1
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Bhargava S, Kulkarni R, Dewangan B, Kulkarni N, Jiaswar C, Kumar K, Kumar A, Bodhe PR, Kumar H, Sahu B. Microtubule stabilising peptides: new paradigm towards management of neuronal disorders. RSC Med Chem 2023; 14:2192-2205. [PMID: 37974959 PMCID: PMC10650357 DOI: 10.1039/d3md00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuronal cells made of soma, axon, and dendrites are highly compartmentalized and possess a specialized transport system that can convey long-distance electrical signals for the cross-talk. The transport system is made up of microtubule (MT) polymers and MT-binding proteins. MTs play vital and diverse roles in various cellular processes. Therefore, defects and dysregulation of MTs and their binding proteins lead to many neurological disorders as exemplified by Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and many others. MT-stabilising agents (MSAs) altering the MT-associated protein connections have shown great potential for several neurodegenerative disorders. Peptides are an important class of molecules with high specificity, biocompatibility and are devoid of side effects. In the past, peptides have been explored in various neuronal disorders as therapeutics. Davunetide, a MT-stabilising octapeptide, has entered into phase II clinical trials for schizophrenia. Numerous examples of peptides emerging as MSAs reflect the emergence of a new paradigm for peptides which can be explored further as drug candidates for neuronal disorders. Although small molecule-based MSAs have been reviewed in the past, there is no systematic review in recent years focusing on peptides as MSAs apart from davunetide in 2013. Therefore, a systematic updated review on MT stabilising peptides may shed light on many hidden aspects and enable researchers to develop new therapies for diseases related to the CNS. In this review we have summarised the recent examples of peptides as MSAs.
Collapse
Affiliation(s)
- Shubhangi Bhargava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Riya Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bhaskar Dewangan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Chirag Jiaswar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Kunal Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Amit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Praveen Reddy Bodhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|
3
|
Zeng L, Zhang X, Xia M, Ye H, Li H, Gao Z. Heme and Cu 2+-induced vasoactive intestinal peptide (VIP) tyrosine nitration: A possible molecular mechanism for the attenuated anti-inflammatory effect of VIP in inflammatory diseases. Biochimie 2023; 214:176-187. [PMID: 37481062 DOI: 10.1016/j.biochi.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide that play an important role in immunoregulation and anti-inflammation. Numerous inflammatory/autoimmune disorders are associated with decreased VIP binding ability to receptors and diminished VIP activation of cAMP generation in immune cells. However, the mechanisms linking oxidative/nitrative stress to VIP immune dysfunction remain unknown. It has been reported that the elevated heme or Cu2+ in inflammatory diseases can cause oxidative and nitrative damage to nearby biological targets under high oxidative stress conditions, which affects the structure and activity of linked peptides or proteins. Thus, the VIP down-regulated immune response may be interfered by redox metal catalyzed VIP tyrosine nitration. To explore this, we systematically investigated the possibility of heme or Cu2+ to catalyze VIP tyrosine nitration. The results showed that Tyr10 and Tyr22 of VIP can both be nitrated in heme/H2O2/NO2- system as well as in Cu2+/H2O2/NO2- system. Then, we used synthetic mutant VIPs with tyrosine residues substituted by 3-nitrotyrosine to study the impact of tyrosine nitration on VIP activity in SHSY-5Y cells. Our findings demonstrated that VIP nitration dramatically decreased the content of its α-helix and random coil, suggesting that VIP nitration might reduce its affinity to the receptor. This was further confirmed in the cAMP assay. The results showed that 10 nM of these tyrosine nitrated VIPs could significantly (p < 0.01) decrease cAMP secretion compared to the wild type VIP. Our data reveal that the attenuation of the neuroprotective effect of VIP in inflammation-related diseases might be attributed to metal-catalyzed VIP tyrosine nitration.
Collapse
Affiliation(s)
- Lizhen Zeng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Mengyang Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Huixian Ye
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| |
Collapse
|
4
|
Mínguez-Toral M, Pacios LF, Sánchez F, Ponz F. Structural intrinsic disorder in a functionalized potyviral coat protein as a main viability determinant of its assembled nanoparticles. Int J Biol Macromol 2023; 236:123958. [PMID: 36906197 DOI: 10.1016/j.ijbiomac.2023.123958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
The viability of viral-derived nanoparticles (virions and VLPs) aimed to nanobiotechnological functionalizations of the coat protein (CP) of turnip mosaic virus has been studied by means of advanced computational methodologies that include molecular dynamics. The study has allowed to model the structure of the complete CP and its functionalization with three different peptides and obtain essential structural features such as order/disorder, interactions, and electrostatic potentials of their constituent domains. The results provide for the first time a dynamic view of a complete potyvirus CP, since experimental available structures so far obtained lack N- and C-terminal segments. The relevance of disorder in the most distal N-terminal subdomain, and the interaction of the less distal N-terminal subdomain with the highly ordered CP core, stand out as crucial characteristic for a viable CP. Preserving them proved of outmost importance to obtain viable potyviral CPs presenting peptides at their N-terminus.
