247-8263. [PMID: 37869970 DOI: 10.1039/d3sm01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 μM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 μM and weakly bound its CM with a Kd of 117.6 μM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Leslie Hg Morton
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Kamal Badiani
- Pepceuticals Limited, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire, LE19 4JS, UK
| | - Frederick Harris
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| |
Collapse
|
8
|
Vinutha AS, Rajasekaran R. Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment. J Comput Aided Mol Des 2023:10.1007/s10822-023-00516-2. [PMID: 37368161 DOI: 10.1007/s10822-023-00516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, Pseudis paradoxa, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with E. coli bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against E. coli bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.
Collapse
Affiliation(s)
- A S Vinutha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India.
| |
Collapse
|
9
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
10
|
He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205301. [PMID: 36563134 PMCID: PMC9951321 DOI: 10.1002/advs.202205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhehao Yang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mengyan Qian
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional FoodsJiangxi Agricultural UniversityNanchangJiangxi Province330045P. R. China
| | - Jinhai Wang
- Department of Colorectal SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| |
Collapse
|
11
|
Niitsu A, Sugita Y. Towards de novo design of transmembrane α-helical assemblies using structural modelling and molecular dynamics simulation. Phys Chem Chem Phys 2023; 25:3595-3606. [PMID: 36647771 DOI: 10.1039/d2cp03972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Computational de novo protein design involves iterative processes consisting of amino acid sequence design, structural modelling and scoring, and design validation by synthesis and experimental characterisation. Recent advances in protein structure prediction and modelling methods have enabled the highly efficient and accurate design of water-soluble proteins. However, the design of membrane proteins remains a major challenge. To advance membrane protein design, considering the higher complexity of membrane protein folding, stability, and dynamic interactions between water, ions, lipids, and proteins is an important task. For introducing explicit solvents and membranes to these design methods, all-atom molecular dynamics (MD) simulations of designed proteins provide useful information that cannot be obtained experimentally. In this review, we first describe two major approaches to designing transmembrane α-helical assemblies, consensus and de novo design. We further illustrate recent MD studies of membrane protein folding related to protein design, as well as advanced treatments in molecular models and conformational sampling techniques in the simulations. Finally, we discuss the possibility to introduce MD simulations after the existing static modelling and screening of design decoys as an additional step for refinement of the design, which considers membrane protein folding dynamics and interactions with explicit membranes.
Collapse
Affiliation(s)
- Ai Niitsu
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
12
|
Lohan S, Konshina AG, Efremov RG, Maslennikov I, Parang K. Structure-Based Rational Design of Small α-Helical Peptides with Broad-Spectrum Activity against Multidrug-Resistant Pathogens. J Med Chem 2023; 66:855-874. [PMID: 36574364 PMCID: PMC9841524 DOI: 10.1021/acs.jmedchem.2c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Indexed: 12/28/2022]
Abstract
A series of small (7-12 mer) amphipathic cationic peptides were designed and synthesized to create short helical peptides with broad-range bactericidal activity and selectivity toward the bacterial cells. The analysis identified a lead 12-mer peptide 8b with broad-spectrum activity against Gram-positive (MIC = 3.1-6.2 μg/mL) and Gram-negative (MIC = 6.2-12.5 μg/mL) bacteria and selectivity toward prokaryotic versus eukaryotic cells (HC50 = 280 μg/mL, >75% cell viability at 150 μg/mL). The rapid membranolytic action of 8b was demonstrated by a calcein dye leakage assay and confirmed using scanning electron microscopy. According to circular dichroism and NMR spectroscopy, the peptides have an irregular spatial structure in water. A lipid bilayer induced an amphipathic helix only in 12-mer peptides, including 8b. Molecular dynamics simulations provided detailed information about the interaction of 8b and its closest analogues with bacterial and mammalian membranes and revealed the roles of particular amino acids in the activity and selectivity of peptides.
Collapse
Affiliation(s)
- Sandeep Lohan
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, 94 01 Jeronimo Road, Irvine, California92618, United States
- AJK
Biopharmaceutical, 5270
California Avenue, Irvine, California92617, United States
| | - Anastasia G. Konshina
- M.M.
Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow117997, Russia
| | - Roman G. Efremov
- M.M.
Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow117997, Russia
- National
Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow101000, Russia
- Moscow Institute
of Physics and Technology (State University), Dolgoprudny, Moscow Oblast141701, Russia
| | - Innokentiy Maslennikov
- Structural
Biology Research Center, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, 9401 Jeronimo Road, Irvine, California92618, United States
| | - Keykavous Parang
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, 94 01 Jeronimo Road, Irvine, California92618, United States
| |
Collapse
|
13
|
An D, Song L, Li Y, Shen L, Miao P, Wang Y, Liu D, Jiang L, Wang F, Yang J. Comprehensive analysis of lysine lactylation in Frankliniella occidentalis. Front Genet 2022; 13:1014225. [PMID: 36386791 PMCID: PMC9663987 DOI: 10.3389/fgene.2022.1014225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Western flower thrips (Frankliniella occidentalis) are among the most important pests globally that transmit destructive plant viruses and infest multiple commercial crops. Lysine lactylation (Klac) is a recently discovered novel post-translational modification (PTM). We used liquid chromatography-mass spectrometry to identify the global lactylated proteome of F. occidentalis, and further enriched the identified lactylated proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). In the present study, we identified 1,458 Klac sites in 469 proteins from F. occidentalis. Bioinformatics analysis showed that Klac was widely distributed in F. occidentalis proteins, and these Klac modified proteins participated in multiple biological processes. GO and KEGG enrichment analysis revealed that Klac proteins were significantly enriched in multiple cellular compartments and metabolic pathways, such as the ribosome and carbon metabolism pathways. Two Klac proteins were found to be involved in the regulation of the TSWV (Tomato spotted wilt virus) transmission in F. occidentalis. This study provides a systematic report and a rich dataset of lactylation in F. occidentalis proteome for potential studies on the Klac protein of this notorious pest.
Collapse
Affiliation(s)
- Dong An
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Pu Miao
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Yujie Wang
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Lianqiang Jiang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| |
Collapse
|
14
|
Malik C, Ghosh S. A mutation in the S6 segment of the KvAP channel changes the secondary structure and alters ion channel activity in a lipid bilayer membrane. Amino Acids 2022; 54:1461-1475. [PMID: 35896819 DOI: 10.1007/s00726-022-03188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
The peptide segment S6 is known to form the inner lining of the voltage-gated K+ channel KvAP (potassium channel of archaea-bacterium, Aeropyrum pernix). In our previous work, it has been demonstrated that S6 itself can form an ion channel on a bilayer lipid membrane (BLM). In the present work, the role of a specific amino acid sequence 'LIG' in determining the secondary structure of S6 has been investigated. For this purpose, 22-residue synthetic peptides named S6-Wild (S6W) and S6-Mutant (S6M) were used. Sequences of these peptides are similar except that the two amino acids isoleucine and glycine of the wild peptide interchanged in the mutant peptide. Channel forming capabilities of both the peptides were checked electro-physiologically on BLM composed of DPhPC and cholesterol. Bilayer electrophysiological experiments showed that the conductance of S6M is higher than that of S6W. Significant differences in the current versus voltage (I-V) plot, open probability, and gating characteristics were observed. Interestingly, two sub-types of channels, S6M Type 1 and Type 2, were identified in S6M differing in conductances and open probability patterns. Circular dichroism (CD) spectroscopy indicated that the secondary structures of the two peptides are different in phosphatidyl choline/asolectin liposomes and 1% SDS detergent. Reduced helicity of S6M was also noticed in membrane mimetic liposomes and 1% SDS detergent micelles. These results are interpreted in view of the difference in hydrophobicity of the two amino acids, isoleucine and glycine. It is concluded that the 'LIG' stretch regulates the structure and pore-forming ability of the S6 peptide.
