1
|
Murakami C, Atsuta-Tsunoda K, Inomata S, Kawai T, Hijikata Y, Dilimulati K, Sakai H, Sakane F. Human PHOSPHO1 exhibits phosphatidylcholine- and phosphatidylethanolamine-phospholipase C activities and interacts with diacylglycerol kinase δ. FEBS Lett 2025; 599:1169-1186. [PMID: 39992810 DOI: 10.1002/1873-3468.70018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025]
Abstract
Phosphatidylcholine- and phosphatidylethanolamine-specific phospholipase C (PC-PLC and PE-PLC) activities, which generate diacylglycerol (DG) and are tricyclodecan-9-yl-xanthogenate (D609)-sensitive, have been detected in both the membrane and cytosolic fractions. We have previously demonstrated that sphingomyelin synthase isozymes, which are transmembrane proteins, exhibit PC-/PE-PLC activities. However, mammalian cytosolic PC-PLC and PE-PLC remain unidentified. Here, we demonstrated that phosphatase orphan 1 (PHOSPHO1), a cytosolic protein, exhibits D609-sensitive PC-PLC and PE-PLC activities. Moreover, the overexpression of PHOSPHO1 in HEK293 cells significantly increased the levels of cellular saturated and/or monounsaturated fatty acid-containing DG. Furthermore, DGKδ cosedimented and colocalized with PHOSPHO1. Collectively, these in vitro findings provide, for the first time, a promising candidate for the long-sought cytosolic PC-/PE-PLC, which may act as DG supply enzyme upstream of DGKδ.
Collapse
Affiliation(s)
- Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
- Institute for Advanced Academic Research, Chiba University, Japan
| | | | - Sho Inomata
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Takuma Kawai
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Yasuhisa Hijikata
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Kamila Dilimulati
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
2
|
Cao HH, Kong WW, Chen XY, Ayaz S, Hou CP, Wang YS, Liu SH, Xu JP. Bmo-miR-6498-5p suppresses Bombyx mori nucleopolyhedrovirus infection by down-regulating BmPLPP2 to modulate pyridoxal phosphate content in B. mori. INSECT MOLECULAR BIOLOGY 2024; 33:259-269. [PMID: 38335442 DOI: 10.1111/imb.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori-BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Wei-Wei Kong
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xi-Ya Chen
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Sadaf Ayaz
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Cai-Ping Hou
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yi-Sheng Wang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
3
|
Wu Y, Xin J, Li X, Yang T, Liu Y, Zhao Y, Xie W, Jiang M. Repurposing lansoprazole to alleviate metabolic syndrome via PHOSPHO1 inhibition. Acta Pharm Sin B 2024; 14:1711-1725. [PMID: 38572109 PMCID: PMC10985025 DOI: 10.1016/j.apsb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Drug repurposing offers an efficient approach to therapeutic development. In this study, our bioinformatic analysis first predicted an association between obesity and lansoprazole (LPZ), a commonly prescribed drug for gastrointestinal ulcers. We went on to show that LPZ treatment increased energy expenditure and alleviated the high-fat diet-induced obesity, insulin resistance, and hepatic steatosis in mice. Treatment with LPZ elicited thermogenic gene expression and mitochondrial respiration in primary adipocytes, and induced cold tolerance in cold-exposed mice, suggesting the activity of LPZ in promoting adipose thermogenesis and energy metabolism. Mechanistically, LPZ is an efficient inhibitor of adipose phosphocholine phosphatase 1 (PHOSPHO1) and produces metabolic benefits in a PHOSPHO1-dependent manner. Our results suggested that LPZ may stimulate adipose thermogenesis by inhibiting the conversion of 2-arachidonoylglycerol-lysophosphatidic acid (2-AG-LPA) to 2-arachidonoylglycerol (2-AG) and reduce the activity of the thermogenic-suppressive cannabinoid receptor signaling. In summary, we have uncovered a novel therapeutic indication and mechanism of LPZ in managing obesity and its related metabolic syndrome, and identified a potential metabolic basis by which LPZ improves energy metabolism.
Collapse
Affiliation(s)
- Yingting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiaqi Xin
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xinyu Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ting Yang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongsheng Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mengxi Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Frerker N, Karlsen TA, Stensland M, Nyman TA, Rayner S, Brinchmann JE. Comparison between articular chondrocytes and mesenchymal stromal cells for the production of articular cartilage implants. Front Bioeng Biotechnol 2023; 11:1116513. [PMID: 36896010 PMCID: PMC9989206 DOI: 10.3389/fbioe.2023.1116513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Focal lesions of articular cartilage give rise to pain and reduced joint function and may, if left untreated, lead to osteoarthritis. Implantation of in vitro generated, scaffold-free autologous cartilage discs may represent the best treatment option. Here we compare articular chondrocytes (ACs) and bone marrow-derived mesenchymal stromal cells (MSCs) for their ability to make scaffold-free cartilage discs. Articular chondrocytes produced more extracellular matrix per seeded cell than mesenchymal stromal cells. Quantitative proteomics analysis showed that articular chondrocyte discs contained more articular cartilage proteins, while mesenchymal stromal cell discs had more proteins associated with cartilage hypertrophy and bone formation. Sequencing analysis revealed more microRNAs associated with normal cartilage in articular chondrocyte discs, and large-scale target predictions, performed for the first time for in vitro chondrogenesis, suggested that differential expression of microRNAs in the two disc types were important mechanisms behind differential synthesis of proteins. We conclude that articular chondrocytes should be preferred over mesenchymal stromal cells for tissue engineering of articular cartilage.