Collapse
Affiliation(s)
- Marina Mínguez-Toral
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Luis F Pacios
- Departamento de Biotecnología-Biología Vegetal, ETSIAAB, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
5
|
Huang YH, Xie C, Chou CY, Jin Y, Li W, Wang M, Lu Y, Liu Z. Subtyping intractable functional constipation in children using clinical and laboratory data in a classification model. Front Pediatr 2023; 11:1148753. [PMID: 37168808 PMCID: PMC10165123 DOI: 10.3389/fped.2023.1148753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Background Children with intractable functional constipation (IFC) who are refractory to traditional pharmacological intervention develop severe symptoms that can persist even in adulthood, resulting in a substantial deterioration in their quality of life. In order to better manage IFC patients, efficient subtyping of IFC into its three subtypes, normal transit constipation (NTC), outlet obstruction constipation (OOC), and slow transit constipation (STC), at early stages is crucial. With advancements in technology, machine learning can classify IFC early through the use of validated questionnaires and the different serum concentrations of gastrointestinal motility-related hormones. Method A hundred and one children with IFC and 50 controls were enrolled in this study. Three supervised machine-learning methods, support vector machine, random forest, and light gradient boosting machine (LGBM), were used to classify children with IFC into the three subtypes based on their symptom severity, self-efficacy, and quality of life which were quantified using certified questionnaires and their serum concentrations of the gastrointestinal hormones evaluated with enzyme-linked immunosorbent assay. The accuracy of machine learning subtyping was evaluated with respect to radiopaque markers. Results Of 101 IFC patients, 37 had NTC, 49 had OOC, and 15 had STC. The variables significant for IFC subtype classification, according to SelectKBest, were stool frequency, the satisfaction domain of the Patient Assessment of Constipation Quality of Life questionnaire (PAC-QOL), the emotional self-efficacy for Functional Constipation questionnaire (SEFCQ), motilin serum concentration, and vasoactive intestinal peptide serum concentration. Among the three models, the LGBM model demonstrated an accuracy of 83.8%, a precision of 84.5%, a recall of 83.6%, a f1-score of 83.4%, and an area under the receiver operating characteristic curve (AUROC) of 0.89 in discriminating IFC subtypes. Conclusion Using clinical characteristics measured by certified questionnaires and serum concentrations of the gastrointestinal hormones, machine learning can efficiently classify pediatric IFC into its three subtypes. Of the three models tested, the LGBM model is the most accurate model for the classification of IFC, with an accuracy of 83.8%, demonstrating that machine learning is an efficient tool for the management of IFC in children.
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Chenjia Xie
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Chih-Yi Chou
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu Jin
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Quality Management, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wang
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Correspondence: Yan Lu Zhifeng Liu
| | - Zhifeng Liu
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
- Correspondence: Yan Lu Zhifeng Liu
| |
Collapse
|
6
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
7
|
Bassani D, Pavan M, Federico S, Spalluto G, Sturlese M, Moro S. The Multifaceted Role of GPCRs in Amyotrophic Lateral Sclerosis: A New Therapeutic Perspective? Int J Mol Sci 2022; 23:4504. [PMID: 35562894 PMCID: PMC9106011 DOI: 10.3390/ijms23094504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, which causes a progressive loss of movement ability, usually leading to death within 2 to 5 years from the diagnosis. Much effort has been put into research for an effective therapy for its eradication, but still, no cure is available. The only two drugs approved for this pathology, Riluzole and Edaravone, are onlyable to slow down the inevitable disease progression. As assessed in the literature, drug targets such as protein kinases have already been extensively examined as potential drug targets for ALS, with some molecules already in clinical trials. Here, we focus on the involvement of another very important and studied class of biological entities, G protein-coupled receptors (GPCRs), in the onset and progression of ALS. This workaimsto give an overview of what has been already discovered on the topic, providing useful information and insights that can be used by scientists all around the world who are putting efforts into the fight against this very important neurodegenerating disease.
Collapse
Affiliation(s)
- Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| |
Collapse
|
8
|
Armenta-Medina D, Brambila-Tapia AJL, Miranda-Jiménez S, Rodea-Montero ER. A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder. Diagnostics (Basel) 2022; 12:887. [PMID: 35453935 PMCID: PMC9028729 DOI: 10.3390/diagnostics12040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, a web application was developed that comprises scientific literature associated with the Coronaviridae family, specifically for those viruses that are members of the Genus Betacoronavirus, responsible for emerging diseases with a great impact on human health: Middle East Respiratory Syndrome-Related Coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV, SARS-CoV-2). The information compiled on this webserver aims to understand the basics of these viruses' infection, and the nature of their pathogenesis, enabling the identification of molecular and cellular components that may function as potential targets on the design and development of successful treatments for the diseases associated with the Coronaviridae family. Some of the web application's primary functions are searching for keywords within the scientific literature, natural language processing for the extraction of genes and words, the generation and visualization of gene networks associated with viral diseases derived from the analysis of latent semantic space, and cosine similarity measures. Interestingly, our gene association analysis reveals drug targets in understudies, and new targets suggested in the scientific literature to treat coronavirus.
