1
|
Jaufer AM, Bouhadana A, Fanucci GE. Hydrophobic Clusters Regulate Surface Hydration Dynamics of Bacillus subtilis Lipase A. J Phys Chem B 2024; 128:3919-3928. [PMID: 38628066 DOI: 10.1021/acs.jpcb.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The surface hydration diffusivity of Bacillus subtilis Lipase A (BSLA) has been characterized by low-field Overhauser dynamic nuclear polarization (ODNP) relaxometry using a series of spin-labeled constructs. Sites for spin-label incorporation were previously designed via an atomistic computational approach that screened for surface exposure, reflective of the surface hydration comparable to other proteins studied by this method, as well as minimal impact on protein function, dynamics, and structure of BSLA by excluding any surface site that participated in greater than 30% occupancy of a hydrogen bonding network within BSLA. Experimental ODNP relaxometry coupling factor results verify the overall surface hydration behavior for these BSLA spin-labeled sites similar to other globular proteins. Here, by plotting the ODNP parameters of relative diffusive water versus the relative bound water, we introduce an effective "phase-space" analysis, which provides a facile visual comparison of the ODNP parameters of various biomolecular systems studied to date. We find notable differences when comparing BSLA to other systems, as well as when comparing different clusters on the surface of BSLA. Specifically, we find a grouping of sites that correspond to the spin-label surface location within the two main hydrophobic core clusters of the branched aliphatic amino acids isoleucine, leucine, and valine cores observed in the BSLA crystal structure. The results imply that hydrophobic clustering may dictate local surface hydration properties, perhaps through modulation of protein conformations and samplings of the unfolded states, providing insights into how the dynamics of the hydration shell is coupled to protein motion and fluctuations.
Collapse
Affiliation(s)
- Afnan M Jaufer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Adam Bouhadana
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
3
|
Community evolution and frequent subgraph patterns affect the thermostability of B. subtilis lipase A. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Martínez R, Bernal C, Álvarez R, Concha C, Araya F, Cabrera R, Dhoke GV, Davari MD. Deletion and Randomization of Structurally Variable Regions in B. subtilis Lipase A (BSLA) Alter Its Stability and Hydrolytic Performance Against Long Chain Fatty Acid Esters. Int J Mol Sci 2020; 21:ijms21061990. [PMID: 32183336 PMCID: PMC7139672 DOI: 10.3390/ijms21061990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
The continuous search for novel enzyme backbones and the engineering of already well studied enzymes for biotechnological applications has become an increasing challenge, especially by the increasing potential diversity space provided by directed enzyme evolution approaches and the demands of experimental data generated by rational design of enzymes. In this work, we propose a semi-rational mutational strategy focused on introducing diversity in structurally variable regions in enzymes. The identified sequences are subjected to a progressive deletion of two amino acids and the joining residues are subjected to saturation mutagenesis using NNK degenerate codons. This strategy offers a novel library diversity approach while simultaneously decreasing enzyme size in the variable regions. In this way, we intend to identify and reduce variable regions found in enzymes, probably resulting from neutral drift evolution, and simultaneously studying the functional effect of said regions. This strategy was applied to Bacillus. subtilis lipase A (BSLA), by selecting and deleting six variable enzyme regions (named regions 1 to 6) by the deletion of two amino acids and additionally randomizing the joining amino acid residues. After screening, no active variants were found in libraries 1% and 4%, 15% active variants were found in libraries 2% and 3%, and 25% for libraries 5 and 6 (n = 3000 per library, activity detected using tributyrin agar plates). Active variants were assessed for activity in microtiter plate assay (pNP-butyrate), thermal stability, substrate preference (pNP-butyrate, -palmitate), and compared to wildtype BSLA. From these analyses, variant P5F3 (F41L-ΔW42-ΔD43-K44P), from library 3 was identified, showing increased activity towards longer chain p-nitrophenyl fatty acid esters, when compared to BSLA. This study allowed to propose the targeted region 3 (positions 40-46) as a potential modulator for substrate specificity (fatty acid chain length) in BSLA, which can be further studied to increase its substrate spectrum and selectivity. Additionally, this variant showed a decreased thermal resistance but interestingly, higher isopropanol and Triton X-100 resistance. This deletion-randomization strategy could help to expand and explore sequence diversity, even in already well studied and characterized enzyme backbones such as BSLA. In addition, this strategy can contribute to investigate and identify important non-conserved regions in classic and novel enzymes, as well as generating novel biocatalysts with increased performance in specific processes, such as enzyme immobilization.