Collapse
Affiliation(s)
- Nadine Frerker
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tommy A Karlsen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Maria Stensland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Simon Rayner
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan E Brinchmann
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Bustos D, Hernández-Rodríguez EW, Poblete H, Alzate-Morales J, Challier C, Boetsch C, Vergara-Jaque A, Beassoni P. Structural Insights into the Inhibition Site in the Phosphorylcholine Phosphatase Enzyme of Pseudomonas aeruginosa. J Chem Inf Model 2022; 62:3067-3078. [PMID: 35670773 DOI: 10.1021/acs.jcim.2c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is a highly pathogenic Gram-negative microorganism associated with high mortality levels in burned or immunosuppressed patients or individuals affected by cystic fibrosis. Studies support a colonization mechanism whereby P. aeruginosa can breakdown the host cell membrane phospholipids through the sequential action of two enzymes: (I) hemolytic phospholipase C acting upon phosphatidylcholine or sphingomyelin to produce phosphorylcholine (Pcho) and (II) phosphorylcholine phosphatase (PchP) that hydrolyzes Pcho to generate choline and inorganic phosphate. This coordinated action provides the bacteria with carbon, nitrogen, and inorganic phosphate to support growth. Furthermore, PchP exhibits a distinctive inhibition mechanism by high substrate concentration. Here, we combine kinetic assays and computational approaches such as molecular docking, molecular dynamics, and free-energy calculations to describe the inhibitory site of PchP, which shares specific residues with the enzyme's active site. Our study provides insights into a coupled inhibition mechanism by the substrate, allowing us to postulate that the integrity of the inhibition site is needed to the correct functioning of the active site. Our results allow us to gain a better understanding of PchP function and provide the basis for a rational drug design that might contribute to the treatment of infections caused by this important opportunistic pathogen.
Collapse
Affiliation(s)
- Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile.,Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Erix W Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile.,Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Horacio Poblete
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca 3465548, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3465548, Chile
| | - Jans Alzate-Morales
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca 3465548, Chile
| | - Cecilia Challier
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Cristhian Boetsch
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca 3465548, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3465548, Chile
| | - Paola Beassoni
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto X5804BYA, Córdoba, Argentina
| |
Collapse
|
6
|
Mohamed FF, Chavez MB, de Oliveira FA, Narisawa S, Farquharson C, Millán JL, Foster BL. Perspective on Dentoalveolar Manifestations Resulting From PHOSPHO1 Loss-of-Function: A Form of Pseudohypophosphatasia? FRONTIERS IN DENTAL MEDICINE 2022; 3:826387. [PMID: 36185572 PMCID: PMC9521815 DOI: 10.3389/fdmed.2022.826387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mineralization of the skeleton occurs by several physicochemical and biochemical processes and mechanisms that facilitate the deposition of hydroxyapatite (HA) in specific areas of the extracellular matrix (ECM). Two key phosphatases, phosphatase, orphan 1 (PHOSPHO1) and tissue-non-specific alkaline phosphatase (TNAP), play complementary roles in the mineralization process. The actions of PHOSPHO1 on phosphocholine and phosphoethanolamine in matrix vesicles (MVs) produce inorganic phosphate (Pi) for the initiation of HA mineral formation within MVs. TNAP hydrolyzes adenosine triphosphate (ATP) and the mineralization inhibitor, inorganic pyrophosphate (PPi), to generate Pi that is incorporated into MVs. Genetic mutations in the ALPL gene-encoding TNAP lead to hypophosphatasia (HPP), characterized by low circulating TNAP levels (ALP), rickets in children and/or osteomalacia in adults, and a spectrum of dentoalveolar defects, the most prevalent being lack of acellular cementum leading to premature tooth loss. Given that the skeletal manifestations of genetic ablation of the Phospho1 gene in mice resemble many of the manifestations of HPP, we propose that Phospho1 gene mutations may underlie some cases of "pseudo-HPP" where ALP may be normal to subnormal, but ALPL mutation(s) have not been identified. The goal of this perspective article is to compare and contrast the loss-of-function effects of TNAP and PHOSPHO1 on the dentoalveolar complex to predict the likely dental phenotype in humans that may result from PHOSPHO1 mutations. Potential cases of pseudo-HPP associated with PHOSPHO1 mutations may resist diagnosis, and the dental manifestations could be a key criterion for consideration.
