1
|
Banerjee R. Tiny but Mighty: Small RNAs-The Micromanagers of Bacterial Survival, Virulence, and Host-Pathogen Interactions. Noncoding RNA 2025; 11:36. [PMID: 40407594 PMCID: PMC12101431 DOI: 10.3390/ncrna11030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025] Open
Abstract
Bacterial pathogens have evolved diverse strategies to infect hosts, evade immune responses, and establish successful infections. While the role of transcription factors in bacterial virulence is well documented, emerging evidence highlights the significant contribution of small regulatory RNAs (sRNAs) in bacterial pathogenesis. These sRNAs function as posttranscriptional regulators that fine-tune gene expression, enabling bacteria to adapt rapidly to challenging environments. This review explores the multifaceted roles of bacterial sRNAs in host-pathogen interactions. Firstly, it examines how sRNAs regulate pathogenicity by modulating the expression of key virulence factors, including fimbriae, toxins, and secretion systems, followed by discussing the role of sRNAs in bacterial stress response mechanisms that counteract host immune defenses, such as oxidative and envelope stress. Additionally, this review investigates the involvement of sRNAs in antibiotic resistance by regulating efflux pumps, biofilm formation, and membrane modifications, which contribute to multi-drug resistance phenotypes. Lastly, this review highlights how sRNAs contribute to intra- and interspecies communication through quorum sensing, thereby coordinating bacterial behavior in response to environmental cues. Understanding these regulatory networks governed by sRNAs is essential for the development of innovative antimicrobial strategies. This review highlights the growing significance of sRNAs in bacterial pathogenicity and explores their potential as therapeutic targets for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Rajdeep Banerjee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Velasco Garcia WJ, Araripe Dos Santos Neto N, Borba Rios T, Rocha Maximiano M, Souza CMD, Franco OL. Genetic basis of antibiotic resistance in bovine mastitis and its possible implications for human and ecological health. Crit Rev Microbiol 2025; 51:427-440. [PMID: 38916977 DOI: 10.1080/1040841x.2024.2369140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Bovine mastitis is a mammary gland inflammation that can occur due to infectious pathogens, Staphylococcus aureus and Escherichia coli, which are, respectively, the most prevalent Gram-positive and Gram-negative bacteria associated with this disease. Currently, antibiotic treatment has become more complicated due to the presence of resistant pathogens. This review, therefore, aims to identify the most common resistance genes reported for these strains in the last four years. During the review, it was noted that blaZ, blaSHV, blaTEM, and blaampC are the most reported genes for S. aureus and E. coli, associated with drug inactivation, mainly β-lactamases. They are characterized by generating bacterial resistance to β-lactam antibiotics, the most common treatment in animal and human bacterial treatments (penicillins and cephalosporins, among others). Genes associated with efflux systems were also present in the two strains and included norA, tetA, tetC, and tetK, which generate resistance to macrolide and tetracycline antibiotics. Additionally, the effects of spreading resistance between animals and humans through direct contact (such as consumption of contaminated milk) or indirect contact (through environmental contamination) has been deeply discussed, emphasizing the importance of having adequate sanitation and antibiotic control and administration protocols.
Collapse
Affiliation(s)
- Wendy Johana Velasco Garcia
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nilton Araripe Dos Santos Neto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Brasília, DF, Brazil
| | - Thuanny Borba Rios
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Mariana Rocha Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Brasília, DF, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
3
|
Harmon DE, Adamson K, Wiersma J. Disruption of the EmrAB-TolC efflux pump of Escherichia coli induces global metabolic changes in multiple growth conditions. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001437. [PMID: 40191445 PMCID: PMC11971657 DOI: 10.17912/micropub.biology.001437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
Multidrug efflux pumps are transporters that are important for the removal of exogenous toxic molecules in bacteria. Recently, efflux pumps have been implicated in the regulation of metabolic homeostasis in Escherichia coli . Here, we investigated the contribution of EmrAB-TolC to metabolism in various conditions. Deletion of EmrB led to changes in several metabolic pathways, both in standard growth conditions and during nutrient stress. The pathways impacted include the tricarboxylic acid (TCA) cycle, and carbohydrate and amino acid metabolism. Our findings suggest that EmrAB-TolC contributes to maintaining metabolic homeostasis and adapts metabolism based on cellular needs.
