1
|
Georgiou N, Chontzopoulou E, Routsi EA, Stavrakaki IG, Petsas E, Zoupanou N, Kakava MG, Tzeli D, Mavromoustakos T, Kiriakidi S. Exploring Hypertension: The Role of AT1 Receptors, Sartans, and Lipid Bilayers. ACS OMEGA 2024; 9:44876-44890. [PMID: 39554401 PMCID: PMC11561769 DOI: 10.1021/acsomega.4c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
The rational design of AT1 receptor antagonists represents a pivotal approach in the development of therapeutic agents targeting cardiovascular pathophysiology. Sartans, a class of compounds engineered to inhibit the binding and activation of Angiotensin II on the AT1 receptor, have demonstrated significant clinical efficacy. This review explores the multifaceted role of sartans in mitigating hypertension and related complications. We highlight the integration of crystallography, computational simulations, and NMR spectroscopy to elucidate sartan-AT1 receptor interactions, providing a foundation for the next-generation antagonist design. The review also delves into the challenges posed by the high lipophilicity and suboptimal bioavailability of sartans, emphasizing advancements in nanotechnology and novel drug delivery systems. Additionally, we discuss the impact of lipid bilayers on the AT1 receptor conformation and drug binding, underscoring the importance of the lipidic environment in receptor-drug interactions. We suggest that optimizing drug design to account for these factors could enhance the therapeutic potential of AT1 receptor antagonists, paving the way for improved cardiovascular health outcomes.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eleni Chontzopoulou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efthymios Alexandros Routsi
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Irene Georgia Stavrakaki
- Industrial
Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Errikos Petsas
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikoletta Zoupanou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Margarita Georgia Kakava
- Laboratory
of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Demeter Tzeli
- Laboratory
of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou, 15771 Athens, Greece
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Thomas Mavromoustakos
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Sofia Kiriakidi
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Departamento
de Quimica Orgánica, Facultade de
Quimica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
2
|
Pyrshev K, Allemand F, Rabani V, Yesylevskyy S, Davani S, Ramseyer C, Lagoutte-Renosi J. Ticagrelor increases its own potency at the P2Y 12 receptor by directly changing the plasma membrane lipid order in platelets. Br J Pharmacol 2024; 181:4369-4380. [PMID: 39014887 DOI: 10.1111/bph.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/04/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND AND PURPOSE Although the amphiphilic nature of the widely used antithrombotic drug Ticagrelor is well known, it was never considered as a membranotropic agent capable of interacting with the lipid bilayer in a receptor-independent way. In this study, we investigated the influence of Ticagrelor on plasma membrane lipid order in platelets and if this modulates the potency of Ticagrelor at the P2Y12 receptor. EXPERIMENTAL APPROACH We combined fluorescent in situ, in vitro and in silico approaches to probe the interactions between the plasma membrane of platelets and Ticagrelor. The influence of Ticagrelor on the lipid order of the platelet plasma membrane and large unilamellar vesicles was studied using the advanced fluorescent probe NR12S. Furthermore, the properties of model lipid bilayers in the presence of Ticagrelor were characterized by molecular dynamics simulations. Finally, the influence of an increased lipid order on the dose-response of platelets to Ticagrelor was studied. KEY RESULTS Ticagrelor incorporates spontaneously into lipid bilayers and affects the lipid order of the membranes of model vesicles and isolated platelets, in a nontrivial composition and concentration-dependent manner. We showed that higher plasma membrane lipid order in platelets leads to a lower IC50 value for Ticagrelor. It is shown that membrane incorporation of Ticagrelor increases its potency at the P2Y12 receptor, by increasing the order of the platelet plasma membrane. CONCLUSION AND IMPLICATIONS A novel dual mechanism of Ticagrelor action is suggested that combines direct binding to P2Y12 receptor with simultaneous modulation of receptor-lipid microenvironment.