Collapse
Affiliation(s)
- Dagoberto Armenta-Medina
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico;
- Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico
| | | | - Sabino Miranda-Jiménez
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico;
- Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico
| | | |
Collapse
|
9
|
Bruno S, Margiotta M, Cozzolino M, Bianchini P, Diaspro A, Cavanna L, Tognolini M, Abbruzzetti S, Viappiani C. A photosensitizing fusion protein with targeting capabilities. Biomol Concepts 2022; 13:175-182. [DOI: 10.1515/bmc-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marilena Margiotta
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marco Cozzolino
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Paolo Bianchini
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Alberto Diaspro
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza , Piacenza , Italy
| | - Massimiliano Tognolini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| |
Collapse
|
10
|
Alesci A, Pergolizzi S, Fumia A, Calabrò C, Lo Cascio P, Lauriano ER. Mast cells in goldfish (
Carassius auratus
) gut: Immunohistochemical characterization. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
11
|
Langer I, Jeandriens J, Couvineau A, Sanmukh S, Latek D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022; 10:406. [PMID: 35203615 PMCID: PMC8962308 DOI: 10.3390/biomedicines10020406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Homeostasis of the human immune system is regulated by many cellular components, including two neuropeptides, VIP and PACAP, primary stimuli for three class B G protein-coupled receptors, VPAC1, VPAC2, and PAC1. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) regulate intestinal motility and secretion and influence the functioning of the endocrine and immune systems. Inhibition of VIP and PACAP receptors is an emerging concept for new pharmacotherapies for chronic inflammation and cancer, while activation of their receptors provides neuroprotection. A small number of known active compounds for these receptors still impose limitations on their use in therapeutics. Recent cryo-EM structures of VPAC1 and PAC1 receptors in their agonist-bound active state have provided insights regarding their mechanism of activation. Here, we describe major molecular switches of VPAC1, VPAC2, and PAC1 that may act as triggers for receptor activation and compare them with similar non-covalent interactions changing upon activation that were observed for other GPCRs. Interhelical interactions in VIP and PACAP receptors that are important for agonist binding and/or activation provide a molecular basis for the design of novel selective drugs demonstrating anti-inflammatory, anti-cancer, and neuroprotective effects. The impact of genetic variants of VIP, PACAP, and their receptors on signalling mediated by endogenous agonists is also described. This sequence diversity resulting from gene splicing has a significant impact on agonist selectivity and potency as well as on the signalling properties of VIP and PACAP receptors.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Jérôme Jeandriens
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Alain Couvineau
- UMR 1149 Inserm, Centre de Recherche sur l’Inflammation (CRI), Université de Paris, 75018 Paris, France;
| | - Swapnil Sanmukh
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| |
Collapse
|
12
|
Integrative Bioinformatics Analysis Reveals That Infarct-Mediated Overexpression of Potential miR-662/CREB1 Pathway-Induced Neuropeptide VIP Is Associated with the Risk of Atrial Fibrillation: A Correlation Analysis between Myocardial Electrophysiology and Neuroendocrine. DISEASE MARKERS 2021; 2021:8116633. [PMID: 34853624 PMCID: PMC8629660 DOI: 10.1155/2021/8116633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Background Neuropeptide levels are closely associated with the development and maintenance of atrial fibrillation (AF) after myocardial infarction (MI). This study was aimed at investigating the regulatory network that affects neuropeptide expression through transcription factor modulation. Methods We downloaded three datasets from the GEO database, and after performing differential and crosstabulation analyses, we screened out differentially expressed (DE) miRNAs and DEmRNAs coexpressed in AF and MI and performed DEmiRNA–DEmRNA pairing prediction; from which, we constructed a regulatory network. Subsequently, the hsa-miR-662-CREB1-VIP axis was obtained, and the role of CREB1 and VIP in the development of AF after MI was further revealed by single-cell analysis and prediction model construction. Results In this study, eight DEmRNAs and four miRNAs were screened. hsa-miR-662 was identified by database integration analysis to regulate the transcription factor CREB1, a potential transcriptional regulator in VIP. CREB1 and VIP are mainly enriched in pathways of energy metabolism, ion channels, and myocardial contraction. CREB1 and VIP were identified as biomarkers of the onset and prognosis of MI and AF. Conclusions In this study, the miR-662/CREB1/VIP regulatory pathway was constructed through integrated analysis of datasets, thus providing new ideas to study the mechanisms of AF development.
Collapse
|
13
|
Sakamoto K, Chen L, Miyaoka T, Yamada M, Masutani T, Ishimoto K, Hino N, Nakagawa S, Asano S, Ago Y. Generation of KS-133 as a Novel Bicyclic Peptide with a Potent and Selective VIPR2 Antagonist Activity that Counteracts Cognitive Decline in a Mouse Model of Psychiatric Disorders. Front Pharmacol 2021; 12:751587. [PMID: 34819858 PMCID: PMC8607231 DOI: 10.3389/fphar.2021.751587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Worldwide, more than 20 million people suffer from schizophrenia, but effective and definitive new therapeutic drugs/treatments have not been established. Vasoactive intestinal peptide receptor 2 (VIPR2) might be an attractive drug target for the treatment of schizophrenia because both preclinical and clinical studies have demonstrated a strong link between high expression/overactivation of VIPR2 and schizophrenia. Nevertheless, VIPR2-targeting drugs are not yet available. VIPR2 is a class-B G protein-coupled receptor that possesses high structural homology to its subtypes, vasoactive intestinal peptide receptor 1 (VIPR1) and pituitary adenylate cyclase-activating polypeptide type-1 receptor (PAC1). These biological and structural properties have made it difficult to discover small molecule drugs against VIPR2. In 2018, cyclic peptide VIpep-3, a VIPR2-selective antagonist, was reported. The aim of this study was to generate a VIpep-3 derivative for in vivo experiments. After amino acid substitution and structure optimization, we successfully generated KS-133 with 1) a VIPR2-selective and potent antagonistic activity, 2) at least 24 h of stability in plasma, and 3) in vivo pharmacological efficacies in a mouse model of psychiatric disorders through early postnatal activation of VIPR2. To the best of our knowledge, this is the first report of a VIPR2-selective antagonistic peptide that counteracts cognitive decline, a central feature of schizophrenia. KS-133 may contribute to studies and development of novel schizophrenia therapeutic drugs that target VIPR2.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research and Development Department, Ichimaru Pharcos Company Limited, Gifu, Japan
| | - Lu Chen
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsunori Miyaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mei Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Teruaki Masutani
- Research and Development Department, Ichimaru Pharcos Company Limited, Gifu, Japan
| | - Kenji Ishimoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Ago
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. The wHole Story About Fenestrations in LSEC. Front Physiol 2021; 12:735573. [PMID: 34588998 PMCID: PMC8473804 DOI: 10.3389/fphys.2021.735573] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.