Collapse
Affiliation(s)
- Ronny Martínez
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
- Correspondence: ; Tel.: +56-51-2334661; Fax: +56-51-2204446
| | - Claudia Bernal
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
| | - Rodrigo Álvarez
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
- Escuela de Tecnología Médica, Facultad de Salud, Sede La Serena, Universidad Santo Tomás, La Serena 1710172, Chile
| | - Christopher Concha
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
| | - Fernando Araya
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (F.A.); (R.C.)
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (F.A.); (R.C.)
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (G.V.D.); (M.D.D.)
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (G.V.D.); (M.D.D.)
| |
Collapse
|
5
|
Sani HA, Shariff FM, Rahman RNZRA, Leow TC, Salleh AB. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach. Mol Biotechnol 2018; 60:1-11. [PMID: 29058211 DOI: 10.1007/s12033-017-0038-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris-HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris-HCl pH 8, while for L2 lipase it was at 70 °C in Glycine-NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.
Collapse
Affiliation(s)
- Hartini Ahmad Sani
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Fairolniza Mohd Shariff
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Thean Chor Leow
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Salleh
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Skoczinski P, Volkenborn K, Fulton A, Bhadauriya A, Nutschel C, Gohlke H, Knapp A, Jaeger KE. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis. Microb Cell Fact 2017; 16:160. [PMID: 28946879 PMCID: PMC5613506 DOI: 10.1186/s12934-017-0772-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023] Open
Abstract
Background Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. Results In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. Conclusions Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an optimization target for successful protein production. Our results further suggest that variants with improved properties might be identified much faster and easier if mutagenesis is prioritized towards elements that contribute to enzymatic activity or structural integrity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0772-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pia Skoczinski
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.,Macromolecular Chemistry and New Polymeric Materials, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Kristina Volkenborn
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.,Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Anuseema Bhadauriya
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina Nutschel
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany. .,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
7
|
Al-Allaf FA, Taher MM, Abduljaleel Z, Bouazzaoui A, Athar M, Bogari NM, Abalkhail HA, Owaidah TM. Molecular Analysis of Factor VIII and Factor IX Genes in Hemophilia Patients: Identification of Novel Mutations and Molecular Dynamics Studies. J Clin Med Res 2017; 9:317-331. [PMID: 28270892 PMCID: PMC5330775 DOI: 10.14740/jocmr2876w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
Background Hemophilias A and B are X-linked bleeding disorders caused by mutations in the factor VIII and factor IX genes, respectively. Our objective was to identify the spectrum of mutations of the factor VIII and factor IX genes in Saudi Arabian population and determine the genotype and phenotype correlations by molecular dynamics (MD) simulation. Methods For genotyping, blood samples from Saudi Arabian patients were collected, and the genomic DNA was amplified, and then sequenced by Sanger method. For molecular simulations, we have used softwares such as CHARMM (Chemistry at Harvard Macromolecular Mechanics; http://www.charmm-gui.org) and GROMACS. In addition, the secondary structure was determined based on the solvent accessibility for the confirmation of the protein stability at the site of mutation. Results Six mutations (three novel and three known) were identified in factor VIII gene, and six mutations (one novel and five known) were identified in factor IX gene. The factor VIII novel mutations identified were c.99G>T, p. (W33C) in exon 1, c.2138 DelA, p. (N713Tfs*9) in eon14, also a novel mutation at splicing acceptor site of exon 23 c.6430 - 1G>A. In factor IX, we found a novel mutation c.855G>C, p. (E285D) in exon 8. These novel mutations were not reported in any factor VIII or factor IX databases previously. The deleterious effects of these novel mutations were confirmed by PolyPhen2 and SIFT programs. Conclusion The protein functional and structural studies and the models built in this work would be appropriate for predicting the effects of deleterious amino acid substitutions causing these genetic disorders. These findings are useful for genetic counseling in the case of consanguineous marriages which is more common in the Saudi Arabia.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Faculty of Medicine, Department of Medical Genetics, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Molecular Diagnostics Unit, Department of Laboratory Medicine and Blood Bank, King Abdullah Medical City, Makkah, Kingdom of Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; These authors contributed equally to this study
| | - Mohiuddin M Taher
- Faculty of Medicine, Department of Medical Genetics, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; These authors contributed equally to this study
