1
|
Aghajanshakeri S, Salmanmahiny A, Aghajanshakeri S, Babaei A, Alishahi F, Babayani E, Shokrzadeh M. Modulatory effect of amifostine (WR-1065) against genotoxicity and oxidative stress induced by methotrexate in human umbilical vein endothelial cells (HUVECs). Toxicol Mech Methods 2023; 33:755-765. [PMID: 37537746 DOI: 10.1080/15376516.2023.2238069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Amifostine is used in chemotherapy and radiotherapy as a cytoprotective adjuvant alongside DNA-binding chemotherapeutic agents. It functions by reducing free radicals and detoxifying harmful metabolites. Methotrexate, as an antimetabolite drug has been considered for treating various cancers and autoimmune diseases. However, the cytotoxic effects of methotrexate extend beyond tumor cells to crucial organs, including the heart. This study applied the HUVEC cell line as a reference in vitro model for researching the characteristics of vascular endothelium and cardiotoxicity. The current study aimed to assess amifostine's potential cytoprotective properties against methotrexate-induced cellular damage. Cytotoxicity was measured using the MTT assay. Apoptotic rates were evaluated by Annexin V-FITC/PI staining via flow cytometry. The genoprotective effect of amifostine was determined using the comet assay. Cells were exposed to various amifostine doses (10-200 μg/mL) and methotrexate (2.5 μM) in pretreatment culture condition. Methotrexate at 2.5 μM revealed cytotoxicity, apoptosis, oxidative stress and genotoxicity while highlighting amifostine's cyto/geno protective properties on HUVECs. Amifostine significantly decreased the levels of ROS and LPO while preserving the status of GSH and SOD activity. Furthermore, it inhibited genotoxicity (tail length, %DNA in tail, and tail moment) in the comet assay. Amifostine markedly attenuated methotrexate-induced apoptotic cell death (early and late apoptotic rates). These findings convey that amifostine can operate as a cytoprotectant agent.
Collapse
Affiliation(s)
- Shaghayegh Aghajanshakeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Salmanmahiny
- Department of Toxicology and Pharmacology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahin Aghajanshakeri
- Biological Oncology (Orchid Pharmed) Department, CinnaGen Pharmaceutical Company, Tehran, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farhad Alishahi
- Department of Toxicology and Pharmacology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Babayani
- Department of Toxicology and Pharmacology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Guglielmelli A, Bartucci R, Rizzuti B, Palermo G, Guzzi R, Strangi G. The interaction of tryptophan enantiomers with model membranes is modulated by polar head type and physical state of phospholipids. Colloids Surf B Biointerfaces 2023; 224:113216. [PMID: 36848783 DOI: 10.1016/j.colsurfb.2023.113216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The mutual influence of chiral bioactive molecules and supramolecular assemblies is currently being studied in many research fields, including medical-pharmaceutical applications. Model membranes of phospholipids, such as the zwitterionic dipalmitoylphosphatidylcholine (DPPC) and the anionic dipalmitoylphosphatidylglycerol (DPPG), interact with a variety of chiral compounds that include amino acids. In this work, the interaction of tryptophan enantiomers, L-Trp and D-Trp, on DPPC and DPPG bilayers was investigated by using differential scanning calorimetry, attenuated total reflectance-Fourier transform infrared and spin-label electron spin resonance spectroscopies as well as molecular docking simulations. The results show that Trp enantiomers slightly perturb the bilayer thermotropic phase transitions. For both membranes, O atoms in the carbonyl groups have a propensity to act as acceptors of a (weak) hydrogen bond. The Trp chiral forms also promote formation of hydrogen bonds and/or hydration in the PO2- moiety of the phosphate group, especially for the DPPC bilayer. In contrast, they interact more closely with the glycerol group of DPPG polar head. Only for DPPC bilayers, both enantiomers increase the packing of the first hydrocarbon chain segments for temperatures through the gel state, whereas they do not affect the lipid chain order and mobility in the fluid state. The results are consistent with a Trp association in the upper region of the bilayers without permeation in the innermost hydrophobic region. The findings suggest that neutral and anionic lipid bilayers are differently sensitive to amino acid chirality.