Collapse
Affiliation(s)
- Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Larissa D Kruse
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Christopher Florian Holte
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bartlomiej Zapotoczny
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
15
|
Pałasz A, Della Vecchia A, Saganiak K, Worthington JJ. Neuropeptides of the human magnocellular hypothalamus. J Chem Neuroanat 2021; 117:102003. [PMID: 34280488 DOI: 10.1016/j.jchemneu.2021.102003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/30/2023]
Abstract
Hypothalamic magnocellular nuclei with their large secretory neurons are unique and phylogenetically conserved brain structures involved in the continual regulation of important homeostatic and autonomous functions in vertebrate species. Both canonical and newly identified neuropeptides have a broad spectrum of physiological activity at the hypothalamic neuronal circuit level located within the supraoptic (SON) and paraventricular (PVN) nuclei. Magnocellular neurons express a variety of receptors for neuropeptides and neurotransmitters and therefore receive numerous excitatory and inhibitory inputs from important subcortical neural areas such as limbic and brainstem populations. These unique cells are also densely innervated by axons from other hypothalamic nuclei. The vast majority of neurochemical maps pertain to animal models, mainly the rodent hypothalamus, however accumulating preliminary anatomical structural studies have revealed the presence and distribution of several neuropeptides in the human magnocellular nuclei. This review presents a novel and comprehensive evidence based evaluation of neuropeptide expression in the human SON and PVN. Collectively this review aims to cast a new, medically oriented light on hypothalamic neuroanatomy and contribute to a better understanding of the mechanisms responsible for neuropeptide-related physiology and the nature of possible neuroendocrinal interactions between local regulatory pathways.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 67, Via Roma, 56100, Pisa, Italy
| | - Karolina Saganiak
- Department of Anatomy, Collegium Medicum, Jagiellonian University, ul. Kopernika 12, 31-034, Kraków, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| |
Collapse
|
16
|
Semaniakou A, Chappe F, Anini Y, Chappe V. VIP reduction in the pancreas of F508del homozygous CF mice and early signs of Cystic Fibrosis Related Diabetes (CFRD). J Cyst Fibros 2021; 20:881-890. [PMID: 34034984 DOI: 10.1016/j.jcf.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients. We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation. VIP deficiency resulted from a reduction in VIPergic and cholinergic innervation, starting before signs of CF disease were observed. As VIP functions as a neuromodulator with insulinotropic effect on pancreatic beta cells, we sought to study changes in VIP in the pancreas of CF mice. Our goal was to examine VIP content and VIPergic innervation in the pancreas of 8- and 17-week-old F508del-CFTR homozygous mice and to determine whether changes in VIP levels would contribute to CFRD development. Our data showed that a decreased amount of VIP and reduced innervation are found in CF mice pancreas, and that these mice also exhibited reduced insulin secretion, up-regulation of glucagon production and high random blood glucose levels compared to same-age wild-type mice. We propose that low level of VIP, due to reduced innervation of the CF pancreas and starting at an early disease stage, contributes to changes in insulin and glucagon secretion that can lead to CFRD development.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Obstetrics and Gynecology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
17
|
Zhao F, Li Q, Chen W, Zhu H, Zhou D, Reinach PS, Yang Z, He M, Xue A, Wu D, Liu T, Fu Q, Zeng C, Qu J, Zhou X. Dysfunction of VIPR2 leads to myopia in humans and mice. J Med Genet 2020; 59:88-100. [DOI: 10.1136/jmedgenet-2020-107220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023]
Abstract
BackgroundMyopia is the leading cause of refractive errors. As its pathogenesis is poorly understood, we determined if the retinal VIP-VIPR2 signalling pathway axis has a role in controlling signalling output that affects myopia development in mice.MethodsAssociation analysis meta-study, single-cell transcriptome, bulk RNA sequencing, pharmacological manipulation and VIPR2 gene knockout studies were used to clarify if changes in the VIP-VIPR2 signalling pathway affect refractive development in mice.ResultsThe SNP rs6979985 of the VIPR2 gene was associated with high myopia in a Chinese Han cohort (randomceffect model: p=0.013). After either 1 or 2 days’ form deprivation (FD) retinal VIP mRNA expression was downregulated. Retinal single-cell transcriptome sequencing showed that VIPR2 was expressed mainly by bipolar cells. Furthermore, the cAMP signalling pathway axis was inhibited in some VIPR2+ clusters after 2 days of FD. The selective VIPR2 antagonist PG99-465 induced relative myopia, whereas the selective VIPR2 agonist Ro25-1553 inhibited this response. In Vipr2 knockout (Vipr2-KO) mice, refraction was significantly shifted towards myopia (p<0.05). The amplitudes of the bipolar cell derived b-waves in 7-week-old Vipr2-KO mice were significantly larger than those in their WT littermates (p<0.05).ConclusionsLoss of VIPR2 function likely compromises bipolar cell function based on presumed changes in signal transduction due to altered signature electrical wave activity output in these mice. As these effects correspond with increases in form deprivation myopia (FDM), the VIP-VIPR2 signalling pathway axis is a viable novel target to control the development of this condition.