Collapse
Affiliation(s)
- Dana E. Harmon
- Biology, California Lutheran University, Thousand Oaks, California, United States
| | - Klay Adamson
- Biology, California Lutheran University, Thousand Oaks, California, United States
| | - Joseph Wiersma
- Biology, California Lutheran University, Thousand Oaks, California, United States
| |
Collapse
|
4
|
Wright M, Kaur M, Thompson LK, Cox G. A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:6. [PMID: 39863731 PMCID: PMC11762307 DOI: 10.1038/s44259-025-00078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Since its discovery nearly 60 years ago, TolC has been associated with various cellular functions in Escherichia coli, including the efflux of environmental stressors and virulence factors. It also acts as a receptor for specific bacteriophages and the colicin E1 toxin. This review highlights key discoveries over the past six decades and emphasizes the remaining gaps in understanding how TolC contributes to physiological functions in E. coli.
Collapse
Affiliation(s)
- Mallory Wright
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Mandeep Kaur
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada.
| |
Collapse
|
5
|
Silva TO, Bulla ACS, Teixeira BA, Gomes VMS, Raposo T, Barbosa LS, da Silva ML, Moreira LO, Olsen PC. Bacterial efflux pump OMPs as vaccine candidates against multidrug-resistant Gram-negative bacteria. J Leukoc Biol 2024; 116:1237-1253. [PMID: 39011942 DOI: 10.1093/jleuko/qiae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
The emergence and propagation of bacteria resistant to antimicrobial drugs is a serious public health threat worldwide. The current antibacterial arsenal is becoming obsolete, and the pace of drug development is decreasing, highlighting the importance of investment in alternative approaches to treat or prevent infections caused by antimicrobial-resistant bacteria. A significant mechanism of antimicrobial resistance employed by Gram-negative bacteria is the overexpression of efflux pumps that can extrude several compounds from the bacteria, including antimicrobials. The overexpression of efflux pump proteins has been detected in several multidrug-resistant Gram-negative bacteria, drawing attention to these proteins as potential targets against these pathogens. This review will focus on the role of outer membrane proteins from efflux pumps as potential vaccine candidates against clinically relevant multidrug-resistant Gram-negative bacteria, discussing advantages and pitfalls. Additionally, we will explore the relevance of efflux pump outer membrane protein diversity and the possible impact of vaccination on microbiota.
Collapse
Affiliation(s)
- Thaynara O Silva
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana Carolina S Bulla
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Bárbara A Teixeira
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vinnicius Machado Schelk Gomes
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764. Centro, Macaé, RJ, 27965-045, Brazil
| | - Thiago Raposo
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiza S Barbosa
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Manuela Leal da Silva
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764. Centro, Macaé, RJ, 27965-045, Brazil
| | - Lilian O Moreira
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Priscilla C Olsen
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
6
|
Zhang J, Leng S, Huang C, Li K, Li J, Chen X, Feng Y, Kai G. Characterization of a group of germacrene A synthases involved in the biosynthesis of β-elemene from Atractylodis macrocephala. Int J Biol Macromol 2024; 271:132467. [PMID: 38763249 DOI: 10.1016/j.ijbiomac.2024.132467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
β-Elemene, an important component of the volatile oil of Atractylodis macrocephala, has been widely utilized as an antitumor drug for over 20 years. However, the germacrene A synthase (GAS) genes responsible for the biosynthesis of β-elemene in A. macrocephala were previously unidentified. In this study, two new AmGASs were identified from the A. macrocephala transcriptome, demonstrating their capability to convert farnesyl pyrophosphate into germacrene A, which subsequently synthesizes β-elemene through Cope rearrangement. Additionally, two highly catalytic AmGAS1 mutations, I307A and E392A, resulted in a 2.23-fold and 1.57-fold increase in β-elemene synthesis, respectively. Furthermore, precursor supply and fed-batch strategies were employed to enhance the precursor supply, resulting in β-elemene yields of 7.3 mg/L and 33.3 mg/L, respectively. These findings identify a promising candidate GAS for β-elemene biosynthesis and lay the foundation for further functional studies on terpene synthases in A. macrocephala.