Collapse
Affiliation(s)
- Chetan Malik
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
15
|
López CA, Zhang X, Aydin F, Shrestha R, Van QN, Stanley CB, Carpenter TS, Nguyen K, Patel LA, Chen D, Burns V, Hengartner NW, Reddy TJE, Bhatia H, Di Natale F, Tran TH, Chan AH, Simanshu DK, Nissley DV, Streitz FH, Stephen AG, Turbyville TJ, Lightstone FC, Gnanakaran S, Ingólfsson HI, Neale C. Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework. J Chem Theory Comput 2022; 18:5025-5045. [PMID: 35866871 DOI: 10.1021/acs.jctc.2c00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Fikret Aydin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rebika Shrestha
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Que N Van
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Christopher B Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Kien Nguyen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lara A Patel
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - De Chen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Violetta Burns
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tyler J E Reddy
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harsh Bhatia
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Francesco Di Natale
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Albert H Chan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Thomas J Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
16
|
Abbas M, Ovais M, Atiq A, Ansari TM, Xing R, Spruijt E, Yan X. Tailoring supramolecular short peptide nanomaterials for antibacterial applications. Coord Chem Rev 2022; 460:214481. [DOI: 10.1016/j.ccr.2022.214481] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Villegas-Coronado D, Guzman-Partida AM, Aispuro-Hernandez E, Vazquez-Moreno L, Huerta-Ocampo JÁ, Sarabia-Sainz JAI, Teran-Saavedra NG, Minjarez-Osorio C, Castro-Longoria R, Maldonado A, Lagarda-Diaz I. Characterization and expression of prohibitin during the mexican bean weevil (Zabrotes subfasciatus, Boheman, 1833) larvae development. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110770. [PMID: 35644320 DOI: 10.1016/j.cbpb.2022.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Prohibitin (PHB) is a highly conserved eukaryotic protein complex involved in multiple cellular processes. In insects, PHB has been identified as a potential target protein to insecticidal molecules acting as a receptor of PF2 insecticidal lectin in the midgut of Zabrotes subfasciatus larvae (bean pest) and Cry protein of Bacillus thuringiensis in Leptinotarsa decemlineata (Colorado potato beetle). This study aimed to characterize the structural features of Z. subfasciatus prohibitin (ZsPHB) by homology modeling and evaluate its expression and tissue localization at different stages of larval development both at the transcript and protein levels. The samples were collected from eggs and larvae of different developmental stages. The immunodetection of ZsPHB was done with anti-PHB1 and confirmed by LC-MS/MS analysis. Gene expression analysis of ZsPHB1 and ZsPHB2 was performed by RT-qPCR, and immunohistochemistry with FITC-labeled anti-PHB1. Results showed that ZsPHBs exhibit distinctive characteristics of the SPFH protein superfamily. The transcript levels suggest a coordinated expression of ZsPHB1 and ZsPHB2 genes, while ZsPHB1 was detected in soluble protein extracts depending on the stage of development. Histological examination showed ZsPHB1 is present in all larval tissues, with an intense fluorescence signal observed at the gut. These results suggest a physiologically important role of PHB during Z. subfasciatus development and show its regulation occurs at the transcriptional and post-transcriptional levels. This is the first characterization of PHB in Z. subfasciatus.
Collapse
Affiliation(s)
| | | | | | - Luz Vazquez-Moreno
- Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, 83304, Mexico
| | | | | | | | - Christian Minjarez-Osorio
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, 83000, Mexico
| | - Reina Castro-Longoria
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, 83000, Mexico
| | - Amir Maldonado
- Departamento de Física, Universidad de Sonora, Hermosillo, 83000, Mexico
| | - Irlanda Lagarda-Diaz
- CONACyT- Departamento de Física, Universidad de Sonora, Hermosillo, 83000, Mexico.
| |
Collapse
|
18
|
Shishir TA, Jannat T, Naser IB. An in-silico study of the mutation-associated effects on the spike protein of SARS-CoV-2, Omicron variant. PLoS One 2022; 17:e0266844. [PMID: 35446879 PMCID: PMC9022835 DOI: 10.1371/journal.pone.0266844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 01/16/2023] Open
Abstract
The emergence of Omicron (B.1.1.529), a new Variant of Concern in the COVID-19 pandemic, while accompanied by the ongoing Delta variant infection, has once again fueled fears of a new infection wave and global health concern. In the Omicron variant, the receptor-binding domain (RBD) of its spike glycoprotein is heavily mutated, a feature critical for the transmission rate of the virus by interacting with hACE2. In this study, we used a combination of conventional and advanced neural network-based in silico approaches to predict how these mutations would affect the spike protein. The results demonstrated a decrease in the electrostatic potentials of residues corresponding to receptor recognition sites, an increase in the alkalinity of the protein, a change in hydrophobicity, variations in functional residues, and an increase in the percentage of alpha-helix structure. Moreover, several mutations were found to modulate the immunologic properties of the potential epitopes predicted from the spike protein. Our next step was to predict the structural changes of the spike and their effect on its interaction with the hACE2. The results revealed that the RBD of the Omicron variant had a higher affinity than the reference. Moreover, all-atom molecular dynamics simulations concluded that the RBD of the Omicron variant exhibits a more dispersed interaction network since mutations resulted in an increased number of hydrophobic interactions and hydrogen bonds with hACE2.
