1
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
2
|
Zhra M, Qasem RJ, Aldossari F, Saleem R, Aljada A. A Comprehensive Exploration of Caspase Detection Methods: From Classical Approaches to Cutting-Edge Innovations. Int J Mol Sci 2024; 25:5460. [PMID: 38791499 PMCID: PMC11121653 DOI: 10.3390/ijms25105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The activation of caspases is a crucial event and an indicator of programmed cell death, also known as apoptosis. These enzymes play a central role in cancer biology and are considered one promising target for current and future advancements in therapeutic interventions. Traditional methods of measuring caspase activity such as antibody-based methods provide fundamental insights into their biological functions, and are considered essential tools in the fields of cell and cancer biology, pharmacology and toxicology, and drug discovery. However, traditional methods, though extensively used, are now recognized as having various shortcomings. In addition, these methods fall short of providing solutions to and matching the needs of the rapid and expansive progress achieved in studying caspases. For these reasons, there has been a continuous improvement in detection methods for caspases and the network of pathways involved in their activation and downstream signaling. Over the past decade, newer methods based on cutting-edge state-of-the-art technologies have been introduced to the biomedical community. These methods enable both the temporal and spatial monitoring of the activity of caspases and their downstream substrates, and with enhanced accuracy and precision. These include fluorescent-labeled inhibitors (FLIs) for live imaging, single-cell live imaging, fluorescence resonance energy transfer (FRET) sensors, and activatable multifunctional probes for in vivo imaging. Recently, the recruitment of mass spectrometry (MS) techniques in the investigation of these enzymes expanded the repertoire of tools available for the identification and quantification of caspase substrates, cleavage products, and post-translational modifications in addition to unveiling the complex regulatory networks implicated. Collectively, these methods are enabling researchers to unravel much of the complex cellular processes involved in apoptosis, and are helping generate a clearer and comprehensive understanding of caspase-mediated proteolysis during apoptosis. Herein, we provide a comprehensive review of various assays and detection methods as they have evolved over the years, so to encourage further exploration of these enzymes, which should have direct implications for the advancement of therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Rani J. Qasem
- Department of Pharmacology and Pharmacy Practice, College of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fai Aldossari
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Rimah Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
3
|
Matsuda S, Affolter M. Is Drosophila Dpp/BMP morphogen spreading required for wing patterning and growth? Bioessays 2023; 45:e2200218. [PMID: 37452394 DOI: 10.1002/bies.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Secreted signaling molecules act as morphogens to control patterning and growth in many developing tissues. Since locally produced morphogens spread to form a concentration gradient in the surrounding tissue, spreading is generally thought to be the key step in the non-autonomous actions. Here, we review recent advances in tool development to investigate morphogen function using the role of decapentaplegic (Dpp)/bone morphogenetic protein (BMP)-type ligand in the Drosophila wing disc as an example. By applying protein binder tools to distinguish between the roles of Dpp spreading and local Dpp signaling, we found that Dpp signaling in the source cells is important for wing patterning and growth but Dpp spreading from this source cells is not as strictly required as previously thought. Given recent studies showing unexpected requirements of long-range action of different morphogens, manipulating endogenous morphogen gradients by synthetic protein binder tools could shed more light on how morphogens act in developing tissues.
Collapse
Affiliation(s)
- Shinya Matsuda
- Growth & Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Keller L, Tardy C, Ligat L, Le Pennec S, Bery N, Koraïchi F, Chinestra P, David M, Gence R, Favre G, Cabantous S, Olichon A. Tripartite split-GFP assay to identify selective intracellular nanobody that suppresses GTPase RHOA subfamily downstream signaling. Front Immunol 2022; 13:980539. [PMID: 36059552 PMCID: PMC9433928 DOI: 10.3389/fimmu.2022.980539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Strategies based on intracellular expression of artificial binding domains present several advantages over manipulating nucleic acid expression or the use of small molecule inhibitors. Intracellularly-functional nanobodies can be considered as promising macrodrugs to study key signaling pathways by interfering with protein-protein interactions. With the aim of studying the RAS-related small GTPase RHOA family, we previously isolated, from a synthetic phage display library, nanobodies selective towards the GTP-bound conformation of RHOA subfamily proteins that lack selectivity between the highly conserved RHOA-like and RAC subfamilies of GTPases. To identify RHOA/ROCK pathway inhibitory intracellular nanobodies, we implemented a stringent, subtractive phage display selection towards RHOA-GTP followed by a phenotypic screen based on F-actin fiber loss. Intracellular interaction and intracellular selectivity between RHOA and RAC1 proteins was demonstrated by adapting the sensitive intracellular protein-protein interaction reporter based on the tripartite split-GFP method. This strategy led us to identify a functional intracellular nanobody, hereafter named RH28, that does not cross-react with the close RAC subfamily and blocks/disrupts the RHOA/ROCK signaling pathway in several cell lines without further engineering or functionalization. We confirmed these results by showing, using SPR assays, the high specificity of the RH28 nanobody towards the GTP-bound conformation of RHOA subfamily GTPases. In the metastatic melanoma cell line WM266-4, RH28 expression triggered an elongated cellular phenotype associated with a loss of cellular contraction properties, demonstrating the efficient intracellular blocking of RHOA/B/C proteins downstream interactions without the need of manipulating endogenous gene expression. This work paves the way for future therapeutic strategies based on protein-protein interaction disruption with intracellular antibodies.