Collapse
Affiliation(s)
- Jianbo Zhang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siqi Leng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Huang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kunlun Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junbo Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuefei Chen
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Feng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
7
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Mitra SD, Shome R, Bandopadhyay S, Geddam S, Kumar AMP, Murugesan D, Shome A, Shome BR. Genetic insights of antibiotic resistance, pathogenicity (virulence) and phylogenetic relationship of Escherichia coli strains isolated from livestock, poultry and their handlers - a one health snapshot. Mol Biol Rep 2024; 51:404. [PMID: 38456953 DOI: 10.1007/s11033-024-09354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Pathogenic and non-pathogenic strains of Escherichia coli harbouring antibiotic resistance genes (ARGs) from any source (clinical samples, animal settings, or environment) might be transmitted and contribute to the spread and increase of antibiotic resistance in the biosphere. The goal of this study was to investigate the genome to decipher the repertoire of ARGs, virulence genes carried by E. coli strains isolated from livestock, poultry, and their handlers (humans), and then unveil the genetic relatedness between the strains. METHODS Whole genome sequencing was done to investigate the genetic makeup of E. coli isolates (n = 20) [swine (n = 2), cattle (n = 2), sheep (n = 4), poultry (n = 7), and animal handlers (n = 5)] from southern India. The detection of resistome, virulome, biofilm forming genes, mobile genetic elements (MGE), followed by multilocus sequence typing (MLST) and phylogenetic analyses, were performed. RESULTS E. coli strains were found to be multi drug resistant, with a resistome encompassing > 20 ARGs, the virulome-17-22 genes, and > 20 key biofilm genes. MGE analysis showed four E. coli isolates (host: poultry, swine and cattle) harbouring composite transposons with ARGs/virulence genes (blaTEM, dfr, qnr/nleB, tir, eae,and esp) with the potential for horizontal transfer. MLST analyses revealed the presence of ST937 and ST3107 in both livestock/poultry and their handlers. Phylogenomic analyses with global E. coli isolates (human/livestock/poultry hosts) showed close relatedness with strains originating from different parts of the world (the United States, China, etc.). CONCLUSION The current study emphasizes the circulation of strains of pathogenic sequence types of clinical importance, carrying a diverse repertoire of genes associated with antibiotic resistance, biofilm formation and virulence properties in animal settings, necessitating immediate mitigation measures to reduce the risk of spread across the biosphere.
Collapse
Affiliation(s)
- Susweta Das Mitra
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
- Department of Biotechnology School of Basic and Applied Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bengaluru, Karnataka, 560078, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
| | - Satarupa Bandopadhyay
- Department of Biotechnology School of Basic and Applied Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bengaluru, Karnataka, 560078, India
| | - Sujatha Geddam
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
| | - A M Praveen Kumar
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
| | - Devi Murugesan
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India
| | - Arijit Shome
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022, India
| | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary epidemiology and Disease Informatics (ICAR- NIVEDI), Yelahanka, Bengaluru, 560 064, India.
| |
Collapse
|
9
|
Ren J, Wang M, Zhou W, Liu Z. Efflux pumps as potential targets for biofilm inhibition. Front Microbiol 2024; 15:1315238. [PMID: 38596384 PMCID: PMC11002903 DOI: 10.3389/fmicb.2024.1315238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 04/11/2024] Open
Abstract
Biofilms account for a great deal of infectious diseases and contribute significantly to antimicrobial resistance. Efflux pumps confer antimicrobial resistance to microorganisms and involve multiple processes of biofilm formation. Efflux pump inhibitors (EPIs) are attracting considerable attention as a biofilm inhibition strategy. The regulatory functions of efflux pumps in biofilm formation such as mediating adherence, quorum sensing (QS) systems, and the expression of biofilm-associated genes have been increasingly identified. The versatile properties confer efflux pumps both positive and negative effects on biofilm formation. Furthermore, the expression and function of efflux pumps in biofilm formation are species-specific. Therefore, this review aims to detail the double-edged sword role of efflux pumps in biofilm formation to provide potential inhibition targets and give an overview of the effects of EPIs on biofilm formation.