Collapse
|
18
|
Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat Commun 2020; 11:4121. [PMID: 32807782 PMCID: PMC7431577 DOI: 10.1038/s41467-020-17933-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vasoactive intestinal polypeptide receptor (VIP1R) is a widely expressed class B G protein-coupled receptor and a drug target for the treatment of neuronal, metabolic, and inflammatory diseases. However, our understanding of its mechanism of action and the potential of drug discovery targeting this receptor is limited by the lack of structural information of VIP1R. Here we report a cryo-electron microscopy structure of human VIP1R bound to PACAP27 and Gs heterotrimer, whose complex assembly is stabilized by a NanoBiT tethering strategy. Comparison with other class B GPCR structures reveals that PACAP27 engages VIP1R with its N-terminus inserting into the ligand binding pocket at the transmembrane bundle of the receptor, which subsequently couples to the G protein in a receptor-specific manner. This structure has provided insights into the molecular basis of PACAP27 binding and VIP receptor activation. The methodology of the NanoBiT tethering may help to provide structural information of unstable complexes. Vasoactive intestinal polypeptide receptor (VIP1R) is a widely expressed class B G protein-coupled receptor and a drug target for the treatment of inflammatory diseases. Here authors report a cryoelectron microscopy structure of human VIP1R bound to PACAP27 and Gs heterotrimer, which provides insights into PACAP27 binding and VIP receptor activation.
Collapse
|
19
|
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 2019; 8. [PMID: 31559013 PMCID: PMC6743256 DOI: 10.12688/f1000research.18039.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mari Iwasaki
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Departments of Medicine and Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
20
|
Chen C, Zheng Z, Li B, Zhou L, Pang J, Wu W, Zheng C, Zhao Y. Pancreatic VIPomas from China: Case reports and literature review. Pancreatology 2019; 19:44-49. [PMID: 30391116 DOI: 10.1016/j.pan.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 01/30/2023]
Abstract
Vasoactive intestinal polypeptide-secreting tumors (VIPomas) are rare neuroendocrine tumors that often present as watery diarrhea, hypokalemia, and achlorhydria or hypochlorhydria. In this study, we present our institutional experience of diagnosis and treatment of VIPomas, along with a review of the Chinese literature since 1980. Patient #1, diagnosed in 1984 and with intact clinical records, shows the natural history of this disease. Patient #2, diagnosed in 2015, shows the results of evaluation by nuclear medicine techniques and the outcomes of standardized treatment. Comprehensive review of 41 cases allows evaluation of clinical characteristics, treatments and outcomes of pancreatic VIPoma patients. All patients presented with watery diarrhea. The average stool volume reached 3247 mL per day. Average serum VIP level was 839.3 ng/L. Twelve of the 41 cases were reported to have metastases at diagnosis. Somatostatin receptor scintigraphy and 18FDG PET-CT are efficient methods for detection of VIPoma. Surgical excision can promptly alleviate hormonal symptoms.
Collapse
Affiliation(s)
- Chuyan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhibo Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Binglu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chaoji Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Lim CH, Lee MYM, Soga T, Parhar I. Evolution of Structural and Functional Diversity of Spexin in Mammalian and Non-mammalian Vertebrate Species. Front Endocrinol (Lausanne) 2019; 10:379. [PMID: 31275244 PMCID: PMC6593056 DOI: 10.3389/fendo.2019.00379] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/28/2019] [Indexed: 01/15/2023] Open
Abstract
Spexin (SPX) is a novel neuropeptide, which was first identified in the human genome using bioinformatics. Since then, orthologs of human SPX have been identified in mammalian and non-mammalian vertebrates. The mature sequence of SPX, NWTPQAMLYLKGAQ, is evolutionally conserved across vertebrate species, with some variations in teleost species where Ala at position 13 is substituted by Thr. In mammals, the gene structure of SPX comprises six exons and five introns, however, variation exists within non-mammalian species, goldfish and zebrafish having five exons while grouper has six exons. Phylogenetic and synteny analysis, reveal that SPX is grouped together with two neuropeptides, kisspeptin (KISS) and galanin (GAL) as a family of peptides with a common evolutionary ancestor. A paralog of SPX, termed SPX2 has been identified in non-mammalians but not in the mammalian genome. Ligand-receptor interaction study also shows that SPX acts as a ligand for GAL receptor 2 (2a and 2b in non-mammalian vertebrates) and 3. SPX acts as a neuromodulator with multiple central and peripheral physiological roles in the regulation of insulin release, fat metabolism, feeding behavior, and reproduction. Collectively, this review provides a comprehensive overview of the evolutionary diversity as well as molecular and physiological roles of SPX in mammalian and non-mammalian vertebrate species.