Collapse
Affiliation(s)
- Fatma F. Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Michael B. Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Flavia Amadeu de Oliveira
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Colin Farquharson
- The Royal (Dick) School of Veterinary Studies (RDSVS), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Brian L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,,Correspondence: Brian L. Foster,
| |
Collapse
|
7
|
Deng S, Li J, Du Z, Wu Z, Yang J, Cai H, Wu G, Xu F, Huang Y, Wang S, Wang C. Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:191-205. [PMID: 34550608 DOI: 10.1111/pce.14191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The concentration and homeostasis of intracellular phosphate (Pi) are crucial for sustaining cell metabolism and growth. During short-term Pi starvation, intracellular Pi is maintained relatively constant at the expense of vacuolar Pi. After the vacuolar stored Pi is exhausted, the plant cells induce the synthesis of intracellular acid phosphatase (APase) to recycle Pi from expendable organic phosphate (Po). In this study, the expression, enzymatic activity and subcellular localization of ACID PHOSPHATASE 1 (OsACP1) were determined. OsACP1 expression is specifically induced in almost all cell types of leaves and roots under Pi stress conditions. OsACP1 encodes an acid phosphatase with broad Po substrates and localizes in the endoplasmic reticulum (ER) and Golgi apparatus (GA). The phylogenic analysis demonstrates that OsACP1 has a similar structure with human acid phosphatase PHOSPHO1. Overexpression or mutation of OsACP1 affected Po degradation and utilization, which further influenced plant growth and productivity under both Pi-sufficient and Pi-deficient conditions. Moreover, overexpression of OsACP1 significantly affected intracellular Pi homeostasis and Pi starvation signalling. We concluded that OsACP1 is an active acid phosphatase that regulates rice growth under Pi stress conditions by recycling Pi from Po in the ER and GA.
Collapse
Affiliation(s)
- Suren Deng
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jingyi Li
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zezhen Du
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zixuan Wu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jian Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
May EA, Kalocsay M, D'Auriac IG, Schuster PS, Gygi SP, Nachury MV, Mick DU. Time-resolved proteomics profiling of the ciliary Hedgehog response. J Cell Biol 2021; 220:211991. [PMID: 33856408 PMCID: PMC8054476 DOI: 10.1083/jcb.202007207] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a signaling compartment that interprets Hedgehog signals through changes of its protein, lipid, and second messenger compositions. Here, we combine proximity labeling of cilia with quantitative mass spectrometry to unbiasedly profile the time-dependent alterations of the ciliary proteome in response to Hedgehog. This approach correctly identifies the three factors known to undergo Hedgehog-regulated ciliary redistribution and reveals two such additional proteins. First, we find that a regulatory subunit of the cAMP-dependent protein kinase (PKA) rapidly exits cilia together with the G protein-coupled receptor GPR161 in response to Hedgehog, and we propose that the GPR161/PKA module senses and amplifies cAMP signals to modulate ciliary PKA activity. Second, we identify the phosphatase Paladin as a cell type-specific regulator of Hedgehog signaling that enters primary cilia upon pathway activation. The broad applicability of quantitative ciliary proteome profiling promises a rapid characterization of ciliopathies and their underlying signaling malfunctions.
Collapse
Affiliation(s)
- Elena A May
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Marian Kalocsay
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA.,Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Inès Galtier D'Auriac
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - Patrick S Schuster
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Maxence V Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - David U Mick
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling, Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
9
|
Suchacki KJ, Morton NM, Vary C, Huesa C, Yadav MC, Thomas BJ, Turban S, Bunger L, Ball D, Barrios-Llerena ME, Guntur AR, Khavandgar Z, Cawthorn WP, Ferron M, Karsenty G, Murshed M, Rosen CJ, MacRae VE, Millán JL, Farquharson C. PHOSPHO1 is a skeletal regulator of insulin resistance and obesity. BMC Biol 2020; 18:149. [PMID: 33092598 PMCID: PMC7584094 DOI: 10.1186/s12915-020-00880-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/25/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have identified the skeleton as a key endocrine regulator of metabolism. The bone-specific phosphatase, Phosphatase, Orphan 1 (PHOSPHO1), which is indispensable for bone mineralisation, has been recently implicated in the regulation of energy metabolism in humans, but its role in systemic metabolism remains unclear. Here, we probe the mechanism underlying metabolic regulation by analysing Phospho1 mutant mice. RESULTS Phospho1-/- mice exhibited improved basal glucose homeostasis and resisted high-fat-diet-induced weight gain and diabetes. The metabolic protection in Phospho1-/- mice was manifested in the absence of altered levels of osteocalcin. Osteoblasts isolated from Phospho1-/- mice were enriched for genes associated with energy metabolism and diabetes; Phospho1 both directly and indirectly interacted with genes associated with glucose transport and insulin receptor signalling. Canonical thermogenesis via brown adipose tissue did not underlie the metabolic protection observed in adult Phospho1-/- mice. However, the decreased serum choline levels in Phospho1-/- mice were normalised by feeding a 2% choline rich diet resulting in a normalisation in insulin sensitivity and fat mass. CONCLUSION We show that mice lacking the bone mineralisation enzyme PHOSPHO1 exhibit improved basal glucose homeostasis and resist high-fat-diet-induced weight gain and diabetes. This study identifies PHOSPHO1 as a potential bone-derived therapeutic target for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Karla J Suchacki
- Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, Scotland, UK. .,Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
| | - Nicholas M Morton
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Calvin Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Carmen Huesa
- Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, Scotland, UK.,MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, UK
| | - Manisha C Yadav
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Benjamin J Thomas
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Sophie Turban
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Lutz Bunger
- Scottish Rural College, Edinburgh, Scotland, UK
| | - Derek Ball
- Medical Sciences and Nutrition, School of Medicine, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Zohreh Khavandgar
- Department of Medicine and Faculty of Dentistry, McGill University, Montreal, Canada
| | - William P Cawthorn
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Mathieu Ferron
- Molecular Physiology Research Unit, Institut de recherches cliniques de Montréal, Montreal, Canada
| | - Gérard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, USA
| | - Monzur Murshed
- Department of Medicine and Faculty of Dentistry, McGill University, Montreal, Canada
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Vicky E MacRae
- Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jose Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Colin Farquharson
- Roslin Institute, R(D)SVS, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
10
|
Dillon S, Staines KA, Millán JL, Farquharson C. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus 2019; 3:e10202. [PMID: 31372594 PMCID: PMC6659447 DOI: 10.1002/jbm4.10202] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject of an increasing focus of research. This work has elucidated PHOSPHO1's central role in the biomineralization of bone and other hard tissues, but has also implicated the enzyme in other biological processes in health and disease. During mineralization PHOSPHO1 liberates inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment where mineral crystals may nucleate and subsequently invade the organic collagenous scaffold. Here, we examine the evidence for this process, first discussing the discovery and characterization of PHOSPHO1, before considering experimental evidence for its canonical role in matrix vesicle–mediated biomineralization. We also contemplate roles for PHOSPHO1 in disorders of dysregulated mineralization such as vascular calcification, along with emerging evidence of its activity in other systems including choline synthesis and homeostasis, and energy metabolism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Scott Dillon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| |
Collapse
|
11
|
Morcos MW, Al-Jallad H, Li J, Farquharson C, Millán JL, Hamdy RC, Murshed M. PHOSPHO1 is essential for normal bone fracture healing: An Animal Study. Bone Joint Res 2018; 7:397-405. [PMID: 30034793 PMCID: PMC6035360 DOI: 10.1302/2046-3758.76.bjr-2017-0140.r2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice. METHODS Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1-/- mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests. RESULTS The μCT and radiographic analyses revealed a mild reduction of bone volume in Phospho1-/- callus, although it was not statistically significant. An increase in trabecular number and a decrease in trabecular thickness and separation were observed in Phospho1-/- callus in comparison with the WT callus. Histomorphometric analyses showed that there was a marked increase of osteoid volume over bone volume in the Phospho1-/- callus. The three-point bending test showed that Phospho1-/- fractured bone had more of an elastic characteristic than the WT bone. CONCLUSION Our work suggests that PHOSPHO1 plays an integral role during bone fracture repair and may be a therapeutic target to improve the fracture healing process.Cite this article: M. W. Morcos, H. Al-Jallad, J. Li, C. Farquharson, J. L. Millán, R. C. Hamdy, M. Murshed. PHOSPHO1 is essential for normal bone fracture healing: An Animal Study. Bone Joint Res 2018;7:397-405. DOI: 10.1302/2046-3758.76.BJR-2017-0140.R2.
Collapse
Affiliation(s)
- M. W. Morcos
- Division of Paediatric Orthopaedic Surgery, and Department of Medicine, Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - H. Al-Jallad
- Division of Paediatric Orthopaedic Surgery, Shriners Hospital for Children, Montreal, Quebec, Canada
| | - J. Li
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - C. Farquharson
- Personal Chair of Skeletal Biology, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - J. L. Millán
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - R. C. Hamdy
- Division of Paediatric Orthopaedic Surgery, and Department of Medicine, Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - M. Murshed
- Department of Medicine, and Faculty of Dentistry, Shriners Hospital for Children and McGill University, Montreal, Quebec H4A 0A9, Canada
| |
Collapse
|
12
|
Choi ES, Lee H, Lee CH, Goh SH. Overexpression of KLHL23 protein from read-through transcription of PHOSPHO2-KLHL23 in gastric cancer increases cell proliferation. FEBS Open Bio 2016; 6:1155-1164. [PMID: 27833855 PMCID: PMC5095152 DOI: 10.1002/2211-5463.12136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Gene fusion, as a prototypical pathognomonic mutation, contributes to genome complexity, and the cis‐transcription‐induced gene fusions generated by read‐through transcription of adjacent genes have been found to be important for tumor development. We screened read‐through transcription events from stomach adenocarcinoma RNA‐seq data and selected three candidates PHOSPHO2‐KLHL23, RPL17‐C18orf32, and PRR5‐ARHGAP8, to assess their biological role in gastric cancer. The expression of all three read‐through fusion transcripts was confirmed in gastric cancer cell lines and paired normal/tumor gastric cancer tissues by real‐time quantitative reverse transcription polymerase chain reaction and their expression was found to be significantly higher in the tumor (P < 0.05; n = 75). The correlation between the expression level and clinicopathological information was statistically analyzed. The level of the PHOSPHO2‐KLHL23 read‐through fusion transcript correlated with the Lauren classification and was significantly associated with the presence of perineural invasion. Overexpression of KLHL23 from PHOSPHO2‐KLHL23 read‐through transcript led to a significant increase in cell proliferation and resistance to anticancer drug treatment. Silencing of KLHL23 expression decreased cyclin D1 levels. The expression of KLHL23 from prevalent read‐through transcripts of PHOSPHO2‐KLHL23 in gastric cancer may undermine the efficacy of anticancer drug treatment.