Collapse
Affiliation(s)
- Kyrylo Pyrshev
- Department of Neurochemistry, Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv, Ukraine
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Florentin Allemand
- SINERGIES, Université de Franche-Comté, Besançon, France
- CNRS, Chrono-environnement, Université de Franche-Comté, Besançon, France
| | - Vahideh Rabani
- SINERGIES, Université de Franche-Comté, Besançon, France
| | - Semen Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
- Receptor.AI Inc, London, UK
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Siamak Davani
- Université de Franche-Comté, CHU Besançon, SINERGIES, Besançon, France
| | | | | |
Collapse
|
3
|
Tzortzini E, Corey RA, Kolocouris A. Comparative Study of Receptor-, Receptor State-, and Membrane-Dependent Cholesterol Binding Sites in A 2A and A 1 Adenosine Receptors Using Coarse-Grained Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:928-949. [PMID: 36637988 DOI: 10.1021/acs.jcim.2c01181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We used coarse-grained molecular dynamics (CG MD) simulations to study protein-cholesterol interactions for different activation states of the A2A adenosine receptor (A2AR) and the A1 adenosine receptor (A1R) and predict new cholesterol binding sites indicating amino acid residues with a high residence time in three biologically relevant membranes. Compared to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-cholesterol and POPC-phosphatidylinositol-bisphosphate (PIP2)-cholesterol, the plasma mimetic membrane best described the cholesterol binding sites previously detected for the inactive state of A2AR and revealed the binding sites with long-lasting amino acid residues. We observed that using the plasma mimetic membrane and plotting residues with cholesterol residence time ≥2 μs, our CG MD simulations captured most obviously the cholesterol-protein interactions. For the inactive A2AR, we identified one more binding site in which cholesterol is bound to residues with a long residence time compared to the previously detected, for the active A1R, three binding sites, and for the inactive A1R, two binding sites. We calculated that for the active states, cholesterol binds to residues with a much longer residence time compared to the inactive state for both A2AR and A1R. The stability of the identified binding sites to A1R or A2AR with CG MD simulations was additionally investigated with potential of mean force calculations using umbrella sampling. We observed that the binding sites with residues to which cholesterol has a long residence time in A2AR have shallow binding free energy minima compared to the related binding sites in A1R, suggesting a stronger binding for cholesterol to A1R. The differences in binding sites in which cholesterol is stabilized and interacts with residues with a long residence time between active and inactive states of A1R and A2AR can be important for differences in functional activity and orthosteric agonist or antagonist affinity and can be used for the design of allosteric modulators, which can bind through lipid pathways. We observed a stronger binding for cholesterol to A1R (i.e., generally higher association rates) compared to A2AR, which remains to be demonstrated. For the active states, cholesterol binds to residues with much longer residence times compared to the inactive state for both A2AR and A1R. Taken together, binding sites of active A1R may be considered as promising allosteric targets.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771Athens, Greece
| |
Collapse
|
4
|
Zuo H, Li T, Zhang D, Ma J, Zhang Z, Ou Y, Lian X, Yin J, Li Q, Zhao X. Enhancing Chromatographic Performance of Immobilized Angiotensin II Type 1 Receptor by Strain-Promoted Alkyne Azide Cycloaddition through Genetically Encoded Unnatural Amino Acid. Anal Chem 2022; 94:15711-15719. [DOI: 10.1021/acs.analchem.2c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Haiyue Zuo
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ting Li
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Dandan Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jing Ma
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zilong Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yuanyuan Ou
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaojuan Lian
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiatai Yin
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
5
|
Obi P, Natesan S. Membrane Lipids Are an Integral Part of Transmembrane Allosteric Sites in GPCRs: A Case Study of Cannabinoid CB1 Receptor Bound to a Negative Allosteric Modulator, ORG27569, and Analogs. J Med Chem 2022; 65:12240-12255. [PMID: 36066412 PMCID: PMC9512009 DOI: 10.1021/acs.jmedchem.2c00946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/28/2022]
Abstract
A growing number of G-protein-coupled receptor (GPCR) structures reveal novel transmembrane lipid-exposed allosteric sites. Ligands must first partition into the surrounding membrane and take lipid paths to these sites. Remarkably, a significant part of the bound ligands appears exposed to the membrane lipids. The experimental structures do not usually account for the surrounding lipids, and their apparent contribution to ligand access and binding is often overlooked and poorly understood. Using classical and enhanced molecular dynamics simulations, we show that membrane lipids are critical in the access and binding of ORG27569 and its analogs at the transmembrane site of cannabinoid CB1 receptor. The observed differences in the binding affinity and cooperativity arise from the functional groups that interact primarily with lipids. Our results demonstrate the significance of incorporating membrane lipids as an integral component of transmembrane sites for accurate characterization, binding-affinity calculations, and lead optimization in drug discovery.
