1
|
Turilli-Ghisolfi ES, Lualdi M, Fasano M. Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins. Biomolecules 2023; 13:683. [PMID: 37189430 PMCID: PMC10135655 DOI: 10.3390/biom13040683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.
Collapse
Affiliation(s)
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| |
Collapse
|
2
|
Ukeri J, Wilson MT, Reeder BJ. Modulating Nitric Oxide Dioxygenase and Nitrite Reductase of Cytoglobin through Point Mutations. Antioxidants (Basel) 2022; 11:antiox11091816. [PMID: 36139890 PMCID: PMC9495915 DOI: 10.3390/antiox11091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoglobin is a hexacoordinate hemoglobin with physiological roles that are not clearly understood. Previously proposed physiological functions include nitric oxide regulation, oxygen sensing, or/and protection against oxidative stress under hypoxic/ischemic conditions. Like many globins, cytoglobin rapidly consumes nitric oxide under normoxic conditions. Under hypoxia, cytoglobin generates nitric oxide, which is strongly modulated by the oxidation state of the cysteines. This gives a plausible role for this biochemistry in controlling nitric oxide homeostasis. Mutations to control specific properties of hemoglobin and myoglobin, including nitric oxide binding/scavenging and the nitrite reductase activity of various globins, have been reported. We have mapped these key mutations onto cytoglobin, which represents the E7 distal ligand, B2/E9 disulfide, and B10 heme pocket residues, and examined the nitric oxide binding, nitric oxide dioxygenase activity, and nitrite reductase activity. The Leu46Trp mutation decreases the nitric oxide dioxygenase activity > 10,000-fold over wild type, an effect 1000 times greater than similar mutations with other globins. By understanding how particular mutations can affect specific reactivities, these mutations may be used to target specific cytoglobin activities in cell or animal models to help understand the precise role(s) of cytoglobin under physiological and pathophysiological conditions.
Collapse
|
3
|
Keller TCS, Lechauve C, Keller AS, Brooks S, Weiss MJ, Columbus L, Ackerman H, Cortese-Krott MM, Isakson BE. The role of globins in cardiovascular physiology. Physiol Rev 2022; 102:859-892. [PMID: 34486392 PMCID: PMC8799389 DOI: 10.1152/physrev.00037.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.
Collapse
Affiliation(s)
- T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Steven Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Hans Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
4
|
DeMartino AW, Amdahl MB, Bocian K, Rose JJ, Tejero J, Gladwin MT. Redox sensor properties of human cytoglobin allosterically regulate heme pocket reactivity. Free Radic Biol Med 2021; 162:423-434. [PMID: 33144263 PMCID: PMC7889637 DOI: 10.1016/j.freeradbiomed.2020.10.321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Cytoglobin is a conserved hemoprotein ubiquitously expressed in mammalian tissues, which conducts electron transfer reactions with proposed signaling functions in nitric oxide (NO) and lipid metabolism. Cytoglobin has an E7 distal histidine (His81), which unlike related globins such as myoglobin and hemoglobin, is in equilibrium between a bound, hexacoordinate state and an unbound, pentacoordinate state. The His81 binding equilibrium appears to be allosterically modulated by the presence of an intramolecular disulfide between two cysteines (Cys38 and Cys83). The formation of this disulfide bridge regulates nitrite reductase activity and lipid binding. Herein, we attempt to clarify the effects of defined thiol oxidation states on small molecule binding of cytoglobin heme, using cyanide binding to probe the ferric state. Cyanide binding kinetics to wild-type cytoglobin reveal at least two kinetically distinct subpopulations, depending on thiol oxidation states. Experiments with covalent thiol modification by NEM, glutathione, and amino acid substitutions (C38S, C83S and H81A), indicate that subpopulations ranging from fully reduced thiols, single thiol oxidation, and intramolecular disulfide formation determine heme binding properties by modulating the histidine-heme affinity and ligand binding. The redox modulation of ligand binding is sensitive to physiological levels of hydrogen peroxide, with a functional midpoint redox potential for the native cytoglobin intramolecular disulfide bond of -189 ± 4 mV, a value within the boundaries of intracellular redox potentials. These results support the hypothesis that Cys38 and Cys83 on cytoglobin serve as sensitive redox sensors that modulate the cytoglobin distal heme pocket reactivity and ligand binding.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaitlin Bocian
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason J Rose
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, United States.