Collapse
Affiliation(s)
- Eun-Seok Choi
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea; Department of Environmental Medical Biology Institute of Tropical Medicine Yonsei University College of Medicine Seoul Korea
| | - Hanna Lee
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| | - Sung-Ho Goh
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| |
Collapse
|
13
|
Chaudhary SC, Kuzynski M, Bottini M, Beniash E, Dokland T, Mobley CG, Yadav MC, Poliard A, Kellermann O, Millán JL, Napierala D. Phosphate induces formation of matrix vesicles during odontoblast-initiated mineralization in vitro. Matrix Biol 2016; 52-54:284-300. [PMID: 26883946 PMCID: PMC4875887 DOI: 10.1016/j.matbio.2016.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Mineralization is a process of deposition of calcium phosphate crystals within a fibrous extracellular matrix (ECM). In mineralizing tissues, such as dentin, bone and hypertrophic cartilage, this process is initiated by a specific population of extracellular vesicles (EV), called matrix vesicles (MV). Although it has been proposed that MV are formed by shedding of the plasma membrane, the cellular and molecular mechanisms regulating formation of mineralization-competent MV are not fully elucidated. In these studies, 17IIA11, ST2, and MC3T3-E1 osteogenic cell lines were used to determine how formation of MV is regulated during initiation of the mineralization process. In addition, the molecular composition of MV secreted by 17IIA11 cells and exosomes from blood and B16-F10 melanoma cell line was compared to identify the molecular characteristics distinguishing MV from other EV. Western blot analyses demonstrated that MV released from 17IIA11 cells are characterized by high levels of proteins engaged in calcium and phosphate regulation, but do not express the exosomal markers CD81 and HSP70. Furthermore, we uncovered that the molecular composition of MV released by 17IIA11 cells changes upon exposure to the classical inducers of osteogenic differentiation, namely ascorbic acid and phosphate. Specifically, lysosomal proteins Lamp1 and Lamp2a were only detected in MV secreted by cells stimulated with osteogenic factors. Quantitative nanoparticle tracking analyses of MV secreted by osteogenic cells determined that standard osteogenic factors stimulate MV secretion and that phosphate is the main driver of their secretion. On the molecular level, phosphate-induced MV secretion is mediated through activation of extracellular signal-regulated kinases Erk1/2 and is accompanied by re-organization of filamentous actin. In summary, we determined that mineralization-competent MV are distinct from exosomes, and we identified a new role of phosphate in the process of ECM mineralization. These data provide novel insights into the mechanisms of MV formation during initiation of the mineralization process.
Collapse
Affiliation(s)
- Sandeep C Chaudhary
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria Kuzynski
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Inflammatory and Infectious Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Callie G Mobley
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manisha C Yadav
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anne Poliard
- EA2496 UFR d'Odontologie, Université Paris Descartes, Montrouge, France
| | - Odile Kellermann
- INSERM UMR-S 1124, Université René Descartes Paris 5, Centre Universitaire des Saints-Pères, Paris, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Dobrawa Napierala
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Li Z, Wu G, Sher RB, Khavandgar Z, Hermansson M, Cox GA, Doschak MR, Murshed M, Beier F, Vance DE. Choline kinase beta is required for normal endochondral bone formation. Biochim Biophys Acta Gen Subj 2014; 1840:2112-22. [PMID: 24637075 DOI: 10.1016/j.bbagen.2014.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb(-/-) mice display neonatal forelimb bone deformations. METHODS To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb(-/-) mice. RESULTS The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb(-/-) mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb(-/-) mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb(-/-) mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb(-/-) mice contained fewer osteoclasts along the cartilage/bone interface. CONCLUSIONS Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice. GENERAL SIGNIFICANCE Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.
Collapse
Affiliation(s)
- Zhuo Li
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | - Gengshu Wu
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | | | | | - Martin Hermansson
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | | | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Canada
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada.
| |
Collapse
|
15
|
Phosphatidylcholine metabolism and choline kinase in human osteoblasts. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:859-67. [PMID: 24583375 DOI: 10.1016/j.bbalip.2014.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/07/2014] [Accepted: 02/17/2014] [Indexed: 02/05/2023]
Abstract
There is a paucity of information about phosphatidylcholine (PC) biosynthesis in bone formation. Thus, we characterized PC metabolism in both primary human osteoblasts (HOB) and human osteosarcoma MG-63 cells. Our results show that the CDP-choline pathway is the only de novo route for PC biosynthesis in both HOB and MG-63 cells. Both CK activity and CKα expression in MG-63 cells were significantly higher than those in HOB cells. Silencing of CKα in MG-63 cells had no significant effect on PC concentration but decreased the amount of phosphocholine by approximately 80%. The silencing of CKα also reduced cell proliferation. Moreover, pharmacological inhibition of CK activity impaired the mineralization capacity of MG-63 cells. Our data suggest that CK and its product phosphocholine are required for the normal growth and mineralization of MG-63 cells.