Collapse
Affiliation(s)
| | | | - Wenjuan Zhou
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China
| | | |
Collapse
|
10
|
Zhang L, Wang M, Qi R, Yang Y, Liu Y, Ren N, Feng Z, Liu Q, Cao G, Zong G. A novel major facilitator superfamily-type tripartite efflux system CprABC mediates resistance to polymyxins in Chryseobacterium sp. PL22-22A. Front Microbiol 2024; 15:1346340. [PMID: 38596380 PMCID: PMC11002906 DOI: 10.3389/fmicb.2024.1346340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024] Open
Abstract
Background Polymyxin B (PMB) and polymyxin E (colistin, CST) are polymyxin antibiotics, which are considered last-line therapeutic options against multidrug-resistant Gram-negative bacteria in serious infections. However, there is increasing risk of resistance to antimicrobial drugs. Effective efflux pump inhibitors (EPIs) should be developed to help combat efflux pump-mediated antibiotic resistance. Methods Chryseobacterium sp. PL22-22A was isolated from aquaculture sewage under selection with 8 mg/L PMB, and then its genome was sequenced using Oxford Nanopore and BGISEQ-500 platforms. Cpr (Chryseobacterium Polymyxins Resistance) genes encoding a major facilitator superfamily-type tripartite efflux system, were found in the genome. These genes, and the gene encoding a truncation mutant of CprB from which sequence called CprBc was deleted, were amplified and expressed/co-expressed in Escherichia coli DH5α. Minimum inhibitory concentrations (MICs) of polymyxins toward the various E. coli heterologous expression strains were tested in the presence of 2-128 mg/L PMB or CST. The pumping activity of CprABC was assessed via structural modeling using Discovery Studio 2.0 software. Moreover, the influence on MICs of baicalin, a novel MFS EPI, was determined, and the effect was analyzed based on homology modeling. Results Multidrug-resistant bacterial strain Chryseobacterium sp. PL22-22A was isolated in this work; it has notable resistance to polymyxin, with MICs for PMB and CST of 96 and 128 mg/L, respectively. A novel MFS-type tripartite efflux system, named CprABC, was identified in the genome of Chryseobacterium sp. PL22-22A. Heterologous expression and EPI assays indicated that the CprABC system is responsible for the polymyxin resistance of Chryseobacterium sp. PL22-22A. Structural modeling suggested that this efflux system provides a continuous conduit that runs from the CprB funnel through the CprC porin domain to pump polymyxins out of the cell. A specific C-terminal α-helix, CprBc, has an activation function on polymyxin excretion by CprB. The flavonoid compound baicalin was found to affect the allostery of CprB and/or obstruct the substrate conduit, and thus to inhibit extracellular polymyxin transport by CprABC. Conclusion Novel MFS-type tripartite efflux system CprABC in Chryseobacterium sp. PL22-22A mediates resistance to polymyxins, and baicalin is a promising EPI.
Collapse
Affiliation(s)
- Lu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Miao Wang
- Shandong Fengjin Biopharmaceuticals Co., Ltd., Yantai, China
| | - Rui Qi
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Yilin Yang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Ya Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Nianqing Ren
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Zihan Feng
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Qihao Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Gongli Zong
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| |
Collapse
|
11
|
Zack KM, Sorenson T, Joshi SG. Types and Mechanisms of Efflux Pump Systems and the Potential of Efflux Pump Inhibitors in the Restoration of Antimicrobial Susceptibility, with a Special Reference to Acinetobacter baumannii. Pathogens 2024; 13:197. [PMID: 38535540 PMCID: PMC10974122 DOI: 10.3390/pathogens13030197] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/11/2025] Open
Abstract
Bacteria express a plethora of efflux pumps that can transport structurally varied molecules, including antimicrobial agents and antibiotics, out of cells. Thus, efflux pump systems participate in lowering intracellular concentrations of antibiotics, which allows phenotypic multidrug-resistant (MDR) bacteria to survive effectively amid higher concentrations of antibiotics. Acinetobacter baumannii is one of the classic examples of pathogens that can carry multiple efflux pump systems, which allows these bacteria to be MDR-to-pan-drug resistant and is now considered a public health threat. Therefore, efflux pumps in A. baumannii have gained major attention worldwide, and there has been increased interest in studying their mechanism of action, substrates, and potential efflux pump inhibitors (EPIs). Efflux pump inhibitors are molecules that can inhibit efflux pumps, rendering pathogens susceptible to antimicrobial agents, and are thus considered potential therapeutic agents for use in conjunction with antibiotics. This review focuses on the types of various efflux pumps detected in A. baumannii, their molecular mechanisms of action, the substrates they transport, and the challenges in developing EPIs that can be clinically useful in reference to A. baumannii.