Collapse
Affiliation(s)
- Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
- Rangamati General Hospital, Chattogram, Bangladesh
| | - Taslimun Jannat
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Iftekhar Bin Naser
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
19
|
Chen J, Tieleman DP, Liang Q. Effects of Lid Domain Structural Changes on the Interactions between Peripheral Myelin Protein 2 and a Lipid Bilayer. J Phys Chem Lett 2022; 13:991-996. [PMID: 35060724 DOI: 10.1021/acs.jpclett.1c03961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral myelin protein 2 (P2) plays an important role in the stacking of the myelin membrane and lipid transport. Here we investigate the interactions between P2 and a model myelin membrane using molecular dynamics simulations, focusing on the effect of the L27D mutation and conformational changes in the α2-helix in the lid domain of P2. The L27D mutation weakens the binding of the lid domain of P2 on the membrane. The α2-helix is either folded or unfolded on the membrane. Compared with the α2-helix structure in water, the membrane stabilizes the structure of the α2-helix, whereas the unfolding of the α2-helix reduces the binding affinity of P2 on the membrane. These findings reveal the energetics of the mutant and the structural changes of P2 on the interactions between the protein and the lipid bilayer and help us to understand the microscopic mechanism of the formation of the myelin sheath structure and some neurological disorders.
Collapse
Affiliation(s)
- Jinyu Chen
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - D Peter Tieleman
- Centre for Molecular Simulations and Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
20
|
Carten JD, Greseth M, Traktman P. Structure-Function Analysis of Two Interacting Vaccinia Proteins That Are Critical for Viral Morphogenesis: L2 and A30.5. J Virol 2022; 96:e0157721. [PMID: 34730390 PMCID: PMC8791271 DOI: 10.1128/jvi.01577-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
An enduring mystery in poxvirology is the mechanism by which virion morphogenesis is accomplished. A30.5 and L2 are two small regulatory proteins that are essential for this process. Previous studies have shown that vaccinia A30.5 and L2 localize to the ER and interact during infection, but how they facilitate morphogenesis is unknown. To interrogate the relationship between A30.5 and L2, we generated inducible complementing cell lines (CV1-HA-L2; CV1-3xFLAG-A30.5) and deletion viruses (vΔL2; vΔA30.5). Loss of either protein resulted in a block in morphogenesis and a significant (>100-fold) decrease in infectious viral yield. Structure-function analysis of L2 and A30.5, using transient complementation assays, identified key functional regions in both proteins. A clustered charge-to-alanine L2 mutant (L2-RRD) failed to rescue a vΔL2 infection and exhibits a significantly retarded apparent molecular weight in vivo (but not in vitro), suggestive of an aberrant posttranslational modification. Furthermore, an A30.5 mutant with a disrupted putative N-terminal α-helix failed to rescue a vΔA30.5 infection. Using our complementing cell lines, we determined that the stability of A30.5 is dependent on L2 and that wild-type L2 and A30.5 coimmunoprecipitate in the absence of other viral proteins. Further examination of this interaction, using wild-type and mutant forms of L2 or A30.5, revealed that the inability of mutant alleles to rescue the respective deletion viruses is tightly correlated with a failure of L2 to stabilize and interact with A30.5. L2 appears to function as a chaperone-like protein for A30.5, ensuring that they work together as a complex during viral membrane biogenesis. IMPORTANCE Vaccinia virus is a large, enveloped DNA virus that was successfully used as the vaccine against smallpox. Vaccinia continues to be an invaluable biomedical research tool in basic research and in gene therapy vector and vaccine development. Although this virus has been studied extensively, the complex process of virion assembly, termed morphogenesis, still puzzles the field. Our work aims to better understand how two small viral proteins that are essential for viral assembly, L2 and A30.5, function during early morphogenesis. We show that A30.5 requires L2 for stability and that these proteins interact in the absence of other viral proteins. We identify regions in each protein required for their function and show that mutations in these regions disrupt the interaction between L2 and A30.5 and fail to restore virus viability.