Collapse
Affiliation(s)
- Alexa Guglielmelli
- Department of Physics, NLHT Lab., University of Calabria, 87036 Rende, Italy; CNR NANOTEC-Institute of Nanotechnology, SS Rende (CS), 87036 Rende, Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy.
| | - Bruno Rizzuti
- CNR NANOTEC-Institute of Nanotechnology, SS Rende (CS), 87036 Rende, Italy; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain
| | - Giovanna Palermo
- Department of Physics, NLHT Lab., University of Calabria, 87036 Rende, Italy; CNR NANOTEC-Institute of Nanotechnology, SS Rende (CS), 87036 Rende, Italy
| | - Rita Guzzi
- CNR NANOTEC-Institute of Nanotechnology, SS Rende (CS), 87036 Rende, Italy; Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Strangi
- Department of Physics, NLHT Lab., University of Calabria, 87036 Rende, Italy; CNR NANOTEC-Institute of Nanotechnology, SS Rende (CS), 87036 Rende, Italy; Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH 44106 USA
| |
Collapse
|
3
|
Xie B, Yang S. Effect of Fluoxetine on the Surface Behavior of the Lipid Monolayers at Different Surface Pressures. J Membr Biol 2023; 256:43-50. [PMID: 35907027 DOI: 10.1007/s00232-022-00249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Fluoxetine (FLX), used in the clinic to treat depression, is a well-known cationic amphiphilic antidepressant. However, there is a lack of research on the effect of FLX on the surface behavior of lipid monolayers under different surface pressures. In this study, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/CHOL (DPPC/POPC/CHOL) monolayers were prepared via the Langmuir method, and FLX was added to these monolayers under various surface pressures. The effect of FLX on the surface behavior of DPPC/POPC/CHOL monolayers under various surface pressures was studied using a combination of surface pressure-area isotherms, compressibility modulus-surface pressure curves, and atomic force microscope (AFM). The results showed that the effect of FLX on the lipid monolayers was different under different surface pressures. The interaction between FLX and lipid molecules was weak under low surface pressures, and FLX could easily intercalate between the lipid molecules to inhibit monolayer phase transition. The interaction between FLX and lipid molecules was enhanced and FLX tended to self-aggregate to reduce the monolayer stability when the surface pressure was high. This study lays the foundation for further studies on the interaction between FLX and lipid monolayers.
Collapse
Affiliation(s)
- Bin Xie
- School of Physics and Electrical Engineering, Kashi University, Kashi, 844009, People's Republic of China.
| | - Shumin Yang
- School of Physics and Electrical Engineering, Kashi University, Kashi, 844009, People's Republic of China
| |
Collapse
|
4
|
Sahin I, Ceylan Ç, Bayraktar O. Ruscogenin interacts with DPPC and DPPG model membranes and increases the membrane fluidity: FTIR and DSC studies. Arch Biochem Biophys 2023; 733:109481. [PMID: 36522815 DOI: 10.1016/j.abb.2022.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Ruscogenin, a kind of steroid saponin, has been shown to have significant anti-oxidant, anti-inflammatory, and anti-thrombotic characteristics. Furthermore, it has the potential to be employed as a medicinal medication to treat a variety of acute and chronic disorders. The interaction of a drug molecule with cell membranes can help to elucidate its system-wide protective and therapeutic effects, and it's also important for its pharmacological activity. The molecular mechanism by which ruscogenin affects membrane architecture is still a mystery. Ruscogenin's interaction with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) was studied utilizing two non-invasive approaches, including: Fourier Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry. Ruscogenin caused considerable alterations in the phase transition profile, order, dynamics and hydration state of head groups and glycerol backbone of DPPC and DPPG MLVs at all concentrations. The DSC results indicated that the presence of ruscogenin decreased the main phase transition temperature (Tm) and enthalpy (ΔH) values of both membranes and increased half height width of the main transition (ΔT1/2). The FTIR results demonstrated that all concentrations (1, 3, 6, 9, 15, 24 and 30 mol percent) of ruscogenin disordered the DPPC MLVs both in the gel and liquid crystalline phases while it increased the order of DPPG MLVs in the liquid crystalline phase. Moreover, ruscogenin caused an increase in the dynamics of DPPC and DPPG MLVs in both phases. Additionally, it enhanced the hydration of the head groups of lipids and the surrounding water molecules implying ruscogenin to interact strongly with both zwitterionic and charged model membranes.