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
5
|
Li X, Zhang D, Ren C, Bai Y, Ijaz M, Hou C, Chen L. Effects of protein posttranslational modifications on meat quality: A review. Compr Rev Food Sci Food Saf 2020; 20:289-331. [PMID: 33443799 DOI: 10.1111/1541-4337.12668] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Meat quality plays an important role in the purchase decision of consumers, affecting producers and retailers. The formation mechanisms determining meat quality are intricate, as several endogenous and exogenous factors contribute during antemortem and postmortem periods. Abundant research has been performed on meat quality; however, unexpected variation in meat quality remains an issue in the meat industry. Protein posttranslational modifications (PTMs) regulate structures and functions of proteins in living tissues, and recent reports confirmed their importance in meat quality. The objective of this review was to provide a summary of the research on the effects of PTMs on meat quality. The effects of four common PTMs, namely, protein phosphorylation, acetylation, S-nitrosylation, and ubiquitination, on meat quality were discussed, with emphasis on the effects of protein phosphorylation on meat tenderness, color, and water holding capacity. The mechanisms and factors that may affect the function of protein phosphorylation are also discussed. The current research confirms that meat quality traits are regulated by multiple PTMs. Cross talk between different PTMs and interactions of PTMs with postmortem biochemical processes need to be explored to improve our understanding on factors affecting meat quality.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chi Ren
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqiang Bai
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muawuz Ijaz
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Vlasova II. Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules 2018; 23:E2561. [PMID: 30297621 PMCID: PMC6222727 DOI: 10.3390/molecules23102561] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The heme in the active center of peroxidases reacts with hydrogen peroxide to form highly reactive intermediates, which then oxidize simple substances called peroxidase substrates. Human peroxidases can be divided into two groups: (1) True peroxidases are enzymes whose main function is to generate free radicals in the peroxidase cycle and (pseudo)hypohalous acids in the halogenation cycle. The major true peroxidases are myeloperoxidase, eosinophil peroxidase and lactoperoxidase. (2) Pseudo-peroxidases perform various important functions in the body, but under the influence of external conditions they can display peroxidase-like activity. As oxidative intermediates, these peroxidases produce not only active heme compounds, but also protein-based tyrosyl radicals. Hemoglobin, myoglobin, cytochrome c/cardiolipin complexes and cytoglobin are considered as pseudo-peroxidases. Рeroxidases play an important role in innate immunity and in a number of physiologically important processes like apoptosis and cell signaling. Unfavorable excessive peroxidase activity is implicated in oxidative damage of cells and tissues, thereby initiating the variety of human diseases. Hence, regulation of peroxidase activity is of considerable importance. Since peroxidases differ in structure, properties and location, the mechanisms controlling peroxidase activity and the biological effects of peroxidase products are specific for each hemoprotein. This review summarizes the knowledge about the properties, activities, regulations and biological effects of true and pseudo-peroxidases in order to better understand the mechanisms underlying beneficial and adverse effects of this class of enzymes.
Collapse
Affiliation(s)
- Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Department of Biophysics, Malaya Pirogovskaya, 1a, Moscow 119435, Russia.
- Institute for Regenerative Medicine, Laboratory of Navigational Redox Lipidomics, Sechenov University, 8-2 Trubetskaya St., Moscow 119991, Russia.