| | - Zainularifeen Abduljaleel
- Faculty of Medicine, Department of Medical Genetics, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Abdellatif Bouazzaoui
- Faculty of Medicine, Department of Medical Genetics, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohammed Athar
- Faculty of Medicine, Department of Medical Genetics, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Neda M Bogari
- Faculty of Medicine, Department of Medical Genetics, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Halah A Abalkhail
- Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Tarek Ma Owaidah
- Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Rathi PC, Fulton A, Jaeger KE, Gohlke H. Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis. PLoS Comput Biol 2016; 12:e1004754. [PMID: 27003415 PMCID: PMC4803202 DOI: 10.1371/journal.pcbi.1004754] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/14/2016] [Indexed: 11/29/2022] Open
Abstract
Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein engineering studies aimed at improving thermostability have successfully applied both directed evolution and rational design. However, for rational approaches, the major challenge remains the prediction of mutation sites and optimal amino acid substitutions. Recently, we showed that such mutation sites can be identified as structural weak spots by rigidity theory-based thermal unfolding simulations of proteins. Here, we describe and validate a unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid substitutions at structural weak spots for improving a protein’s thermostability. For this, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state has been found as the cause for thermostability. When applied prospectively to lipase A from Bacillus subtilis, we achieved both a high success rate (25% over all experimentally tested mutations, which raises to 60% if small-to-large residue mutations and mutations in the active site are excluded) in predicting significantly thermostabilized lipase variants and a remarkably large increase in those variants’ thermostability (up to 6.6°C) based on single amino acid mutations. When considering negative controls in addition and evaluating the performance of our approach as a binary classifier, the accuracy is 63% and increases to 83% if small-to-large residue mutations and mutations in the active site are excluded. The gain in precision (predictive value for increased thermostability) over random classification is 1.6-fold (2.4-fold). Furthermore, an increase in thermostability predicted by our approach significantly points to increased experimental thermostability (p < 0.05). These results suggest that our strategy is a valuable complement to existing methods for rational protein design aimed at improving thermostability. Protein thermostability is a crucial factor for biotechnological enzyme applications. However, performance studies of computational approaches for predicting effects of mutations on protein (thermo)stability have suggested that there is still room for improvement. We describe and validate a novel and unique strategy to predict optimal amino acid substitutions at structural weak spots. At variance with other rational approaches, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state is the underlying cause for thermostability. When applied prospectively on lipase LipA from Bacillus subtilis, a high success rate in predicting thermostabilized lipase variants and a remarkably large increase in their thermostability is achieved. This demonstrates the value of the novel strategy, which extends the existing portfolio of methods for rational protein design.
Collapse
Affiliation(s)
- Prakash Chandra Rathi
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (KEJ); (HG)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (KEJ); (HG)
| |
Collapse
|
9
|
Rathi PC, Jaeger KE, Gohlke H. Structural Rigidity and Protein Thermostability in Variants of Lipase A from Bacillus subtilis. PLoS One 2015; 10:e0130289. [PMID: 26147762 PMCID: PMC4493141 DOI: 10.1371/journal.pone.0130289] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/18/2015] [Indexed: 11/24/2022] Open
Abstract
Understanding the origin of thermostability is of fundamental importance in protein biochemistry. Opposing views on increased or decreased structural rigidity of the folded state have been put forward in this context. They have been related to differences in the temporal resolution of experiments and computations that probe atomic mobility. Here, we find a significant (p = 0.004) and fair (R2 = 0.46) correlation between the structural rigidity of a well-characterized set of 16 mutants of lipase A from Bacillus subtilis (BsLipA) and their thermodynamic thermostability. We apply the rigidity theory-based Constraint Network Analysis (CNA) approach, analyzing directly and in a time-independent manner the statics of the BsLipA mutants. We carefully validate the CNA results on macroscopic and microscopic experimental observables and probe for their sensitivity with respect to input structures. Furthermore, we introduce a robust, local stability measure for predicting thermodynamic thermostability. Our results complement work that showed for pairs of homologous proteins that raising the structural stability is the most common way to obtain a higher thermostability. Furthermore, they demonstrate that related series of mutants with only a small number of mutations can be successfully analyzed by CNA, which suggests that CNA can be applied prospectively in rational protein design aimed at higher thermodynamic thermostability.