Collapse
Affiliation(s)
- Kira M. Zack
- Center for Surgical Infections and Biofilms, Department of Surgery, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
| | - Trent Sorenson
- Center for Surgical Infections and Biofilms, Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA;
| | - Suresh G. Joshi
- Center for Surgical Infections and Biofilms, Department of Surgery, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
- Center for Surgical Infections and Biofilms, Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA;
| |
Collapse
|
12
|
Vasilopoulou E, Chroumpi T, Skretas G. Escherichia coli strains with precise domain deletions in the ribonuclease RNase E can achieve greatly enhanced levels of membrane protein production. Protein Sci 2024; 33:e4864. [PMID: 38073126 PMCID: PMC10804669 DOI: 10.1002/pro.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Escherichia coli is one of the most widely utilized hosts for production of recombinant membrane proteins (MPs). Bacterial MP production, however, is usually accompanied by severe toxicity and low-level volumetric accumulation. In previous work, we had discovered that co-expression of RraA, an inhibitor of the RNA-degrading activity of RNase E, can efficiently suppress the cytotoxicity associated with the MP overexpression process and, simultaneously, enhance significantly the cellular accumulation of membrane-incorporated recombinant MPs in bacteria. Based on this, we constructed the specialized MP-producing E. coli strain SuptoxR, which can achieve dramatically enhanced volumetric yields of well-folded recombinant MPs. Ιn the present work, we have investigated whether domain deletions in the E. coli RNase E, which exhibit reduced ribonucleolytic activity, can result in suppressed MP-induced toxicity and enhanced recombinant MP production, in a manner resembling the conditions of rraA overexpression in E. coli SuptoxR. We have found that some strains encoding specific RNase E truncation variants can achieve significantly enhanced levels of recombinant MP production. Among these, we have found a single RNase E variant strain, which can efficiently suppress MP-induced toxicity and achieve greatly enhanced levels of recombinant MP production for proteins of both prokaryotic and eukaryotic origin. Based on its properties, and in analogy to the original SuptoxR strain, we have termed this strain SuptoxRNE22. E. coli SuptoxRNE22 can perform better than commercially available bacterial strains, which are frequently utilized for recombinant MP production. We anticipate that SuptoxRNE22 will become a widely utilized host for recombinant MP production in bacteria.
Collapse
Affiliation(s)
- Eleni Vasilopoulou
- Institute for Bio‐innovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
- Department of Biochemistry and BiotechnologyUniversity of ThessalyLarisaGreece
| | - Tania Chroumpi
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
| | - Georgios Skretas
- Institute for Bio‐innovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
| |
Collapse
|
13
|
Hernández Flores JL, Martínez YJ, Ramos López MÁ, Saldaña Gutierrez C, Reyes AA, Armendariz Rosales MM, Cortés Pérez MJ, Mendoza MF, Ramírez Ramírez J, Zavala GR, Tovar Becerra PL, Valdez Santoyo L, Villasana Rodríguez K, Rodríguez Morales JA, Campos Guillén J. Volatile Organic Compounds Produced by Kosakonia cowanii Cp1 Isolated from the Seeds of Capsicum pubescens R & P Possess Antifungal Activity. Microorganisms 2023; 11:2491. [PMID: 37894149 PMCID: PMC10609226 DOI: 10.3390/microorganisms11102491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
The Kosakonia cowanii Cp1 strain was isolated from seeds of Capsicum pubescens R. & P. cultivated in Michoacan, Mexico. Genetic and ecological role analyses were conducted for better characterization. The results show that genome has a length of 4.7 Mbp with 56.22% G + C and an IncF plasmid of 128 Kbp with 52.51% G + C. Furthermore, pathogenicity test revealed nonpathogenic traits confirmed by the absence of specific virulence-related genes. Interestingly, when fungal inhibitory essays were carried out, the bacterial synthesis of volatile organic compounds (VOCs) with antifungal activity showed that Sclerotinia sp. and Rhizoctonia solani were inhibited by 87.45% and 77.24%, respectively. Meanwhile, Sclerotium rolfsii, Alternaria alternata, and Colletotrichum gloeosporioides demonstrated a mean radial growth inhibition of 52.79%, 40.82%, and 55.40%, respectively. The lowest inhibition was by Fusarium oxysporum, with 10.64%. The VOCs' characterization by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) revealed 65 potential compounds. Some of the compounds identified with high relative abundance were ketones (22.47%), represented by 2-butanone, 3-hydroxy (13.52%), and alcohols (23.5%), represented by ethanol (5.56%) and 1-butanol-3-methyl (4.83%). Our findings revealed, for the first time, that K. cowanii Cp1 associated with C. pubescens seeds possesses potential traits indicating that it could serve as an effective biocontrol.