| |
Collapse
|
7
|
Li Z, Li M, Li X, Xin J, Wang Y, Shen QW, Zhang D. Quantitative phosphoproteomic analysis among muscles of different color stability using tandem mass tag labeling. Food Chem 2018; 249:8-15. [DOI: 10.1016/j.foodchem.2017.12.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 11/15/2022]
|
8
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [PMID: 29407792 DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
9
|
Li M, Li Z, Li X, Xin J, Wang Y, Li G, Wu L, Shen QW, Zhang D. Comparative profiling of sarcoplasmic phosphoproteins in ovine muscle with different color stability. Food Chem 2018; 240:104-111. [DOI: 10.1016/j.foodchem.2017.07.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022]
|
10
|
Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells. Mol Cell Neurosci 2018; 88:167-176. [PMID: 29378245 DOI: 10.1016/j.mcn.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/10/2018] [Accepted: 01/21/2018] [Indexed: 11/23/2022] Open
Abstract
Since stressing conditions induce a relocalization of endogenous human neuroglobin (NGB) to mitochondria, this research is aimed to evaluate the protective role of NGB overexpression against neurotoxic stimuli, through mitochondrial lipid raft-associated complexes. To this purpose, we built a neuronal model of oxidative stress by the use of human dopaminergic neuroblastoma cells, SK-N-BE2, stably overexpressing NGB by transfection and treated with 1-methyl-4-phenylpyridinium ion (MPP+). We preliminary observed the redistribution of NGB to mitochondria following MPP+ treatment. The analysis of mitochondrial raft-like microdomains revealed that, following MPP+ treatment, NGB translocated to raft fractions (Triton X-100-insoluble), where it interacts with ganglioside GD3. Interestingly, the administration of agents capable of perturbating microdomain before MPP+ treatment, significantly affected viability in SK-N-BE2-NGB cells. The overexpression of NGB was able to abrogate the mitochondrial injuries on complex IV activity or mitochondrial morphology induced by MPP+ administration. The protective action of NGB on mitochondria only takes place if the mitochondrial lipid(s) rafts-like microdomains are intact, indeed NGB fails to protect complex IV activity when purified mitochondria were treated with the lipid rafts disruptor methyl-β-cyclodextrin. Thus, our unique in vitro model of stably transfected cells overexpressing endogenous NGB allowed us to suggest that the role in neuroprotection played by NGB is reliable only through interaction with mitochondrial lipid raft-associated complexes.
Collapse
|
11
|
Strong modulation of nitrite reductase activity of cytoglobin by disulfide bond oxidation: Implications for nitric oxide homeostasis. Nitric Oxide 2018; 72:16-23. [DOI: 10.1016/j.niox.2017.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 11/22/2022]
|
12
|
Hanai S, Tsujino H, Yamashita T, Torii R, Sawai H, Shiro Y, Oohora K, Hayashi T, Uno T. Roles of N- and C-terminal domains in the ligand-binding properties of cytoglobin. J Inorg Biochem 2017; 179:1-9. [PMID: 29149638 DOI: 10.1016/j.jinorgbio.2017.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/04/2017] [Accepted: 11/04/2017] [Indexed: 01/12/2023]
Abstract
Cytoglobin (Cygb) is a member of the hexacoordinated globin protein family and is expressed ubiquitously in rat and human tissues. Although Cygb is reportedly upregulated under hypoxic conditions both in vivo and in vitro, suggesting a physiological function to protect cells under hypoxic/ischemic conditions by scavenging reactive oxygen species or by signal transduction, the mechanisms associated with this function have not been fully elucidated. Recent studies comparing Cygbs among several species suggest that mammalian Cygbs show a distinctly longer C-terminal domain potentially involved in unique physiological functions. In this study, we prepared human Cygb mutants (ΔC, ΔN, and ΔNC) with either one or both terminal domains truncated and investigated the enzymatic functions and structural features by spectroscopic methods. Evaluation of the superoxide-scavenging activity between Cygb variants showed that the ΔC and ΔNC mutants exhibited slightly higher activity involving superoxide scavenging as compared with wild-type Cygb. Subsequent experiments involving ligand titration, flash photolysis, and resonance Raman spectroscopic studies suggested that the truncation of the C- and N-terminal domains resulted in less effective to dissociation constants and binding rates for carbon monoxide, respectively. Furthermore, structural stability was assessed by guanidine hydrochloride and revealed that the C-terminal domain might play a vital role in improving structure, whereas the N-terminal domain did not exert a similar effect. These findings indicated that long terminal domains could be important not only in regulating enzymatic activity but also for structural stability, and that the domains might be relevant to other hypothesized physiological functions for Cygb.
Collapse
Affiliation(s)
- Shumpei Hanai
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan.
| | - Ryo Torii
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hitomi Sawai
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | | | - Koji Oohora
- Department of Applied Chemistry, Osaka University, Osaka, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Osaka University, Osaka, Japan
| | - Tadayuki Uno
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
14
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
15
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
16
|
Metalloproteases Affecting Blood Coagulation, Fibrinolysis and Platelet Aggregation from Snake Venoms: Definition and Nomenclature of Interaction Sites. Toxins (Basel) 2016; 8:toxins8100284. [PMID: 27690102 PMCID: PMC5086644 DOI: 10.3390/toxins8100284] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Snake venom metalloproteases, in addition to their contribution to the digestion of the prey, affect various physiological functions by cleaving specific proteins. They exhibit their activities through activation of zymogens of coagulation factors, and precursors of integrins or receptors. Based on their structure–function relationships and mechanism of action, we have defined classification and nomenclature of functional sites of proteases. These metalloproteases are useful as research tools and in diagnosis and treatment of various thrombotic and hemostatic conditions. They also contribute to our understanding of molecular details in the activation of specific factors involved in coagulation, platelet aggregation and matrix biology. This review provides a ready reference for metalloproteases that interfere in blood coagulation, fibrinolysis and platelet aggregation.