Collapse
Affiliation(s)
- Ipek Sahin
- Department of Physics, Faculty of Science, Ege University, 35100, Bornova, İzmir, Turkey.
| | - Çağatay Ceylan
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, İzmir, Turkey
| |
Collapse
|
5
|
Civelek N, Bilge D. Investigating the Molecular Effects of Curcumin by Using Model Membranes. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09710-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Liposomes as biomembrane models: Biophysical techniques for drug-membrane interaction studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Gok S, Kuzmenko O, Babinskyi A, Severcan F. Vitamin E Derivative with Modified Side Chain Induced Apoptosis by Modulating the Cellular Lipids and Membrane Dynamics in MCF7 Cells. Cell Biochem Biophys 2021; 79:271-287. [PMID: 33442824 DOI: 10.1007/s12013-020-00961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
The vitamin E derivative with side chain modification (TC6OAc) has been shown to possess anticancer activity in our earlier in vivo studies. It was hypothesized that, as Vitamin E (VE) and VE derivative are fat soluble lipophilic molecules, they exert their function by modulating the lipid metabolism and related pathways. This study aimed to evaluate the cellular impact of this VE derivative (2,5,7,8-Tetramethyl-2-(4'-Methyl-3'-Pentenyl)-6-Acetoxy Chromane-TC6OH), using α-tocopherol as a reference compound throughout the experiments. Their effects on the cellular metabolism, the biophysical properties of cellular lipids and the functional characteristics of cells were monitored in human estrogen receptor (ER) positive breast cancer cells. It has been documented that TC6OH treatment induces tumor cell apoptosis by dissipating the mitochondrial membrane potential, modulating the lipid, transportation and degradation as well as downregulating certain anti-apoptotic and growth factor related proteins. Due to resistance of ER positive cells to the established therapies, the findings of this study are of translational value.
Collapse
Affiliation(s)
- Seher Gok
- The Scientific and Technological Research Council of Turkey, Ankara, Turkey
| | - Oleksandr Kuzmenko
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Andrii Babinskyi
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Feride Severcan
- Faculty of Medicine, Department of Biophysics, Altinbas University, Istanbul, Turkey.
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
8
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Alp G, Oztas Y. Facile L-Glutamine delivery to erythrocytes via DOPC-DPPG mixed liposomes. J Liposome Res 2021; 31:409-419. [PMID: 33944651 DOI: 10.1080/08982104.2021.1918152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sickle cell disease (SCD) is a mortal erythrocyte-based disease which is hard to treat effectively. Development of a treatment method that can prevent deoxygenation of erythrocytes or reduce the oxidative stress of sickle erythrocytes is one of the important issues towards SCD. Among a wide variety of potential drug carriers, liposomes are advantageous and preferable with their easy preparation and biocompatibility. In this study, L-Glutamine (Gln) loaded liposomes were prepared with 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-Dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG). Liposomes were characterized via zeta potential, size measurements, differential scanning calorimetry, Fourier Transform Infra-red Spectroscopy and they were visualized via transmission electron microscopy and scanning electron microscopy. Effect of the encapsulated amount of Gln was investigated by encapsulating Gln at three different concentrations (i.e0.20 mM, 40 mM and 60 mM). Drug encapsulation and release studies were implemented with high pressure liquid chromatography (HPLC). The encapsulation efficiency of Gln was determined to be the higher than the ones reported in the literature: 83.6%, 87.1% and 84.9% for 20 mM, 40 mM and 60 mM Gln, respectively. It was found that after 6 hours, liposomes loaded with 60 mM of Gln had released 45.7% of Gln. Optical microscopy images of the erythrocytes after 3 hours of incubation and haemolysis measurements proved that presence of liposomes did not cause any structural changes on the erythrocyte shape. Overall, it was concluded that L-Gln loaded PC/PG liposomes provide promising results in terms of developing a new drug delivery platform for SCD.