Collapse
Affiliation(s)
- Juliana Debrito Carten
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Greseth
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
21
|
de Souza CM, da Silva ÁP, Júnior NGO, Martínez OF, Franco OL. Peptides as a therapeutic strategy against Klebsiella pneumoniae. Trends Pharmacol Sci 2022; 43:335-348. [DOI: 10.1016/j.tips.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
|
22
|
Sultana A, Luo H, Ramakrishna S. Antimicrobial Peptides and Their Applications in Biomedical Sector. Antibiotics (Basel) 2021; 10:1094. [PMID: 34572676 PMCID: PMC8465024 DOI: 10.3390/antibiotics10091094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
In a report by WHO (2014), it was stated that antimicrobial resistance is an arising challenge that needs to be resolved. This resistance is a critical issue in terms of disease or infection treatment and is usually caused due to mutation, gene transfer, long-term usage or inadequate use of antimicrobials, survival of microbes after consumption of antimicrobials, and the presence of antimicrobials in agricultural feeds. One of the solutions to this problem is antimicrobial peptides (AMPs), which are ubiquitously present in the environment. These peptides are of concern due to their special mode of action against a wide spectrum of infections and health-related problems. The biomedical field has the highest need of AMPs as it possesses prominent desirable activity against HIV-1, skin cancer, breast cancer, in Behcet's disease treatment, as well as in reducing the release of inflammatory cells such as TNFα, IL-8, and IL-1β, enhancing the production of anti-inflammatory cytokines such as IL-10 and GM-CSF, and in wound healing properties. This review has highlighted all the major functions and applications of AMPs in the biomedical field and concludes the future potential of AMPs.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
23
|
Assessing the Potential of the Terrestrial Cyanobacterium Anabaena minutissima for Controlling Botrytis cinerea on Tomato Fruits. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyanobacteria are oxygenic phototrophs that have an essential role in soil N2 fixation, fertility, and water retention. Cyanobacteria are also natural sources of bioactive metabolites beneficial to improve plant vigor and potentially active against fungal plant pathogens. Therefore, we studied the antifungal activity of water extract (WE) and phycobiliproteins (PBPs) from Anabaena minutissima strain BEA 0300B against the fungal plant pathogen Botrytis cinerea on tomato fruits and in vitro. The water extract and PBPs were characterized by using FT-IR and FT-Raman spectroscopies. Both water extract (5 mg/mL) and PBPs (ranged from 0.3 to 4.8 mg/mL) reduced disease incidence and disease severity on tomato fruits and mycelium growth and colony forming units in vitro. For mycelium growth, a linear PBP dose-response was found. Tomato fruits were also characterized by FT-IR and FT-Raman spectroscopies in order to evaluate structural modifications induced by pathogen and PBP treatment. PBPs preserved cutin and pectin structures by pathogen challenge. In conclusion, A. minutissima can be considered a potential tool for future large-scale experiments for plant disease control.
Collapse
|
24
|
Taylor A, Warner M, Mendoza C, Memmott C, LeCheminant T, Bailey S, Christensen C, Keller J, Suli A, Mizrachi D. Chimeric Claudins: A New Tool to Study Tight Junction Structure and Function. Int J Mol Sci 2021; 22:ijms22094947. [PMID: 34066630 PMCID: PMC8124314 DOI: 10.3390/ijms22094947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
The tight junction (TJ) is a structure composed of multiple proteins, both cytosolic and membranal, responsible for cell–cell adhesion in polarized endothelium and epithelium. The TJ is intimately connected to the cytoskeleton and plays a role in development and homeostasis. Among the TJ’s membrane proteins, claudins (CLDNs) are key to establishing blood–tissue barriers that protect organismal physiology. Recently, several crystal structures have been reported for detergent extracted recombinant CLDNs. These structural advances lack direct evidence to support quaternary structure of CLDNs. In this article, we have employed protein-engineering principles to create detergent-independent chimeric CLDNs, a combination of a 4-helix bundle soluble monomeric protein (PDB ID: 2jua) and the apical—50% of human CLDN1, the extracellular domain that is responsible for cell–cell adhesion. Maltose-binding protein-fused chimeric CLDNs (MBP-CCs) used in this study are soluble proteins that retain structural and functional aspects of native CLDNs. Here, we report the biophysical characterization of the structure and function of MBP-CCs. MBP-fused epithelial cadherin (MBP-eCAD) is used as a control and point of comparison of a well-characterized cell-adhesion molecule. Our synthetic strategy may benefit other families of 4-α-helix membrane proteins, including tetraspanins, connexins, pannexins, innexins, and more.