Collapse
Affiliation(s)
| | - Yomaiko Javier Martínez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Miguel Ángel Ramos López
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Carlos Saldaña Gutierrez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Querétaro 76220, Mexico;
| | - Aldo Amaro Reyes
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Mariem Monserrat Armendariz Rosales
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Maraly Jazmin Cortés Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Mayela Fosado Mendoza
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Joanna Ramírez Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Grecia Ramírez Zavala
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Paola Lizeth Tovar Becerra
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Laila Valdez Santoyo
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | - Karen Villasana Rodríguez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| | | | - Juan Campos Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (Y.J.M.); (M.Á.R.L.); (A.A.R.); (M.M.A.R.); (M.J.C.P.); (M.F.M.); (J.R.R.); (G.R.Z.); (P.L.T.B.); (L.V.S.); (K.V.R.)
| |
Collapse
|
14
|
Ding Y, Hao J, Xiao W, Ye C, Xiao X, Jian C, Tang M, Li G, Liu J, Zeng Z. Role of efflux pumps, their inhibitors, and regulators in colistin resistance. Front Microbiol 2023; 14:1207441. [PMID: 37601369 PMCID: PMC10436536 DOI: 10.3389/fmicb.2023.1207441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Colistin is highly promising against multidrug-resistant and extensively drug-resistant bacteria clinically. Bacteria are resistant to colistin mainly through mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related locus variation. However, the current understanding cannot fully explain the resistance mechanism in mcr-negative colistin-resistant strains. Significantly, the contribution of efflux pumps to colistin resistance remains to be clarified. This review aims to discuss the contribution of efflux pumps and their related transcriptional regulators to colistin resistance in various bacteria and the reversal effect of efflux pump inhibitors on colistin resistance. Previous studies suggested a complex regulatory relationship between the efflux pumps and their transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine (NMP), and Phe-Arg-β-naphthylamide (PAβN) all achieved the reversal of colistin resistance, highlighting the role of efflux pumps in colistin resistance and their potential for adjuvant development. The contribution of the efflux pumps to colistin resistance might also be related to specific genetic backgrounds. They can participate in colistin tolerance and heterogeneous resistance to affect the treatment efficacy of colistin. These findings help understand the development of resistance in mcr-negative colistin-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Li B, Zhang J, Li X. A comprehensive description of the TolC effect on the antimicrobial susceptibility profile in Enterobacter bugandensis. Front Cell Infect Microbiol 2022; 12:1036933. [PMID: 36569193 PMCID: PMC9780596 DOI: 10.3389/fcimb.2022.1036933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Enterobacter bugandensis is an emerging human pathogen in which multidrug resistant strains have been continuously isolated from various environments. Thus, this organism possesses the potential to pose challenges in human healthcare. However, the mechanisms, especially the efflux pumps, responsible for the multidrug resistance in E. bugandensis remain to be well elucidated. Methods The Enterobacter strain CMCC(B) 45301 was specifically identified using whole genome sequencing. The specific CMCC(B) 45301 homologues of the TolC dependent efflux-pump genes characterized in Escherichia coli were identified. The tolC deletion mutant in CMCC(B) 45301 was constructed and subjected to susceptibility tests using 26 different antimicrobial agents, along with the wild type strain. The synergistic effects combining the Bacillus crude extract (BCE) and several other TolC-affected compounds against CMCC(B) 45301 were assayed. Results We reclassified the Enterobacter CMCC(B) 45301 strain from species cloacae to bugandensis, on the basis of its whole genome sequence. We found that the CMCC(B) 45301 TolC, AcrAB, AcrD, AcrEF, MdtABC, EmrAB, and MacAB exhibit high similarity with their respective homologues in E. coli and Enterobacter cloacae. Our results for the susceptibility tests revealed that lacking tolC causes 4- to 256-fold decrease in the minimal inhibitory concentrations of piperacillin, gentamicin, kanamycin, tetracycline, norfloxacin, ciprofloxacin, chloramphenicol, and erythromycin against CMCC(B) 45301. In addition, the inhibition zones formed by cefuroxime, cefoperazone, amikacin, streptomycin, minocycline, doxycycline, levofloxacin, florfenicol, trimethoprim-sulfamethoxazole, azithromycin, lincomycin, and clindamycin for the tolC mutant were larger or more obvious than that for the parent. Our data suggested the important role played by TolC in CMCC(B) 45301 susceptibility to common antibiotic families covering ß-lactam, aminoglycoside, tetracycline, fluoroquinolone, phenicol, folate pathway antagonist, macrolide, and lincosamide. Deletion for tolC also increased the susceptibility of CMCC(B) 45301 to berberine hydrochloride and BCE, two natural product-based agents. Finally, we found that erythromycin, norfloxacin, and ciprofloxacin can potentiate the antibacterial activity of BCE against CMCC(B) 45301. Discussion The present study elaborated the comprehensive TolC effect on the antimicrobial susceptibility profile in E. bugandensis, which might contribute to the development of more therapeutic options against this nosocomial pathogen.