Collapse
|
16
|
Seifried A, Knobloch G, Duraphe PS, Segerer G, Manhard J, Schindelin H, Schultz J, Gohla A. Evolutionary and structural analyses of mammalian haloacid dehalogenase-type phosphatases AUM and chronophin provide insight into the basis of their different substrate specificities. J Biol Chem 2013; 289:3416-31. [PMID: 24338473 DOI: 10.1074/jbc.m113.503359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian haloacid dehalogenase (HAD)-type phosphatases are an emerging family of phosphatases with important functions in physiology and disease, yet little is known about the basis of their substrate specificity. Here, we characterize a previously unexplored HAD family member (gene annotation, phosphoglycolate phosphatase), which we termed AUM, for aspartate-based, ubiquitous, Mg(2+)-dependent phosphatase. AUM is a tyrosine-specific paralog of the serine/threonine-specific protein and pyridoxal 5'-phosphate-directed HAD phosphatase chronophin. Comparative evolutionary and biochemical analyses reveal that a single, differently conserved residue in the cap domain of either AUM or chronophin is crucial for phosphatase specificity. We have solved the x-ray crystal structure of the AUM cap fused to the catalytic core of chronophin to 2.65 Å resolution and present a detailed view of the catalytic clefts of AUM and chronophin that explains their substrate preferences. Our findings identify a small number of cap domain residues that encode the different substrate specificities of AUM and chronophin.
Collapse
|
17
|
Abstract
Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene cause hypophosphatasia, a heritable form of rickets and osteomalacia, caused by an arrest in the propagation of hydroxyapatite (HA) crystals onto the collagenous extracellular matrix due to accumulation of extracellular inorganic pyrophosphate (PPi), a physiological TNAP substrate and a potent calcification inhibitor. However, TNAP knockout (Alpl(-/-)) mice are born with a mineralized skeleton and have HA crystals in their chondrocyte- and osteoblast-derived matrix vesicles (MVs). We have shown that PHOSPHO1, a soluble phosphatase with specificity for two molecules present in MVs, phosphoethanolamine and phosphocholine, is responsible for initiating HA crystal formation inside MVs and that PHOSPHO1 and TNAP have nonredundant functional roles during endochondral ossification. Double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality, despite normal systemic phosphate and calcium levels. This strongly suggests that the Pi needed for initiation of MV-mediated mineralization is produced locally in the perivesicular space. As both TNAP and nucleoside pyrophosphohydrolase-1 (NPP1) behave as potent ATPases and pyrophosphatases in the MV compartment, our current model of the mechanisms of skeletal mineralization implicate intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP and NPP1 in the extravesicular progression of mineralization.
Collapse
Affiliation(s)
- José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA,
| |
Collapse
|
18
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
19
|
Traylor RN, Dobyns WB, Rosenfeld JA, Wheeler P, Spence JE, Bandholz AM, Bawle EV, Carmany EP, Powell CM, Hudson B, Schultz RA, Shaffer LG, Ballif BC. Investigation of TBR1 Hemizygosity: Four Individuals with 2q24 Microdeletions. Mol Syndromol 2012; 3:102-112. [PMID: 23112752 DOI: 10.1159/000342008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2012] [Indexed: 12/19/2022] Open
Abstract
TBR1 encodes a transcription factor with critical roles in corticogenesis, including cortical neuron migration and axon pathfinding, establishment of regional and laminar identity of cortical neurons, and control of glutamatergic neuronal cell fate. Based upon TBR1's role in cortical development, we sought to investigate TBR1 hemizygosity in individuals referred for genetic evaluation of intellectual disability and developmental delay. We describe 4 patients with microdeletions identified by molecular cytogenetic techniques, encompassing TBR1 and spanning 2q24.1q31.1, ranging in size from 2.17 to 12.34 Mb. Only the patient with the largest deletion had a possible cortical malformation. Mild ventriculomegaly is the only common brain anomaly, present in all patients; a Chiari I malformation is seen in 2 patients, and mega cisterna magna is seen in a third. Our findings are consistent with Tbr1 mouse models showing that hemizygosity of the gene requires additional genetic factors for the manifestation of severe structural brain malformations. Other syndromic features are present in these patients, including autism spectrum disorders, ocular colobomas, and craniosynostosis, features that are likely affected by the deletion of genes other than TBR1.
Collapse
Affiliation(s)
- R N Traylor
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, Wash., USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Seifried A, Schultz J, Gohla A. Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J 2012; 280:549-71. [PMID: 22607316 DOI: 10.1111/j.1742-4658.2012.08633.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatases of the haloacid dehalogenase (HAD) superfamily of hydrolases are an ancient and very large class of enzymes that have evolved to dephosphorylate a wide range of low- and high molecular weight substrates with often exquisite specificities. HAD phosphatases constitute approximately one-fifth of all human phosphatase catalytic subunits. While the overall sequence similarity between HAD phosphatases is generally very low, family members can be identified based on the presence of a characteristic Rossmann-like fold and the active site sequence DxDx(V/T). HAD phosphatases employ an aspartate residue as a nucleophile in a magnesium-dependent phosphoaspartyl transferase reaction. Although there is genetic evidence demonstrating a causal involvement of some HAD phosphatases in diseases such as cancer, cardiovascular, metabolic and neurological disorders, the physiological roles of many of these enzymes are still poorly understood. In this review, we discuss the structure and evolution of human HAD phosphatases, and summarize their known functions in health and disease.
Collapse
Affiliation(s)
- Annegrit Seifried
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
21
|
Arabidopsis thaliana PECP1 — Enzymatic characterization and structural organization of the first plant phosphoethanolamine/phosphocholine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:319-25. [DOI: 10.1016/j.bbapap.2011.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
|
22
|
Domenech CE, Otero LH, Beassoni PR, Lisa AT. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa. Enzyme Res 2011; 2011:561841. [PMID: 21915373 PMCID: PMC3170909 DOI: 10.4061/2011/561841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 05/31/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure.