Collapse
Affiliation(s)
- Peter Obi
- College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
6
|
Matsoukas JM, Gadanec LK, Zulli A, Apostolopoulos V, Kelaidonis K, Ligielli I, Moschovou K, Georgiou N, Plotas P, Chasapis CT, Moore G, Ridgway H, Mavromoustakos T. Diminazene Aceturate Reduces Angiotensin II Constriction and Interacts with the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. Biomedicines 2022; 10:biomedicines10071731. [PMID: 35885036 PMCID: PMC9312513 DOI: 10.3390/biomedicines10071731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Diminazene aceturate (DIZE) is a putative angiotensin-converting enzyme 2 (ACE2) activator and angiotensin type 1 receptor antagonist (AT1R). Its simple chemical structure possesses a negatively charged triazene segment that is homologous to the tetrazole of angiotensin receptor blockers (ARB), which explains its AT1R antagonistic activity. Additionally, the activation of ACE2 by DIZE converts the toxic octapeptide angiotensin II (AngII) to the heptapeptides angiotensin 1–7 and alamandine, which promote vasodilation and maintains homeostatic balance. Due to DIZE’s protective cardiovascular and pulmonary effects and its ability to target ACE2 (the predominant receptor utilized by severe acute respiratory syndrome coronavirus 2 to enter host cells), it is a promising treatment for coronavirus 2019 (COVID-19). To determine DIZE’s ability to inhibit AngII constriction, in vitro isometric tension analysis was conducted on rabbit iliac arteries incubated with DIZE or candesartan and constricted with cumulative doses of AngII. In silico docking and ligand interaction studies were performed to investigate potential interactions between DIZE and other ARBs with AT1R and the spike protein/ACE2 complex. DIZE, similar to the other ARBs investigated, was able to abolish vasoconstriction in response to AngII and exhibited a binding affinity for the spike protein/ACE2 complex (PDB 6LZ6). These results support the potential of DIZE as a treatment for COVID-19.
Collapse
Affiliation(s)
- John M. Matsoukas
- NewDrug PC, Patras Science Park, 26500 Patras, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (J.M.M.); (T.M.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | | | - Irene Ligielli
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Kalliopi Moschovou
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Nikitas Georgiou
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece;
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Graham Moore
- Pepmetics Incorporated, 772 Murphy Pace, Victoria, BC V8Y 3H4, Canada;
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Thomas Mavromoustakos
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
- Correspondence: (J.M.M.); (T.M.)
| |
Collapse
|
7
|
Lagoutte-Renosi J, Allemand F, Ramseyer C, Yesylevskyy S, Davani S. Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives. Drug Discov Today 2021; 27:985-1007. [PMID: 34863931 DOI: 10.1016/j.drudis.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Molecular modeling in pharmacology is a promising emerging tool for exploring drug interactions with cellular components. Recent advances in molecular simulations, big data analysis, and artificial intelligence (AI) have opened new opportunities for rationalizing drug interactions with their pharmacological targets. Despite the obvious utility and increasing impact of computational approaches, their development is not progressing at the same speed in different fields of pharmacology. Here, we review current in silico techniques used in cardiovascular diseases (CVDs), cardiological drug discovery, and assessment of cardiotoxicity. In silico techniques are paving the way to a new era in cardiovascular medicine, but their use somewhat lags behind that in other fields.