Collapse
Affiliation(s)
- Bingyu Li
- Health Science Center, Shenzhen University, Shenzhen, Guangdong, China,*Correspondence: Bingyu Li, ; Xiaodong Li,
| | - Ji Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China,Research and Development Center, Panjin Guanghe Crab Industry Co., Ltd., Panjin, China,*Correspondence: Bingyu Li, ; Xiaodong Li,
| |
Collapse
|
16
|
Okada U, Murakami S. Structural and functional characteristics of the tripartite ABC transporter. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36409601 DOI: 10.1099/mic.0.001257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest protein superfamilies and are found in all living organisms. These transporters use the energy from ATP binding and hydrolysis to transport various substrates. In this review, we focus on the structural and functional aspects of ABC transporters, with special emphasis on type VII ABC transporters, a newly defined class possessing characteristic structures. A notable feature of type VII ABC transporters is that they assemble into tripartite complexes that span both the inner and outer membranes of Gram-negative bacteria. One of the original type VII ABC transporters, which possesses all characteristic features of this class, is the macrolide efflux transporter MacB. Recent structural analyses of MacB and homologue proteins revealed the unique mechanisms of substrate translocation by type VII ABC transporters.
Collapse
Affiliation(s)
- Ui Okada
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Mirori-ku, Yokohama 226-8501, Japan
| | - Satoshi Murakami
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Mirori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
17
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
18
|
Yoneda T, Sakata H, Yamasaki S, Hayashi-Nishino M, Nishino K. Analysis of multidrug efflux transporters in resistance to fatty acid salts reveals a TolC-independent function of EmrAB in Salmonella enterica. PLoS One 2022; 17:e0266806. [PMID: 35421142 PMCID: PMC9045224 DOI: 10.1371/journal.pone.0266806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Fatty acids salts exhibit bacteriostatic and bactericidal effects to inhibit
bacterial growth and survival. Bacteria adapt to their environment to overcome
these antibacterial effects through undefined mechanisms. In Gram-negative
bacteria, drug efflux systems are associated with resistance to various
substances. Studies have identified multiple drug efflux systems in
Salmonella enterica. The aim of this study was to
investigate whether drug efflux systems contribute to fatty acid salts
resistance in S. enterica. We used deletion
and overexpressing strains of S. enterica for
drug efflux transporters. Susceptibility to fatty acid salts was determined by
measuring minimum inhibitory concentrations and performing growth assays. Our
findings revealed that acrAB, acrEF,
emrAB and tolC in S.
enterica contribute resistance to fatty acid salts.
Furthermore, EmrAB, which is known to function with TolC, contributes to the
fatty acid salts resistance of S. enterica in
a TolC-independent manner. This study revealed that drug efflux systems confer
fatty acid satls resistance to S. enterica.
Notably, although EmrAB is normally associated with antimicrobial resistance in
a TolC-dependent manner, it was found to be involved in fatty acid salts
resistance in a TolC-independent manner, indicating that the utilization of TolC
by EmrAB is substrate dependent in S.
enterica.
Collapse
Affiliation(s)
- Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Hiroki Sakata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita,
Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University,
Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
19
|
Dynamics of the fecal microbiome and antimicrobial resistome in commercial piglets during the weaning period. Sci Rep 2021; 11:18091. [PMID: 34508122 PMCID: PMC8433359 DOI: 10.1038/s41598-021-97586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023] Open
Abstract
This study aimed to characterize the alteration of the fecal microbiome and antimicrobial resistance (AMR) determinants in 24 piglets at day 3 pre-weaning (D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8), using whole-genome shotgun sequencing. Distinct clusters of microbiomes and AMR determinants were observed at D.8 when Prevotella (20.9%) was the major genus, whereas at D. − 3–D.3, Alistipes (6.9–12.7%) and Bacteroides (5.2–8.5%) were the major genera. Lactobacillus and Escherichia were notably observed at D. − 3 (1.2%) and D. − 3–D.3 (0.2–0.4%), respectively. For AMR, a distinct cluster of AMR determinants was observed at D.8, mainly conferring resistance to macrolide–lincosamide–streptogramin (mefA), β-lactam (cfxA6 and aci1) and phenicol (rlmN). In contrast, at D. − 3–D.3, a high abundance of determinants with aminoglycoside (AMG) (sat, aac(6')-aph(2''), aadA and acrF), β-lactam (fus-1, cepA and mrdA), multidrug resistance (MDR) (gadW, mdtE, emrA, evgS, tolC and mdtB), phenicol (catB4 and cmlA4), and sulfonamide patterns (sul3) was observed. Canonical correlation analysis (CCA) plot associated Escherichia coli with aac(6')-aph(2''), emrA, mdtB, catB4 and cmlA4 at D. − 3, D.0 and/or D.3 whereas at D.8 associations between Prevotella and mefA, cfxA6 and aci1 were identified. The weaning age and diet factor played an important role in the microbial community composition.