Collapse
|
17
|
Vlasova II, Kapralov AA, Michael ZP, Burkert SC, Shurin MR, Star A, Shvedova AA, Kagan VE. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicol Appl Pharmacol 2016; 299:58-69. [PMID: 26768553 PMCID: PMC4811710 DOI: 10.1016/j.taap.2016.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/01/2016] [Accepted: 01/02/2016] [Indexed: 12/22/2022]
Abstract
Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells - myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase - to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the "dormant" peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and 'unmasking' of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation.
Collapse
Affiliation(s)
- Irina I Vlasova
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States; Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453, Russia
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Zachary P Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, United States; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Anna A Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505, United States.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States; Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
18
|
Tejero J, Kapralov AA, Baumgartner MP, Sparacino-Watkins CE, Anthonymutu TS, Vlasova II, Camacho CJ, Gladwin MT, Bayir H, Kagan VE. Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:391-401. [PMID: 26928591 PMCID: PMC4821708 DOI: 10.1016/j.bbalip.2016.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Cytoglobin (Cygb) is a hexa-coordinated hemoprotein with yet to be defined physiological functions. The iron coordination and spin state of the Cygb heme group are sensitive to oxidation of two cysteine residues (Cys38/Cys83) and/or the binding of free fatty acids. However, the roles of redox vs lipid regulators of Cygb's structural rearrangements in the context of the protein peroxidase competence are not known. Searching for physiologically relevant lipid regulators of Cygb, here we report that anionic phospholipids, particularly phosphatidylinositolphosphates, affect structural organization of the protein and modulate its iron state and peroxidase activity both conjointly and/or independently of cysteine oxidation. Thus, different anionic lipids can operate in cysteine-dependent and cysteine-independent ways as inducers of the peroxidase activity. We establish that Cygb's peroxidase activity can be utilized for the catalysis of peroxidation of anionic phospholipids (including phosphatidylinositolphosphates) yielding mono-oxygenated molecular species. Combined with the computational simulations we propose a bipartite lipid binding model that rationalizes the modes of interactions with phospholipids, the effects on structural re-arrangements and the peroxidase activity of the hemoprotein.
Collapse
Affiliation(s)
- Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Matthew P Baumgartner
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Courtney E Sparacino-Watkins
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tamil S Anthonymutu
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Irina I Vlasova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hülya Bayir
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
19
|
Corti P, Ieraci M, Tejero J. Characterization of zebrafish neuroglobin and cytoglobins 1 and 2: Zebrafish cytoglobins provide insights into the transition from six-coordinate to five-coordinate globins. Nitric Oxide 2015; 53:22-34. [PMID: 26721561 DOI: 10.1016/j.niox.2015.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/11/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
Neuroglobin (Ngb) and cytoglobin (Cygb) are two six-coordinate heme proteins of unknown physiological function. Although studies on the mammalian proteins have elucidated aspects of Ngb and Cygb biophysics and indicated potential functions, the properties of non-mammalian Ngbs and Cygbs are largely uncharacterized. We have expressed the recombinant zebrafish proteins Ngb, Cygb1, and Cygb2 in Escherichia coli and characterized their nitrite reduction rates, spectral properties, autoxidation rate constants, redox potentials and lipid binding properties. The three zebrafish proteins can catalyze the reduction of nitrite to nitric oxide with a broad range of reaction rate constants. (Ngb, 0.68 ± 0.04 M(-1) s(-1); Cygb1, 28.6 ± 3.1 M(-1) s(-1); Cygb2, 0.94 ± 0.18 M(-1) s(-1)). We observe that zebrafish Ngb and Cygb2 have comparable spectral features to those of human Ngb and Cygb, consistent with a six-coordinate heme, whereas unexpectedly Cygb1 has a five-coordinate heme, a slower autoxidation and in general has properties more akin to oxygen transport proteins. In agreement with a possible oxygen carrier and nitrite reductase role, we detect mRNA transcript for Cygb1 but not Cygb2 or Ngb in zebrafish blood. Unlike human Cygb, neither of the zebrafish globins binds oleic acid with high affinity. This finding suggests that lipid binding may be a trait acquired later during evolution and not an ancestral property of cytoglobins. Altogether, our results uncover unexpected properties of zebrafish globins and reveal the pivotal role of cytoglobins in the transition of heme globins from six-coordinate to five-coordinate oxygen carriers and nitrite reductases.