Collapse
Affiliation(s)
- Prakash Chandra Rathi
- Institute of Pharmaceutical and Medical Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Research Centre Jülich, Jülich, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medical Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
10
|
Abduljaleel Z, Al-Allaf FA, Khan W, Athar M, Shahzad N, Taher MM, Elrobh M, Alanazi MS, El-Huneidi W. Evidence of trem2 variant associated with triple risk of Alzheimer's disease. PLoS One 2014; 9:e92648. [PMID: 24663666 PMCID: PMC3963925 DOI: 10.1371/journal.pone.0092648] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/25/2014] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease is one of the main causes of dementia among elderly individuals and leads to the neurodegeneration of different areas of the brain, resulting in memory impairments and loss of cognitive functions. Recently, a rare variant that is associated with 3-fold higher risk of Alzheimer's disease onset has been found. The rare variant discovered is a missense mutation in the loop region of exon 2 of Trem2 (rs75932628-T, Arg47His). The aim of this study was to investigate the evidence for potential structural and functional significance of Trem2 gene variant (Arg47His) through molecular dynamics simulations. Our results showed the alteration caused due to the variant in TREM2 protein has significant effect on the ligand binding affinity as well as structural configuration. Based on molecular dynamics (MD) simulation under salvation, the results confirmed that native form of the variant (Arg47His) might be responsible for improved compactness, hence thereby improved protein folding. Protein simulation was carried out at different temperatures. At 300K, the deviation of the theoretical model of TREM2 protein increased from 2.0 Å at 10 ns. In contrast, the deviation of the Arg47His mutation was maintained at 1.2 Å until the end of the simulation (t = 10 ns), which indicated that Arg47His had reached its folded state. The mutant residue was a highly conserved region and was similar to "immunoglobulin V-set" and "immunoglobulin-like folds". Taken together, the result from this study provides a biophysical insight on how the studied variant could contribute to the genetic susceptibility to Alzheimer's disease.
Collapse
Affiliation(s)
- Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Genome Research Chair Unit, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Faisal A. Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wajahatullah Khan
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohiuddin M. Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Elrobh
- Genome Research Chair Unit, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Alanazi
- Genome Research Chair Unit, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Waseem El-Huneidi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 2013; 531:100-9. [DOI: 10.1016/j.abb.2012.09.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/19/2023]
|
12
|
Augustyniak W, Brzezinska AA, Pijning T, Wienk H, Boelens R, Dijkstra BW, Reetz MT. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention. Protein Sci 2012; 21:487-97. [PMID: 22267088 DOI: 10.1002/pro.2031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/14/2011] [Accepted: 01/08/2012] [Indexed: 11/10/2022]
Abstract
Previously, Lipase A from Bacillus subtilis was subjected to in vitro directed evolution using iterative saturation mutagenesis, with randomization sites chosen on the basis of the highest B-factors available from the crystal structure of the wild-type (WT) enzyme. This provided mutants that, unlike WT enzyme, retained a large part of their activity after heating above 65 °C and cooling down. Here, we subjected the three best mutants along with the WT enzyme to biophysical and biochemical characterization. Combining thermal inactivation profiles, circular dichroism, X-ray structure analyses and NMR experiments revealed that mutations of surface amino acid residues counteract the tendency of Lipase A to undergo precipitation under thermal stress. Reduced precipitation of the unfolding intermediates rather than increased conformational stability of the evolved mutants seems to be responsible for the activity retention.
Collapse
Affiliation(s)
- Wojciech Augustyniak
- Max-Planck-Institut fur Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mulheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Kamal MZ, Ahmad S, Molugu TR, Vijayalakshmi A, Deshmukh MV, Sankaranarayanan R, Rao NM. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation. J Mol Biol 2011; 413:726-41. [PMID: 21925508 DOI: 10.1016/j.jmb.2011.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 08/02/2011] [Accepted: 09/02/2011] [Indexed: 11/27/2022]
Abstract
Rational and in vitro evolutionary approaches to improve either protein stability or aggregation resistance were successful, but empirical rules for simultaneous improvement of both stability and aggregation resistance under denaturing conditions are still to be ascertained. We have created a robust variant of a lipase from Bacillus subtilis named "6B" using multiple rounds of in vitro evolution. T(m) and optimum activity temperature of 6B is 78 °C and 65 °C, respectively, which is ~22 °C and 30 °C higher than that of wild-type lipase. Most significantly, 6B does not aggregate upon heating. Physical basis of remarkable thermostability and non-aggregating behavior of 6B was explored using X-ray crystallography, NMR and differential scanning calorimetry. Our structural investigations highlight the importance of tightening of mobile regions of the molecule such as loops and helix termini to attain higher thermostability. Accordingly, NMR studies suggest a very rigid structure of 6B lipase. Further investigation suggested that reduction/perturbation of the large hydrophobic patches present in the wild-type protein structure, decreased propensity of amino acid sequence for aggregation and absence of aggregation-prone intermediate during thermal unfolding of 6B can account for its resistance to aggregation. Overall, our study suggest that better anchoring of the loops with the rest of the protein molecule through mutations particularly on the sites that perturb/disturb the exposed hydrophobic patches can simultaneously increase protein stability and aggregation resistance.
Collapse
Affiliation(s)
- Md Zahid Kamal
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad 500007, India
| | | | | | | | | | | | | |
Collapse
|