Collapse
Affiliation(s)
- Carlos Eduardo Domenech
- Departamento de Biología Molecular, Área Bioquímica, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | | | | | | |
Collapse
|
23
|
Huesa C, Yadav MC, Finnilä MA, Goodyear SR, Robins SP, Tanner KE, Aspden RM, Millán JL, Farquharson C. PHOSPHO1 is essential for mechanically competent mineralization and the avoidance of spontaneous fractures. Bone 2011; 48:1066-74. [PMID: 21272676 PMCID: PMC3078982 DOI: 10.1016/j.bone.2011.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 11/20/2022]
Abstract
Phosphatases are essential for the mineralization of the extracellular matrix within the skeleton. Their precise identities and functions however remain unclear. PHOSPHO1 is a phosphoethanolamine/phosphocholine phosphatase involved in the generation of inorganic phosphate for bone mineralization. It is highly expressed at sites of mineralization in bone and cartilage. The bones of Phospho1(-/-) mice are hypomineralized, bowed and present with spontaneous greenstick fractures at birth. In this study we show that PHOSPHO1 is essential for mechanically competent mineralization that is able to withstand habitual load. Long bones from Phospho1(-/-) mice did not fracture during 3-point bending but deformed plastically. With dynamic loading nanoindentation the elastic modulus and hardness of Phospho1(-/-) tibiae were significantly lower than wild-type tibia. Raman microscopy revealed significantly lower mineral:matrix ratios and lower carbonate substitutions in Phospho1(-/-) tibia. The altered dihydroxylysinonorleucine/hydroxylysinonorleucine and pyridinoline/deoxypyridinoline collagen crosslink ratios indicated possible changes in lysyl hydroxylase-1 activity and/or bone mineralization status. The bone formation and resorption markers, N-terminal propeptide and C-terminal telopeptide of Type I collagen, were both increased in Phospho1(-/-) mice and this we associated with increased bone remodeling during fracture repair or an attempt to remodel a mechanically competent bone capable of withstanding physiological load. In summary these data indicate that Phospho1(-/-) bones are hypomineralized and, consequently, are softer and more flexible. An inability to withstand physiological loading may explain the deformations noted. We hypothesize that this phenotype is due to the reduced availability of inorganic phosphate to form hydroxyapatite during mineralization, creating an undermineralized yet active bone.
Collapse
Affiliation(s)
- Carmen Huesa
- Bone Biology Group, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Manisha C. Yadav
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research institute, La Jolla, CA, USA
| | - Mikko A.J. Finnilä
- Department of Mechanical Engineering, Materials, University of Glasgow, Glasgow, UK
- Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Simon R. Goodyear
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Simon P. Robins
- Matrix Biochemistry Group, Rowett Research Institute of Health and Nutrition, University of Aberdeen, Aberdeen, UK
| | - K. Elizabeth Tanner
- Department of Mechanical Engineering, Materials, University of Glasgow, Glasgow, UK
| | - Richard M. Aspden
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research institute, La Jolla, CA, USA
| | - Colin Farquharson
- Bone Biology Group, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Beassoni PR, Otero LH, Boetsch C, Domenech CE, González-Nilo FD, Lisa AT. Site-directed mutations and kinetic studies show key residues involved in alkylammonium interactions and reveal two sites for phosphorylcholine in Pseudomonas aeruginosa phosphorylcholine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:858-63. [PMID: 21515416 DOI: 10.1016/j.bbapap.2011.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/17/2011] [Accepted: 04/01/2011] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine (Pcho) to produce choline and inorganic phosphate. PchP belongs to the haloacid dehalogenase superfamily (HAD) and possesses the three characteristic motifs of this family: motif I ((31)D and (33)D), motif II ((166)S), and motif III ((242)K, (261)G, (262)D and (267)D), which fold to form the catalytic site that binds the metal ion and the phosphate moiety of Pcho. Based on comparisons to the PHOSPHO1 and PHOSPHO2 human enzymes and the choline-binding proteins of Gram-(+) bacteria, we selected residues (42)E and (43)E and the aromatic triplet (82)YYY(84) for site-directed mutagenesis to study the interactions with Pcho and p-nitrophenylphosphate as substrates of PchP. Because mutations in (42)E, (43)E and the three tyrosine residues affect both the substrate affinity and the inhibitory effect produced by high Pcho concentrations, we postulate that two sites, one catalytic and one inhibitory, are present in PchP and that they are adjacent and share residues.