Collapse
Affiliation(s)
- Paola Corti
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Ieraci
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Cai H, Tatiyaborworntham N, Yin J, Richards MP. Assessing Low Redox Stability of Myoglobin Relative to Rapid Hemin Loss from Hemoglobin. J Food Sci 2015; 81:C42-8. [DOI: 10.1111/1750-3841.13159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- He Cai
- Dept. of Animal Sciences; Meat Science and Muscle Biology Laboratory; Univ. of Wisconsin-Madison; Madison Wiss. 53706 U.S.A
| | - Nantawat Tatiyaborworntham
- Dept. of Animal Sciences; Meat Science and Muscle Biology Laboratory; Univ. of Wisconsin-Madison; Madison Wiss. 53706 U.S.A
| | - Jie Yin
- Dept. of Animal Sciences; Meat Science and Muscle Biology Laboratory; Univ. of Wisconsin-Madison; Madison Wiss. 53706 U.S.A
| | - Mark P. Richards
- Dept. of Animal Sciences; Meat Science and Muscle Biology Laboratory; Univ. of Wisconsin-Madison; Madison Wiss. 53706 U.S.A
| |
Collapse
|
21
|
Helbo S, Gow AJ, Jamil A, Howes BD, Smulevich G, Fago A. Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. PLoS One 2014; 9:e97012. [PMID: 24879536 PMCID: PMC4039430 DOI: 10.1371/journal.pone.0097012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O2 affinity (P50 = 2.7 torr) that was increased by S-nitrosation (P50 = 1.7 torr), whereas in tuna Mb, O2 affinity (P50 = 0.9 torr) was independent of S-nitrosation. O2 dissociation rates (koff) of trout and salmon Mbs were not altered when Cys were in the SNO or N-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O2 affinity by raising the O2 association rate (kon). Taken together, these results indicate that O2-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O2 entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb in vivo is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions.
Collapse
Affiliation(s)
- Signe Helbo
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andrew J. Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Amna Jamil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barry D. Howes
- Department of Chemistry “Ugo Schiff”, University of Firenze, Sesto Fiorentino (FI), Italy
| | - Giulietta Smulevich
- Department of Chemistry “Ugo Schiff”, University of Firenze, Sesto Fiorentino (FI), Italy
| | - Angela Fago
- Department of Bioscience, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
22
|
Ascenzi P, Gustincich S, Marino M. Mammalian nerve globins in search of functions. IUBMB Life 2014; 66:268-76. [DOI: 10.1002/iub.1267] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy; University Roma Tre; Roma Italy
| | | | - Maria Marino
- Department of Science; University Roma Tre; Roma Italy
| |
Collapse
|
23
|
Transcriptional analysis of apoptotic cerebellar granule neurons following rescue by gastric inhibitory polypeptide. Int J Mol Sci 2014; 15:5596-622. [PMID: 24694544 PMCID: PMC4013584 DOI: 10.3390/ijms15045596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022] Open
Abstract
Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability.
Collapse
|
24
|
Tertiary and quaternary effects in the allosteric regulation of animal hemoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1860-72. [PMID: 23523886 DOI: 10.1016/j.bbapap.2013.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022]
Abstract
In the last decade, protein allostery has experienced a major resurgence, boosted by the extension of the concept to systems of increasing complexity and by its exploitation for the development of drugs. Expansion of the field into new directions has not diminished the key role of hemoglobin as a test molecule for theory and experimental validation of allosteric models. Indeed, the diffusion of hemoglobins in all kingdoms of life and the variety of functions and of quaternary assemblies based on a common tertiary fold indicate that this superfamily of proteins is ideally suited for investigating the physical and molecular basis of allostery and firmly maintains its role as a main player in the field. This review is an attempt to briefly recollect common and different strategies adopted by metazoan hemoglobins, from monomeric molecules to giant complexes, exploiting homotropic and heterotropic allostery to increase their functional dynamic range. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|