Collapse
|
22
|
Ambrosio E, Podmore A, Gomes dos Santos AL, Magarkar A, Bunker A, Caliceti P, Mastrotto F, van der Walle CF, Salmaso S. Control of Peptide Aggregation and Fibrillation by Physical PEGylation. Biomacromolecules 2018; 19:3958-3969. [DOI: 10.1021/acs.biomac.8b00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elena Ambrosio
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Adrian Podmore
- Formulation Sciences, MedImmune Ltd., Granta Park, Cambridge CB21 6GH, United Kingdom
| | | | - Aniket Magarkar
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
| | - Alex Bunker
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | | | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
23
|
Liu X, Liu H, Xiong Y, Yang L, Wang C, Zhang R, Zhu X. Postmenopausal osteoporosis is associated with the regulation of SP, CGRP, VIP, and NPY. Biomed Pharmacother 2018; 104:742-750. [PMID: 29807224 DOI: 10.1016/j.biopha.2018.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Estrogen deficiency is the main factor underlying postmenopausal osteoporosis. A large number of neuropeptides, which regulate skeletal metabolism, potentially represent a regulatory pathway for the pathogenesis of osteoporosis. The aim of this study was to explore factors involved in the regulation of bone-related neuropeptides and their association with estrogen deficiency and bone metabolism. Thirty adult female Sprague-Dawley (SD) rats were randomly divided into a control group with sham surgery (n = 15) and an ovariectomy group with bilateral oophorectomy (n = 15). After 16 weeks, serum estrogen was reduced,CTX-1 was increased and P1NP was not significantly affected in the ovariectomy group and a model of osteoporosis was established. We then investigate the gene expression and protein levels of a range of neuropeptides and their receptors, including substance P (SP) and tachykinin receptor 1 (TACR1), calcitonin gene-related peptide (CGRP) and calcitonin receptor-like (CALCRL), vasoactive intestinal polypeptide (VIP) and receptor 1 and 2 (VPAC1, 2), neuropeptide Y (NPY) and receptor Y1 and Y2, in the brain and femora. Ovariectomy reduced TACR1, CGRP, CALCRL, NPY, NPY Y2 in the brain, but increased TACR1 and decreased SP, CALCRL, VIP, VPAC2 in the bone. Collectively, our data revealed that the pathogenesis of postmenopausal osteoporosis is associated with the regulation of SP, CGRP, VIP, and NPY. These novel results are of significant importance in the development of neuropeptides as therapeutic targets.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Jinan University College of Traditional Chinese Medicine, Guangzhou 510632, PR China
| | - Hengrui Liu
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Yingquan Xiong
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Li Yang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Chaopeng Wang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Ronghua Zhang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China.
| | - Xiaofeng Zhu
- First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
24
|
Sun D, Chen J, Liu L, Zhao G, Dong P, Wu B, Wang J, Dong L. Establishment of a 12-gene expression signature to predict colon cancer prognosis. PeerJ 2018; 6:e4942. [PMID: 29915691 PMCID: PMC6004299 DOI: 10.7717/peerj.4942] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
A robust and accurate gene expression signature is essential to assist oncologists to determine which subset of patients at similar Tumor-Lymph Node-Metastasis (TNM) stage has high recurrence risk and could benefit from adjuvant therapies. Here we applied a two-step supervised machine-learning method and established a 12-gene expression signature to precisely predict colon adenocarcinoma (COAD) prognosis by using COAD RNA-seq transcriptome data from The Cancer Genome Atlas (TCGA). The predictive performance of the 12-gene signature was validated with two independent gene expression microarray datasets: GSE39582 includes 566 COAD cases for the development of six molecular subtypes with distinct clinical, molecular and survival characteristics; GSE17538 is a dataset containing 232 colon cancer patients for the generation of a metastasis gene expression profile to predict recurrence and death in COAD patients. The signature could effectively separate the poor prognosis patients from good prognosis group (disease specific survival (DSS): Kaplan Meier (KM) Log Rank p = 0.0034; overall survival (OS): KM Log Rank p = 0.0336) in GSE17538. For patients with proficient mismatch repair system (pMMR) in GSE39582, the signature could also effectively distinguish high risk group from low risk group (OS: KM Log Rank p = 0.005; Relapse free survival (RFS): KM Log Rank p = 0.022). Interestingly, advanced stage patients were significantly enriched in high 12-gene score group (Fisher’s exact test p = 0.0003). After stage stratification, the signature could still distinguish poor prognosis patients in GSE17538 from good prognosis within stage II (Log Rank p = 0.01) and stage II & III (Log Rank p = 0.017) in the outcome of DFS. Within stage III or II/III pMMR patients treated with Adjuvant Chemotherapies (ACT) and patients with higher 12-gene score showed poorer prognosis (III, OS: KM Log Rank p = 0.046; III & II, OS: KM Log Rank p = 0.041). Among stage II/III pMMR patients with lower 12-gene scores in GSE39582, the subgroup receiving ACT showed significantly longer OS time compared with those who received no ACT (Log Rank p = 0.021), while there is no obvious difference between counterparts among patients with higher 12-gene scores (Log Rank p = 0.12). Besides COAD, our 12-gene signature is multifunctional in several other cancer types including kidney cancer, lung cancer, uveal and skin melanoma, brain cancer, and pancreatic cancer. Functional classification showed that seven of the twelve genes are involved in immune system function and regulation, so our 12-gene signature could potentially be used to guide decisions about adjuvant therapy for patients with stage II/III and pMMR COAD.
Collapse
Affiliation(s)
- Dalong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Longzi Liu
- Department of Hepatic Surgery, Liver Cancer Institute, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxi Zhao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pingping Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingrui Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Leem J, Lee SMK, Park JH, Lee S, Chung H, Lee JM, Kim W, Lee S, Woo JS. Efficacy and safety of electroacupuncture in acute decompensated heart failure: a study protocol for a randomized, patient- and assessor-blinded, sham controlled trial. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:361. [PMID: 28697773 PMCID: PMC5504710 DOI: 10.1186/s12906-017-1864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
Background The purpose of this trial is to evaluate the effectiveness and safety of electroacupuncture in the treatment of acute decompensated heart failure compared with sham electroacupuncture. Methods This protocol is for a randomized, sham controlled, patient- and assessor-blinded, parallel group, single center clinical trial that can overcome the limitations of previous trials examining acupuncture and heart failure. Forty-four acute decompensated heart failure patients admitted to the cardiology ward will be randomly assigned into the electroacupuncture treatment group (n = 22) or the sham electroacupuncture control group (n = 22). Participants will receive electroacupuncture treatment for 5 days of their hospital stay. The primary outcome of this study is the difference in total diuretic dose between the two groups during hospitalization. On the day of discharge, follow-up heart rate variability, routine blood tests, cardiac biomarkers, high-sensitivity C-reactive protein (hs-CRP) level, and N-terminal pro b-type natriuretic peptide (NT-pro BNP) level will be assessed. Four weeks after discharge, hs-CRP, NT-pro BNP, heart failure symptoms, quality of life, and a pattern identification questionnaire will be used for follow-up analysis. Six months after discharge, major cardiac adverse events and cardiac function measured by echocardiography will be assessed. Adverse events will be recorded during every visit. Discussion The result of this clinical trial will offer evidence of the effectiveness and safety of electroacupuncture for acute decompensated heart failure. Trial registration Clinical Research Information Service: KCT0002249.