Collapse
|
25
|
Fujiwara K, Kitaura M, Tsunei A, Kusabuka H, Ogaki E, Okada N. Structure of the Signal Transduction Domain in Second-Generation CAR Regulates the Input Efficiency of CAR Signals. Int J Mol Sci 2021; 22:ijms22052476. [PMID: 33804441 PMCID: PMC7957710 DOI: 10.3390/ijms22052476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
T cells that are genetically engineered to express chimeric antigen receptor (CAR) have a strong potential to eliminate tumor cells, yet the CAR-T cells may also induce severe side effects due to an excessive immune response. Although optimization of the CAR structure is expected to improve the efficacy and toxicity of CAR-T cells, the relationship between CAR structure and CAR-T cell functions remains unclear. Here, we constructed second-generation CARs incorporating a signal transduction domain (STD) derived from CD3ζ and a 2nd STD derived from CD28, CD278, CD27, CD134, or CD137, and investigated the impact of the STD structure and signaling on CAR-T cell functions. Cytokine secretion of CAR-T cells was enhanced by 2nd STD signaling. T cells expressing CAR with CD278-STD or CD137-STD proliferated in an antigen-independent manner by their STD tonic signaling. CAR-T cells incorporating CD28-STD or CD278-STD between TMD and CD3ζ-STD showed higher cytotoxicity than first-generation CAR or second-generation CARs with other 2nd STDs. The potent cytotoxicity of these CAR-T cells was not affected by inhibiting the 2nd STD signals, but was eliminated by placing the STDs after the CD3ζ-STD. Our data highlighted that CAR activity was affected by STD structure as well as by 2nd STD signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Cell Proliferation
- Female
- Humans
- Immunotherapy, Adoptive
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/therapy
- Mice
- Mice, Inbred C57BL
- Receptors, Chimeric Antigen/chemistry
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Sequence Homology, Amino Acid
- Signal Transduction
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
Collapse
|
26
|
Preliminary Study on the Activity of Phycobiliproteins against Botrytis cinerea. Mar Drugs 2020; 18:md18120600. [PMID: 33260719 PMCID: PMC7759837 DOI: 10.3390/md18120600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
Phycobiliproteins (PBPs) are proteins of cyanobacteria and some algae such as rhodophytes. They have antimicrobial, antiviral, antitumor, antioxidative, and anti-inflammatory activity at the human level, but there is a lack of knowledge on their antifungal activity against plant pathogens. We studied the activity of PBPs extracted from Arthrospiraplatensis and Hydropuntiacornea against Botrytiscinerea, one of the most important worldwide plant-pathogenic fungi. PBPs were characterized by using FT-IR and FT-Raman in order to investigate their structures. Their spectra differed in the relative composition in the amide bands, which were particularly strong in A. platensis. PBP activity was tested on tomato fruits against gray mold disease, fungal growth, and spore germination at different concentrations (0.3, 0.6, 1.2, 2.4, and 4.8 mg/mL). Both PBPs reduced fruit gray mold disease. A linear dose–response relationship was observed for both PBPs against disease incidence and H. cornea against disease severity. Pathogen mycelial growth and spore germination were reduced significantly by both PBPs. In conclusion, PBPs have the potential for being also considered as natural compounds for the control of fungal plant pathogens in sustainable agriculture.
Collapse
|
27
|
Gao M, Zhang N, Liang W. Systematic Analysis of Lysine Lactylation in the Plant Fungal Pathogen Botrytis cinerea. Front Microbiol 2020; 11:594743. [PMID: 33193272 PMCID: PMC7649125 DOI: 10.3389/fmicb.2020.594743] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Lysine lactylation (Kla) is a newly discovered histone post-translational modification (PTM), playing important roles in regulating transcription in macrophages. However, the extent of this PTM in non-histone proteins remains unknown. Here, we report the first proteomic survey of this modification in Botrytis cinerea, a destructive necrotrophic fungal pathogen distributed worldwide. After a global lysine lactylome analysis using LC-MS/MS, we identified 273 Kla sites in 166 proteins, of which contained in 4 types of modification motifs. Our results show that the majority of lactylated proteins were distributed in nucleus (36%), mitochondria (27%), and cytoplasm (25%). The identified proteins were found to be involved in diverse cellular processes. Most strikingly, Kla was found in 43 structural constituent proteins of ribosome, indicating an impact of Kla in protein synthesis. Moreover, 12 lactylated proteins participated in fungal pathogenicity, suggesting a potential role for Kla in this process. Protein interaction network analysis suggested that a mass of protein interactions are regulated by lactylation. The combined data sets represent the first report of the lactylome of B. cinerea and provide a good foundation for further explorations of Kla in plant fungal pathogens.
Collapse
Affiliation(s)
- Mingming Gao
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Zhang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
28
|
Designing minimalist membrane proteins. Biochem Soc Trans 2020; 47:1233-1245. [PMID: 31671181 PMCID: PMC6824673 DOI: 10.1042/bst20190170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The construction of artificial membrane proteins from first principles is of fundamental interest and holds considerable promise for new biotechnologies. This review considers the potential advantages of adopting a strictly minimalist approach to the process of membrane protein design. As well as the practical benefits of miniaturisation and simplicity for understanding sequence-structure-function relationships, minimalism should also support the abstract conceptualisation of membrane proteins as modular components for synthetic biology. These ideas are illustrated with selected examples that focus upon α-helical membrane proteins, and which demonstrate how such minimalist membrane proteins might be integrated into living biosystems.