Collapse
Affiliation(s)
- Gokce Alp
- Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Yesim Oztas
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Andrade S, Loureiro JA, Pereira MC. Green tea extract-biomembrane interaction study: The role of its two major components, (-)-epigallocatechin gallate and (-)-epigallocatechin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183476. [PMID: 32946887 DOI: 10.1016/j.bbamem.2020.183476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
The interaction of antioxidants with biological membranes is closely related with their efficacy to inhibit the lipid peroxidation, the cause of several pathologies including cancer, neurodegenerative and cardiovascular disorders. Despite being pointed as a promising antioxidant agent by some authors, the anti-lipid peroxidation of green tea extract (GTE) has not aroused consensus among the scientific community. Since the interaction of drugs with biological membranes plays a key role on their therapeutic activity, this study aims to evaluate the interaction of GTE with liposomes as in vitro biomembrane models composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine phospholipids in the absence and presence of cholesterol (CHOL) (15 mol%). The affinity of GTE and its main components (-)-epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) to the lipid bilayer, their membrane location as well as their effect on the membrane fluidity was investigated by diverse biophysical techniques. Derivative spectrophotometry results proved that GTE has high affinity to the membrane by establishing hydrophobic interactions with the non-polar region of phospholipids and electrostatic interactions with the polar phospholipid heads. Fluorescence and dynamic light scattering data confirm that GTE is located in both hydrophobic and hydrophilic regions of the lipid membrane, therefore affecting the structure of the biomembrane by increasing its fluidity. However, the increased stiffness and organization of the lipid bilayer caused by CHOL significantly affected the interaction of GTE with the membrane. Moreover, the obtained findings suggest a direct contribution of EGCG and EGC on the GTE-membrane interaction.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
11
|
Xie B, Hao C, Zhang Z, Sun R. Studies on the interfacial behavior of DPPC/DPPG mixed monolayers in the presence of fluoxetine. J Mol Model 2020; 26:167. [PMID: 32514762 DOI: 10.1007/s00894-020-04433-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
In this study, the interfacial behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPC/DPPG) mixed monolayers with fluoxetine (FLX) in the subphase was investigated by a combination of the Langmuir-Blodgett technique and atomic force microscopy (AFM). It was found that DPPC/DPPG mixed monolayers showed different interfacial behaviors before and after addition of FLX in the subphase. The electrostatic interaction between FLX and lipids molecules destroys the homogeneity of the mixed monolayers and changes the arrangement of lipids molecules at the interface after addition of FLX in the subphase, thereby leading to an increase of compressibility and miscibility and a decrease in the stability of the mixed monolayers. The surface morphology of the mixed monolayers observed by AFM was different between without and with FLX in the subphase, indicating the penetration of FLX into the mixed monolayers. The present study has provided detailed information for further understanding the interactions of drugs with membrane lipids in other lipid monolayers.
Collapse
Affiliation(s)
- Bin Xie
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Ziyi Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| |
Collapse
|
12
|
Wang C, Xie J, Dong X, Mei L, Zhao M, Leng Z, Hu H, Li L, Gu Z, Zhao Y. Clinically Approved Carbon Nanoparticles with Oral Administration for Intestinal Radioprotection via Protecting the Small Intestinal Crypt Stem Cells and Maintaining the Balance of Intestinal Flora. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906915. [PMID: 32187855 DOI: 10.1002/smll.201906915] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The exploration of an old drug for new biomedical applications has an absolute predominance in shortening the clinical conversion time of drugs for clinical application. In this work, carbon nanoparticles suspension injection (CNSI), the first clinically approved carbon nanoparticles in China, is explored as a new nano-radioprotective agent for potent intestinal radioprotection. CNSI shows powerful radioprotective performance in the intestine under oral administration, including efficient free radical scavenging ability, good biosafety, high chemical stability, and relatively long retention time. For example, CNSI shows high reactive oxygen species (ROS) scavenging activities, which effectively alleviates the mitochondrial dysfunction and DNA double-strand breaks to protect the cells against radiation-induced damage. Most importantly, this efficient ROS scavenging ability greatly helps restrain the apoptosis of the small intestinal epithelial and crypt stem cells, which decreases the damage of the mechanical barrier and thus relieves radiation enteritis. Moreover, CNSI helps remove the free radicals in the intestinal microenvironment and thus maintain the balance of intestinal flora so as to mitigate the radiation enteritis. The finding suggests a new application of clinically approved carbon nanoparticles, which not only promotes the development of new intestinal radioprotector, but also has a great potential for clinical transformation.
Collapse
Affiliation(s)
- Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and IHEP-HKU Joint Laboratory of Metallomics, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Science, Beijing, 100049, China
| | - Jiani Xie
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and IHEP-HKU Joint Laboratory of Metallomics, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Science, Beijing, 100049, China
| | - Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and IHEP-HKU Joint Laboratory of Metallomics, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Science, Beijing, 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and IHEP-HKU Joint Laboratory of Metallomics, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhengwei Leng
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lele Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and IHEP-HKU Joint Laboratory of Metallomics, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Science, Beijing, 100049, China
| | - Yuliang Zhao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Science, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| |
Collapse
|