Collapse
|
26
|
Jiang W, Wang H, Li YS, Luo W. Role of vasoactive intestinal peptide in osteoarthritis. J Biomed Sci 2016; 23:63. [PMID: 27553659 PMCID: PMC4995623 DOI: 10.1186/s12929-016-0280-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) plays important roles in many biological functions, such as, stimulation of contractility in the heart, vasodilation, promoting neuroendocrine-immune communication, lowering arterial blood pressure, and anti-inflammatory and immune-modulatory activity. Osteoarthritis (OA) is a chronic and degenerative bone disease, which is one of the most common causes of disability and most common in both sexes as people become older. Interestingly VIP can prevent chronic cartilage damage and joint remodeling. This review article provides update information on the association of VIP and OA and its treatment. Evidences suggest that VIP is down-regulated in synovial fluid of OA, and VIP down-regulation leads to increase in the production of pro-inflammatory cytokines that might contribute to the pathogenesis of OA; however contradictory reports also exist suggesting that accumulation of VIP in joints can also contribute OA. A number of studies indicated that up-regulation of VIP can counteract the action of pro-inflammatory stimuli and alleviate the pain in OA. More clinical investigations are necessary to determine the biology of VIP and its therapeutic potential in OA that might represent the future standards of care for OA.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Bone and Joint, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, 518020, China
| | - Hua Wang
- Department of Bone and Joint, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, 518020, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiang-ya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Wei Luo
- Department of Orthopaedics, Xiang-ya Hospital, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
27
|
Singh K, Senthil V, Arokiaraj AWR, Leprince J, Lefranc B, Vaudry D, Allam AA, Ajarem J, Chow BKC. Structure-Activity Relationship Studies of N- and C-Terminally Modified Secretin Analogs for the Human Secretin Receptor. PLoS One 2016; 11:e0149359. [PMID: 26930505 PMCID: PMC4773067 DOI: 10.1371/journal.pone.0149359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/03/2016] [Indexed: 11/18/2022] Open
Abstract
The pleiotropic role of human secretin (hSCT) validates its potential use as a therapeutic agent. Nevertheless, the structure of secretin in complex with its receptor is necessary to develop a suitable therapeutic agent. Therefore, in an effort to design a three-dimensional virtual homology model and identify a peptide agonist and/or antagonist for the human secretin receptor (hSR), the significance of the primary sequence of secretin peptides in allosteric binding and activation was elucidated using virtual docking, FRET competitive binding and assessment of the cAMP response. Secretin analogs containing various N- or C-terminal modifications were prepared based on previous findings of the role of these domains in receptor binding and activation. These analogs exhibited very low or no binding affinity in a virtual model, and were found to neither exhibit in vitro binding nor agonistic or antagonistic properties. A parallel analysis of the analogs in the virtual model and in vitro studies revealed instability of these peptide analogs to bind and activate the receptor.
Collapse
Affiliation(s)
- Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vijayalakshmi Senthil
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - Ahmed A. Allam
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
28
|
Longo E, Santis ED, Hussain R, van der Walle CF, Casas-Finet J, Uddin S, Santos AD, Siligardi G. The effect of palmitoylation on the conformation and physical stability of a model peptide hormone. Int J Pharm 2014; 472:156-64. [PMID: 24928136 DOI: 10.1016/j.ijpharm.2014.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/04/2014] [Accepted: 06/07/2014] [Indexed: 02/08/2023]
Abstract
Peptides are ideal drug candidates due to their potency and specificity, but suffer from a short half-life and low membrane permeability. Acylation can overcome these limitations but the consequences to stability under different formulation conditions and stresses are largely unreported. Using synchrotron radiation circular dichroism (SRCD), we show that palmitoylation of a 28 amino acid peptide hormone (pI 9.82) induced a structural transition from 310-helix to α-helix, irrespective of buffer type and pH investigated (5.5-8.0) when compared to the non acylated analogues. These conformational preferences were retained in the presence of non-ionic micelles but not anionic micelles, which induced an α-helical structure for all peptides. Palmitoylation promoted an irreversible peptide denaturation under thermal stress at pH ≥ 6.5 and increased the propensity for loss of helical structure under high photon flux (here used as a novel accelerated photostability test). The presence of either ionic or non-ionic micelles did not recover these conformational changes over the same irradiation period. These results demonstrate that acylation can change peptide conformation and decrease thermal-/photo-stability, with important consequences for drug-development strategies.