Collapse
|
29
|
Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183134. [PMID: 31738898 DOI: 10.1016/j.bbamem.2019.183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
The transmembrane helices of membrane proteins often are flanked by interfacial charged or aromatic residues that potentially help to anchor the membrane-spanning protein. For isolated single-span helices, the interfacial residues may be especially important for stabilizing particular tilted transmembrane orientations. The peptide RWALP23 (acetyl-GR2ALW(LA)6LWLAR22A-amide) has been employed to investigate the interplay between interfacial arginines and tryptophans. Here we replace the tryptophans of RWALP23 with A5 and A19, to investigate arginines alone with respect to helix fraying and orientation in varying lipid bilayers. Deuterated alanines incorporated into the central sequence allow the orientation and stability of the core helix to be assessed by means of solid -state 2H NMR in bilayers of DOPC, DMPC and DLPC. The helix tilt from the bilayer normal is found to increase slightly when R2 and R22 are present, and increases still further when the tryptophans W5 and W19 are replaced by alanines. The extent of helix dynamic averaging remains low in all cases. The preferred helix azimuthal rotation is essentially constant for all of the helices in each of the lipid membranes considered here. The alanines located outside of the core region of the peptide are sensitive to helical integrity. The new alanines, A5 and A19, therefore, provide new information about the length of the core helix and the onset of unraveling of the terminals. Residue A19 remains essentially on the central helix in each lipid membrane, while residues A3, A5 and A21 deviate from the core helix to an extent that depends on the membrane thickness. Differential unraveling of the two ends to expose peptide backbone groups for hydrogen bonding therefore acts together with specific interfacial side chains to stabilize a transmembrane helix.
Collapse
|
30
|
Liang Y, Zhang X, Yuan Y, Bao Y, Xiong M. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomater Sci 2020; 8:6858-6866. [PMID: 32815940 DOI: 10.1039/d0bm00801j] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Helix is a two-edged sword for AMPs, and conformational modulation of AMPs can control the balance between antimicrobial activity and toxicity.
Collapse
Affiliation(s)
- Yangbin Liang
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Xinshuang Zhang
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Yueling Yuan
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Yan Bao
- Medical Research Center
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation
- Sun Yat-sen Memorial Hospital
- Sun Yat-sen University
- Guangzhou
| | - Menghua Xiong
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
31
|
Lipinski K, McKay MJ, Afrose F, Martfeld AN, Koeppe RE, Greathouse DV. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes. Chembiochem 2019; 20:2784-2792. [PMID: 31150136 DOI: 10.1002/cbic.201900282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Membrane proteins are essential for many cell processes yet are more difficult to investigate than soluble proteins. Charged residues often contribute significantly to membrane protein function. Model peptides such as GWALP23 (acetyl-GGALW5 LAL8 LALALAL16 ALW19 LAGA-amide) can be used to characterize the influence of specific residues on transmembrane protein domains. We have substituted R8 and R16 in GWALP23 in place of L8 and L16, equidistant from the peptide center, and incorporated specific 2 H-labeled alanine residues within the central sequence for detection by solid-state 2 H NMR spectroscopy. The resulting pattern of [2 H]Ala quadrupolar splitting (Δνq ) magnitudes indicates the core helix for R8,16 GWALP23 is significantly tilted to give a similar transmembrane orientation in thinner bilayers with either saturated C12:0 or C14:0 acyl chains (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)) or unsaturated C16:1 Δ9 cis acyl chains. In bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC; C18:1 Δ9 cis) multiple orientations are indicated, whereas in longer, unsaturated 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (DEiPC; C20:1 Δ11 cis) bilayers, the R8,16 GWALP23 helix adopts primarily a surface orientation. The inclusion of 10-20 mol % cholesterol in DOPC bilayers drives more of the R8,16 GWALP23 helix population to the membrane surface, thereby allowing both charged arginines access to the interfacial lipid head groups. The results suggest that hydrophobic thickness and cholesterol content are more important than lipid saturation for the arginine peptide dynamics and helix orientation in lipid membranes.