Collapse
Affiliation(s)
- Jennifer Lagoutte-Renosi
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France
| | - Florentin Allemand
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine, Nauky Sve. 46, Kyiv, Ukraine; Receptor.ai inc, 16192 Coastal Highway, Lewes, DE, USA
| | - Siamak Davani
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France.
| |
Collapse
|
8
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
9
|
Megariotis G, Romanos N, Avramopoulos A, Mikaelian G, Theodorou DN. In silico study of levodopa in hydrated lipid bilayers at the atomistic level. J Mol Graph Model 2021; 107:107972. [PMID: 34174554 DOI: 10.1016/j.jmgm.2021.107972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
This article presents atomistic molecular dynamics and umbrella sampling simulations of levodopa at various concentrations in hydrated cholesterol-free 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Levodopa is the standard medication for Parkinson's disease and is marketed under various trade names; in the context of this article, the levodopa molecule is mostly studied in its zwitterionic form but some results concerning the neutral levodopa are presented as well for comparison purposes. The motivation is to study in detail how levodopa behaves in different hydrated lipid membranes, primarily from the thermodynamic point of view, and reveal aspects of mechanism of its permeation through them. Dependencies of properties on the levodopa concentration are also investigated. Special attention is paid to the calculation of mass density profiles, order parameters and self-diffusion coefficients. Levodopa zwitterions, which form a hydrogen bond network with water and phospholipid molecules, are found to be preferentially located at the water/lipid interface, as well as in the aqueous phase surrounding the cholesterol-free and cholesterol-containing bilayers. This is concluded from the potentials of mean force calculated by umbrella sampling simulations as levodopa is transferred from the lipid to the aqueous phase along an axis perpendicular to the two leaflets of the membranes.
Collapse
Affiliation(s)
- Grigorios Megariotis
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece.
| | - Nikolaos Romanos
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| | - Aggelos Avramopoulos
- Department of Physics, University of Thessaly, 3rd Km Old National Road Lamia Athens, Lamia, GR, 35100, Greece
| | - Georgios Mikaelian
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| |
Collapse
|
10
|
Chontzopoulou E, Tzakos AG, Mavromoustakos T. On the Rational Drug Design for Hypertension through NMR Spectroscopy. Molecules 2020; 26:E12. [PMID: 33375119 PMCID: PMC7792925 DOI: 10.3390/molecules26010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Antagonists of the AT1receptor (AT1R) are beneficial molecules that can prevent the peptide hormone angiotensin II from binding and activating the specific receptor causing hypertension in pathological states. This review article summarizes the multifaced applications of solid and liquid state high resolution nuclear magnetic resonance (NMR) spectroscopy in antihypertensive commercial drugs that act as AT1R antagonists. The 3D architecture of these compounds is explored through 2D NOESY spectroscopy and their interactions with micelles and lipid bilayers are described using solid state 13CP/MAS, 31P and 2H static solid state NMR spectroscopy. Due to their hydrophobic character, AT1R antagonists do not exert their optimum profile on the AT1R. Therefore, various vehicles are explored so as to effectively deliver these molecules to the site of action and to enhance their pharmaceutical efficacy. Cyclodextrins and polymers comprise successful examples of effective drug delivery vehicles, widely used for the delivery of hydrophobic drugs to the active site of the receptor. High resolution NMR spectroscopy provides valuable information on the physical-chemical forces that govern these drug:vehicle interactions, knowledge required to get a deeper understanding on the stability of the formed complexes and therefore the appropriateness and usefulness of the drug delivery system. In addition, it provides valuable information on the rational design towards the synthesis of more stable and efficient drug formulations.