Collapse
Affiliation(s)
- Edoardo Longo
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Emiliana De Santis
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom.
| | | | - Jose Casas-Finet
- MedImmune LLC, Analytical Biochemistry, Gaithersburg, MD 20878, USA
| | - Shahid Uddin
- MedImmune Ltd., Formulation Sciences, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Ana Dos Santos
- MedImmune Ltd., Formulation Sciences, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
29
|
Wong MKH, Sze KH, Chen T, Cho CK, Law HCH, Chu IK, Wong AOL. Goldfish spexin: solution structure and novel function as a satiety factor in feeding control. Am J Physiol Endocrinol Metab 2013; 305:E348-66. [PMID: 23715729 DOI: 10.1152/ajpendo.00141.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spexin (SPX) is a neuropeptide identified recently by bioinformatic approach. At present not much is known about its biological actions, and comparative studies of SPX in nonmammalian species are still lacking. To examine the structure and function of SPX in fish model, SPX was cloned in goldfish and found to be highly comparable with its mammalian counterparts. As revealed by NMR spectroscopies, goldfish SPX is composed of an α-helix from Gln(5) to Gln(14) with a flexible NH2 terminus from Asn(1) to Pro(4), and its molecular surface is largely hydrophobic except for Lys(11) as the only charged residue in the helical region. In goldfish, SPX transcripts were found to be widely expressed in various tissues, and protein expression of SPX was also detected in the brain. In vivo feeding studies revealed that SPX mRNA levels in the telencephalon, optic tectum, and hypothalamus of goldfish brain could be elevated by food intake. However, brain injection of goldfish SPX inhibited both basal and NPY- or orexin-induced feeding behavior and food consumption. Similar treatment also reduced transcript expression of NPY, AgRP, and apelin, with concurrent rises in CCK, CART, POMC, MCH, and CRH mRNA levels in different brain areas examined. The differential effects of SPX treatment on NPY, CCK, and MCH transcript expression could also be noted in vitro in goldfish brain cell culture. Our studies for the first time unveil the solution structure of SPX and its novel function as a satiety factor through differential modulation of central orexigenic and anorexigenic signals.
Collapse
Affiliation(s)
- Matthew K H Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Hewage CM, Venneti KC. Structural aspects of gut peptides with therapeutic potential for type 2 diabetes. ChemMedChem 2013; 8:560-7. [PMID: 23292985 DOI: 10.1002/cmdc.201200445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Indexed: 12/25/2022]
Abstract
Gut hormones represent a niche subset of pharmacologically active agents that are rapidly gaining importance in medicine. Due to their exceptional specificity for their receptors, these hormones along with their analogues have attracted considerable pharmaceutical interest for the treatment of human disorders including type 2 diabetes. With the recent advances in the structural biology, a significant amount of structural information for these hormones is now available. This Minireview presents an overview of the structural aspects of these hormones, which have roles in physiological processes such as insulin secretion, as well as a discussion on the relevant structural modifications used to improve these hormones for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Chandralal M Hewage
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
31
|
Doan ND, Létourneau M, Vaudry D, Doucet N, Folch B, Vaudry H, Fournier A, Chatenet D. Design and characterization of novel cell-penetrating peptides from pituitary adenylate cyclase-activating polypeptide. J Control Release 2012; 163:256-65. [PMID: 22922050 DOI: 10.1016/j.jconrel.2012.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/11/2012] [Accepted: 08/17/2012] [Indexed: 10/28/2022]
Abstract
The discovery of cell-penetrating peptide opened up new promising avenues for the non-invasive delivery of non-permeable biomolecules within the intracellular compartment. However, some setbacks such as possible toxic effects or unexpected immunological responses have limited their use in clinic. To overcome these obstacles, we investigated the use of novel cell-penetrating peptides (CPPs) derived from the endogenous neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP). First, we demonstrated the propensity of native PACAP isoforms (PACAP27 and PACAP38) to efficiently deliver a large and non-permeable molecule, i.e. streptavidin, into cells. An inactive modified fragment of PACAP38, i.e. [Arg(17)]PACAP(11-38), with preserved cell-penetrating physico-chemical properties, was also synthesized and successfully use for the intracellular delivery of various cargoes such as small molecules, peptides, proteins, and polynucleotides. Especially, its effectiveness as a transfection agent was comparable to Lipofectamine 2000 while being non-toxic for cells. Uptake mechanism studies demonstrated that direct translocation, caveolae-dependent endocytosis and macropinocytosis were involved in the internalization of [Arg(17)]PACAP(11-38). This study not only opened up a new aspect in the usefulness of PACAP and its derivatives for therapeutic application but also contributed to the identification of new members of the CPP family. As such, inactive PACAP-related analogs could represent excellent vectors for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ngoc-Duc Doan
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Ville de Laval, Québec, Canada H7V 1B7
| | | | | | | | | | | | | | | |
Collapse
|
32
|
The structure of secretin family GPCR peptide ligands: implications for receptor pharmacology and drug development. Drug Discov Today 2012; 17:1006-14. [PMID: 22579744 DOI: 10.1016/j.drudis.2012.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/03/2012] [Accepted: 05/04/2012] [Indexed: 11/23/2022]
Abstract
The secretin family G protein-coupled receptors, characterized by a large N-terminal extracellular domain and seven transmembrane helices, are drug targets in many diseases, including migraine, cardiovascular disease, diabetes, osteoporosis and inflammatory disorders. Their activating ligands are peptides with an average length of 30 amino acids. In this article we review the available structural data for these peptides and how this explains their activity. We emphasize how this information may be used to accelerate the development of new drugs against these receptors.
Collapse
|
33
|
Doan ND, Chatenet D, Létourneau M, Vaudry H, Vaudry D, Fournier A. Receptor-independent cellular uptake of pituitary adenylate cyclase-activating polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:940-9. [DOI: 10.1016/j.bbamcr.2012.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/28/2022]
|