Collapse
Affiliation(s)
- Karli Lipinski
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| | - Matthew J McKay
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| | - Fahmida Afrose
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| | - Ashley N Martfeld
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA.,Present address: Department Department of Neurobiology, Duke University Medical Center, 311 Research Drive, Durham, NC, 27710, USA
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, AR, 72701, USA
| |
Collapse
|
32
|
McKay MJ, Fu R, Greathouse DV, Koeppe RE. Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide. J Phys Chem B 2019; 123:8034-8047. [PMID: 31483653 DOI: 10.1021/acs.jpcb.9b06034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmembrane domains of membrane proteins sometimes contain conserved charged or ionizable residues which may be essential for protein function and regulation. This work examines the molecular interactions of single Arg residues within a highly dynamic transmembrane peptide helix. To this end, we have modified the GW4,20ALP23 (acetyl-GGAW4(AL)7AW20AGA-amide) model peptide framework to incorporate Arg residues near the center of the peptide. Peptide helix formation, orientation and dynamics were analyzed by means of solid-state NMR spectroscopy to monitor specific 2H- or 15N-labeled residues. GW4,20ALP23 itself adopts a tilted orientation within lipid bilayer membranes. Nevertheless, the GW4,20ALP23 helix exhibits moderate to high dynamic averaging of NMR observables, such as 2H quadrupolar splittings or 15N-1H dipolar couplings, due to competition between the interfacial Trp residues on opposing helix faces. Here we examine how the helix dynamics are impacted by the introduction of a single Arg residue at position 12 or 14. Residue R14 restricts the helix to low dynamic averaging and a well-defined tilt that varies inversely with the lipid bilayer thickness. To compensate for the dominance of R14, the competing Trp residues cause partial unwinding of the helix at the C-terminal. By contrast, R12GW4,20ALP23 exits the DOPC bilayer to an interfacial surface-bound location. Interestingly, multiple orientations are exhibited by a single residue, Ala-9. Quadrupolar splittings generated by 2H-labeled residues A3, A5, A7, and A9 do not fit to the α-helical quadrupolar wave plot defined by residues A11, A13, A15, A17, A19, and A21. The discontinuity at residue A9 implicates a helical swivel distortion and an apparent 310-helix involving the N-terminal residues preceding A11. These molecular features suggest that, while arginine residues are prominent factors controlling transmembrane helix dynamics, the influence of interfacial tryptophan residues cannot be ignored.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University , Tallahassee , Florida 32310 , United States
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| |
Collapse
|
33
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
34
|
McKay MJ, Martfeld AN, De Angelis AA, Opella SJ, Greathouse DV, Koeppe RE. Control of Transmembrane Helix Dynamics by Interfacial Tryptophan Residues. Biophys J 2018; 114:2617-2629. [PMID: 29874612 PMCID: PMC6129553 DOI: 10.1016/j.bpj.2018.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/12/2023] Open
Abstract
Transmembrane protein domains often contain interfacial aromatic residues, which may play a role in the insertion and stability of membrane helices. Residues such as Trp or Tyr, therefore, are often found situated at the lipid-water interface. We have examined the extent to which the precise radial locations of interfacial Trp residues may influence peptide helix orientation and dynamics. To address these questions, we have modified the GW5,19ALP23 (acetyl-GGALW5(LA)6LW19LAGA-[ethanol]amide) model peptide framework to relocate the Trp residues. Peptide orientation and dynamics were analyzed by means of solid-state nuclear magnetic resonance (NMR) spectroscopy to monitor specific 2H- and 15N-labeled residues. GW5,19ALP23 adopts a defined, tilted orientation within lipid bilayer membranes with minimal evidence of motional averaging of NMR observables, such as 2H quadrupolar or 15N-1H dipolar splittings. Here, we examine how peptide dynamics are impacted by relocating the interfacial Trp (W) residues on both ends and opposing faces of the helix, for example by a 100° rotation on the helical wheel for positions 4 and 20. In contrast to GW5,19ALP23, the modified GW4,20ALP23 helix experiences more extensive motional averaging of the NMR observables in several lipid bilayers of different thickness. Individual and combined Gaussian analyses of the 2H and 15N NMR signals confirm that the extent of dynamic averaging, particularly rotational "slippage" about the helix axis, is strongly coupled to the radial distribution of the interfacial Trp residues as well as the bilayer thickness. Additional 2H labels on alanines A3 and A21 reveal partial fraying of the helix ends. Even within the context of partial unwinding, the locations of particular Trp residues around the helix axis are prominent factors for determining transmembrane helix orientation and dynamics within the lipid membrane environment.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Ashley N Martfeld
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas.
| |
Collapse
|