Collapse
Affiliation(s)
- Eleni Chontzopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|
11
|
Kiriakidi S, Chatzigiannis C, Papaemmanouil C, Tzakos AG, Cournia Z, Mavromoustakos T. Interplay of cholesterol, membrane bilayers and the AT1R: A cholesterol consensus motif on AT1R is revealed. Comput Struct Biotechnol J 2020; 19:110-120. [PMID: 33384858 PMCID: PMC7758360 DOI: 10.1016/j.csbj.2020.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
Hypertension, mediated by the Angiotensin II receptor type 1 (AT1R), is still the major cause of premature death despite the discovery of novel therapeutics, highlighting the importance of an in depth understanding of the drug-AT1R recognition mechanisms coupled with the impact of the membrane environment on the interaction of drugs with AT1R. Herein, we examine the interplay of cholesterol-lipid-candesartan and the AT1R using Molecular Dynamics simulations of a model membrane consisting of 60:40 mol%. DPPC:cholesterol, candesartan and the AT1R, mimicking the physiological cholesterol concentration in sarcolemma membranes. The simulations of the model membrane of 60:40 mol%. DPPC:cholesterol were further validated using DOSY NMR experiments. Interestingly, our results suggest a significant role of cholesterol in the AT1R function imposed through a Cholesterol Consensus Motif (CCM) in the receptor, which could be crucial in the drug binding process. Candesartan diffusion towards AT1R through incorporation into lipid bilayers, appears to be retarded by the presence of cholesterol. However, its direct approach towards AT1R may be facilitated through the mobility induced on the N-terminus by the cholesterol binding on the CCM these novel insights could pave the way towards the development of more potent pharmaceutical agents to combat hypertension more effectively.
Collapse
Affiliation(s)
- Sofia Kiriakidi
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Christos Chatzigiannis
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Christina Papaemmanouil
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Andreas G. Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
- Corresponding authors.
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
- Corresponding authors.
| |
Collapse
|
12
|
Sanver D, Sadeghpour A, Rappolt M, Di Meo F, Trouillas P. Structure and Dynamics of Dioleoyl-Phosphatidylcholine Bilayers under the Influence of Quercetin and Rutin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11776-11786. [PMID: 32911935 DOI: 10.1021/acs.langmuir.0c01484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quercetin and rutin, two widely studied flavonoids with applications foreseen in the sectors of pharmaceutical and cosmetic industries, have been chosen as model compounds for a detailed structural and dynamical investigation onto their influence on fluid lipid bilayers. Combining global small angle X-ray scattering analysis with molecular dynamics, various changes in the properties of dioleoyl-phosphatidylcholine (DOPC) bilayers have been determined. The solubility of quercetin in DOPC membranes is assured up to 12 mol %, whereas rutin, with additional glucose and rhamnose groups, are fully soluble only up to 6 mol %. Both flavonoids induce an increase in membrane undulations and thin the bilayers slightly (<1 Å) in a concentration dependent manner, wherein quercetin shows a stronger effect. Concomitantly, in the order of 2-4%, the adjacent bilayer distance increases with the flavonoid's concentration. Partial molecular areas of quercetin and rutin are determined to be 26 and 51 Å2, respectively. Simulated averaged areas per molecule confirm these estimates. A 60° tilted orientation of quercetin is observed with respect to the bilayer normal, whereas the flavonoid moiety of rutin is oriented more perpendicular (α-angle 30°) to the membrane surface. Both flavonoid moieties are located at a depth of 12 and 16 Å for quercetin and rutin, respectively, while their anionic forms display a location closer to the polar interface. Finally, at both simulated concentrations (1.5 and 12 mol %), DOPC-rutin systems induce a stronger packing of the pure DOPC lipid bilayer, mainly due to stronger attractive electrostatic interactions in the polar lipid head region.