Collapse
Affiliation(s)
- Paola R Beassoni
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, X5800BYA Río Cuarto, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
25
|
HDHD1, which is often deleted in X-linked ichthyosis, encodes a pseudouridine-5'-phosphatase. Biochem J 2010; 431:237-44. [PMID: 20722631 DOI: 10.1042/bj20100174] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudouridine, the fifth-most abundant nucleoside in RNA, is not metabolized in mammals, but is excreted intact in urine. The purpose of the present work was to search for an enzyme that would dephosphorylate pseudouridine 5'-phosphate, a potential intermediate in RNA degradation. We show that human erythrocytes contain a pseudouridine-5'-phosphatase displaying a Km ≤ 1 μM for its substrate. The activity of the partially purified enzyme was dependent on Mg2+, and was inhibited by Ca2+ and vanadate, suggesting that it belonged to the 'haloacid dehalogenase' family of phosphatases. Its low molecular mass (26 kDa) suggested that this phosphatase could correspond to the protein encoded by the HDHD1 (haloacid dehalogenase-like hydrolase domain-containing 1) gene, present next to the STS (steroid sulfatase) gene on human chromosome Xp22. Purified human recombinant HDHD1 dephosphorylated pseudouridine 5'-phosphate with a kcat of 1.6 s-1, a Km of 0.3 μM and a catalytic efficiency at least 1000-fold higher than that on which it acted on other phosphate esters, including 5'-UMP. The molecular identity of pseudouridine-5'-phosphatase was confirmed by the finding that its activity was negligible (<10% of controls) in extracts of B-cell lymphoblasts or erythrocytes from X-linked ichthyosis patients harbouring a combined deletion of the STS gene (the X-linked ichthyosis gene) and the HDHD1 gene. Furthermore, pseudouridine-5'-phosphatase activity was 1.5-fold higher in erythrocytes from women compared with men, in agreement with the HDHD1 gene undergoing only partial inactivation in females. In conclusion, HDHD1 is a phosphatase specifically involved in dephosphorylation of a modified nucleotide present in RNA.
Collapse
|
26
|
Foster BL, Tompkins KA, Rutherford RB, Zhang H, Chu EY, Fong H, Somerman MJ. Phosphate: known and potential roles during development and regeneration of teeth and supporting structures. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2008; 84:281-314. [PMID: 19067423 PMCID: PMC4526155 DOI: 10.1002/bdrc.20136] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic phosphate (P(i)) is abundant in cells and tissues as an important component of nucleic acids and phospholipids, a source of high-energy bonds in nucleoside triphosphates, a substrate for kinases and phosphatases, and a regulator of intracellular signaling. The majority of the body's P(i) exists in the mineralized matrix of bones and teeth. Systemic P(i) metabolism is regulated by a cast of hormones, phosphatonins, and other factors via the bone-kidney-intestine axis. Mineralization in bones and teeth is in turn affected by homeostasis of P(i) and inorganic pyrophosphate (PPi), with further regulation of the P(i)/PP(i) ratio by cellular enzymes and transporters. Much has been learned by analyzing the molecular basis for changes in mineralized tissue development in mutant and knock-out mice with altered P(i) metabolism. This review focuses on factors regulating systemic and local P(i) homeostasis and their known and putative effects on the hard tissues of the oral cavity. By understanding the role of P(i) metabolism in the development and maintenance of the oral mineralized tissues, it will be possible to develop improved regenerative approaches.
Collapse
Affiliation(s)
- Brian L Foster
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Roberts S, Narisawa S, Harmey D, Millán JL, Farquharson C. Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization. J Bone Miner Res 2007; 22:617-27. [PMID: 17227223 DOI: 10.1359/jbmr.070108] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED PHOSPHO1 is a phosphatase highly expressed in bone. We studied its functional involvement in mineralization through the use of novel small molecule inhibitors. PHOSPHO1 expression was present within matrix vesicles, and inhibition of enzyme action caused a decrease in the ability of matrix vesicles to calcify. INTRODUCTION The novel phosphatase, PHOSPHO1, belongs to the haloacid dehalogenase superfamily of hydrolases and is capable of cleaving phosphoethanolamine (PEA) and phosphocholine to generate inorganic phosphate. Our aims in this study were to examine the expression of PHOSPHO1 in murine mineralizing cells and matrix vesicles (MV) and to screen a series of small-molecule PHOSPHO1-specific inhibitors for their ability to pharmacologically inhibit the first step of MV-mediated mineralization. MATERIALS AND METHODS q-PCR and immunohistochemistry were used to study the expression and localization profiles of PHOSPHO1. Inhibitors of PHOSPHO1's PEA hydrolase activity were discovered using high-throughput screening of commercially available chemical libraries. To asses the efficacy of these inhibitors to inhibit MV mineralization, MVs were isolated from TNAP-deficient (Akp2(-/-)) osteoblasts and induced to calcify in their presence. RESULTS q-PCR revealed a 120-fold higher level of PHOSPHO1 expression in bone compared with a range of soft tissues. The enzyme was immunolocalized to the early hypertrophic chondrocytes of the growth plate and to osteoblasts of trabecular surfaces and infilling primary osteons of cortical bone. Isolated MVs also contained PHOSPHO1. PEA hydrolase activity was observed in sonicated MVs from Akp2(-/-) osteoblasts but not intact MVs. Inhibitors to PHOSPHO1 were identified and characterized. Lansoprazole and SCH202676 inhibited the mineralization of MVs from Akp2(-/-) osteoblasts by 56.8% and 70.7%, respectively. CONCLUSIONS The results show that PHOSPHO1 localization is restricted to mineralizing regions of bone and growth plate and that the enzyme present within MVs is in an active state, inhibition of which decreases the capacity of MVs to mineralize. These data further support our hypothesis that PHOSPHO1 plays a role in the initiation of matrix mineralization.
Collapse
Affiliation(s)
- Scott Roberts
- Bone Biology Group, Roslin Institute, Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|