Collapse
|
20
|
Thompson DK, Sharkady SM. Genomic Insights into Drug Resistance Determinants in Cedecea neteri, A Rare Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9081741. [PMID: 34442820 PMCID: PMC8401664 DOI: 10.3390/microorganisms9081741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Cedecea, a genus in the Enterobacteriaceae family, includes several opportunistic pathogens reported to cause an array of sporadic acute infections, most notably of the lung and bloodstream. One species, Cedecea neteri, is associated with cases of bacteremia in immunocompromised hosts and has documented resistance to different antibiotics, including β-lactams and colistin. Despite the potential to inflict serious infections, knowledge about drug resistance determinants in Cedecea is limited. In this study, we utilized whole-genome sequence data available for three environmental strains (SSMD04, M006, ND14a) of C. neteri and various bioinformatics tools to analyze drug resistance genes in this bacterium. All three genomes harbor multiple chromosome-encoded β-lactamase genes. A deeper analysis of β-lactamase genes in SSMD04 revealed four metallo-β-lactamases, a novel variant, and a CMY/ACT-type AmpC putatively regulated by a divergently transcribed AmpR. Homologs of known resistance-nodulation-cell division (RND)-type multidrug efflux pumps such as OqxB, AcrB, AcrD, and MdtBC were also identified. Genomic island prediction for SSMD04 indicated that tolC, involved in drug and toxin export across the outer membrane of Gram-negative bacteria, was acquired by a transposase-mediated genetic transfer mechanism. Our study provides new insights into drug resistance mechanisms of an environmental microorganism capable of behaving as a clinically relevant opportunistic pathogen.
Collapse
|
21
|
Bacterial Metal Resistance: Coping with Copper without Cooperativity? mBio 2021; 12:e0065321. [PMID: 34126768 PMCID: PMC8262934 DOI: 10.1128/mbio.00653-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In Escherichia coli and other Gram-negative bacteria, tripartite efflux pumps (TEPs) span the entire cell envelope and serve to remove noxious molecules from the cell. CusBCA is a TEP responsible for copper and silver detoxification in E. coli powered by the resistance-nodulation-cell division (RND) transporter, CusA. In a recent study, Moseng et al. (M. A. Moseng, M. Lyu, T. Pipatpolkai, P. Glaza, et al., mBio 12:e00452-21, 2021, https://dx.doi.org/10.1128/mBio.00452-21) obtained cryo-electron microscopy (cryo-EM) structures of CusA trimers in the presence of copper. The multiple conformations revealed suggest that the three monomers function independently within the CusA trimer, contrary to the cooperative mechanism proposed for the multidrug exporting RND transporter, AcrB. The work prompts consideration of the mechanism of this class of transporter and provides a basis to underpin further studies of TEPs important for bacterial survival.
Collapse
|
22
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
23
|
Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. J Mol Biol 2021; 433:167005. [PMID: 33891902 DOI: 10.1016/j.jmb.2021.167005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases present a major threat to public health globally. Pathogens can acquire resistance to anti-infectious agents via several means including transporter-mediated efflux. Typically, multidrug transporters feature spacious, dynamic, and chemically malleable binding sites to aid in the recognition and transport of chemically diverse substrates across cell membranes. Here, we discuss recent structural investigations of multidrug transporters involved in resistance to infectious diseases that belong to the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the drug/metabolite transporter (DMT) superfamily, the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance (SMR) family, and the resistance-nodulation-division (RND) superfamily. These structural insights provide invaluable information for understanding and combatting multidrug resistance.
Collapse
|
24
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|