Collapse
Affiliation(s)
- Didem Sanver
- Faculty of Engineering and Architecture, Department of Food Engineering, Necmettin Erbakan University, Konya 42050, Turkey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Florent Di Meo
- INSERM U1248 IPPRITT, University of Limoges, 2 rue du Prof. Descottes, Limoges 87000, France
| | - Patrick Trouillas
- INSERM U1248 IPPRITT, University of Limoges, 2 rue du Prof. Descottes, Limoges 87000, France
- RCPTM, Department of Physical Chemistry, Faculty of Sciences, Palacký University, Olomouc 771 47, Czech Republic
| |
Collapse
|
13
|
Vrettos EI, Valverde IE, Mascarin A, Pallier PN, Cerofolini L, Fragai M, Parigi G, Hirmiz B, Bekas N, Grob NM, Stylos EΚ, Shaye H, Del Borgo M, Aguilar MI, Magnani F, Syed N, Crook T, Waqif E, Ghazaly E, Cherezov V, Widdop RE, Luchinat C, Michael-Titus AT, Mindt TL, Tzakos AG. Single Peptide Backbone Surrogate Mutations to Regulate Angiotensin GPCR Subtype Selectivity. Chemistry 2020; 26:10690-10694. [PMID: 32691857 DOI: 10.1002/chem.202000924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/03/2020] [Indexed: 12/13/2022]
Abstract
Mutating the side-chains of amino acids in a peptide ligand, with unnatural amino acids, aiming to mitigate its short half-life is an established approach. However, it is hypothesized that mutating specific backbone peptide bonds with bioisosters can be exploited not only to enhance the proteolytic stability of parent peptides, but also to tune its receptor subtype selectivity. Towards this end, four [Y]6 -Angiotensin II analogues are synthesized where amide bonds have been replaced by 1,4-disubstituted 1,2,3-triazole isosteres in four different backbone locations. All the analogues possessed enhanced stability in human plasma in comparison with the parent peptide, whereas only two of them achieved enhanced AT2 R/AT1 R subtype selectivity. This diversification has been studied through 2D NMR spectroscopy and unveiled a putative more structured microenvironment for the two selective ligands accompanied with increased number of NOE cross-peaks. The most potent analogue, compound 2, has been explored regarding its neurotrophic potential and resulted in an enhanced neurite growth with respect to the established agent C21.
Collapse
Affiliation(s)
| | - Ibai E Valverde
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland.,Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21000, Dijon, France
| | - Alba Mascarin
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Patrick N Pallier
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, Whitechapel, London, E1 2AT, UK
| | - Linda Cerofolini
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine, (CIRMMP), University of Florence, Sesto Fiorentino, 50019, Italy
| | - Marco Fragai
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine, (CIRMMP), University of Florence, Sesto Fiorentino, 50019, Italy
| | - Giacomo Parigi
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine, (CIRMMP), University of Florence, Sesto Fiorentino, 50019, Italy
| | - Baydaa Hirmiz
- Monash Biomedicine Discovery Institute and Department of Biochemistry, and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Nick Bekas
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Nathalie M Grob
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zürich, Switzerland
| | - Evgenios Κ Stylos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Hamidreza Shaye
- Bridge Institute, Department of Chemistry, University of Southern California., Los Angeles, CA, 90089, USA
| | - Mark Del Borgo
- Monash Biomedicine Discovery Institute and Department of Biochemistry, and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Marie-Isabel Aguilar
- Monash Biomedicine Discovery Institute and Department of Biochemistry, and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Francesca Magnani
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W6 8RP, UK
| | - Timothy Crook
- Leaders in Oncology Care, 95 Harley Street, London, W1G 6AF, UK
| | - Emal Waqif
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, Whitechapel, London, E1 2AT, UK
| | - Essam Ghazaly
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California., Los Angeles, CA, 90089, USA
| | - Robert E Widdop
- Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Claudio Luchinat
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine, (CIRMMP), University of Florence, Sesto Fiorentino, 50019, Italy
| | - Adina T Michael-Titus
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, Whitechapel, London, E1 2AT, UK
| | - Thomas L Mindt
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland.,Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|