Collapse
Affiliation(s)
- Laura Keller
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Laboratoire de Biologie Médicale Oncologique, IUCT-Oncopôle, Toulouse, France
| | - Claudine Tardy
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Laetitia Ligat
- Le Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, Plateau de Protéomique, Toulouse, France
| | - Soazig Le Pennec
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Nicolas Bery
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Faten Koraïchi
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Patrick Chinestra
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Mélissa David
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Laboratoire de Biologie Médicale Oncologique, IUCT-Oncopôle, Toulouse, France
| | - Stéphanie Cabantous
- Laboratoire de Biologie Médicale Oncologique, IUCT-Oncopôle, Toulouse, France
- *Correspondence: Stéphanie Cabantous, ; Aurélien Olichon,
| | - Aurélien Olichon
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Saint Denis de La Réunion, France
- *Correspondence: Stéphanie Cabantous, ; Aurélien Olichon,
| |
Collapse
|
5
|
Stepanov AI, Besedovskaia ZV, Moshareva MA, Lukyanov KA, Putlyaeva LV. Studying Chromatin Epigenetics with Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms23168988. [PMID: 36012253 PMCID: PMC9409072 DOI: 10.3390/ijms23168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epigenetic modifications of histones (methylation, acetylation, phosphorylation, etc.) are of great importance in determining the functional state of chromatin. Changes in epigenome underlay all basic biological processes, such as cell division, differentiation, aging, and cancerous transformation. Post-translational histone modifications are mainly studied by immunoprecipitation with high-throughput sequencing (ChIP-Seq). It enables an accurate profiling of target modifications along the genome, but suffers from the high cost of analysis and the inability to work with living cells. Fluorescence microscopy represents an attractive complementary approach to characterize epigenetics. It can be applied to both live and fixed cells, easily compatible with high-throughput screening, and provide access to rich spatial information down to the single cell level. In this review, we discuss various fluorescent probes for histone modification detection. Various types of live-cell imaging epigenetic sensors suitable for conventional as well as super-resolution fluorescence microscopy are described. We also focus on problems and future perspectives in the development of fluorescent probes for epigenetics.
Collapse
Affiliation(s)
- Afanasii I. Stepanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Zlata V. Besedovskaia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Maria A. Moshareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklay St. 16/10, 117997 Moscow, Russia
| | - Konstantin A. Lukyanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| | - Lidia V. Putlyaeva
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| |
Collapse
|
6
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
7
|
Fagbadebo FO, Rothbauer U. Peptide-Tag Specific Nanobodies for Studying Proteins in Live Cells. Methods Mol Biol 2022; 2446:555-579. [PMID: 35157294 DOI: 10.1007/978-1-0716-2075-5_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-domain antibodies such as nanobodies (Nbs) have substantially expanded the possibilities of advanced cellular imaging. In comparison to conventional antibodies, Nbs are characterized by small size, high stability, and solubility in many environments, including the cytoplasm. Nbs can be efficiently functionalized or modified according to the needs of the imaging approach. Target-specific Nbs can be easily converted into genetically encoded fluorescently labeled intrabodies, also known as chromobodies (CBs), which represent powerful tools to study the dynamics of different proteins of interest within living cells. In this context, CBs specific for a short peptide epitope provide a versatile alternative to bypass the limitations observed with larger fluorescent protein fusions and can be readily used to visualize and monitor peptide-tagged proteins for which specific Nbs are not available. Here, we present our novel detection system comprising a 15 amino acid peptide-tag (PepTag) in combination with a peptide-tag specific CB (PepCB). We provide protocols for adding the PepTag to different proteins of interest, reformatting the peptide-specific Nb (PepNb) into a CB for expression in mammalian cells, and establishment of stable cell lines expressing the PepCB for protein interaction assays and compound screenings.
Collapse
Affiliation(s)
- Funmilayo O Fagbadebo
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany.
- Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany.
| |
Collapse
|
8
|
Matsuda S, Aguilar G, Vigano MA, Affolter M. Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology. Methods Mol Biol 2022; 2446:581-593. [PMID: 35157295 DOI: 10.1007/978-1-0716-2075-5_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic protein-binding tools based on anti-green fluorescent protein (GFP) nanobodies have recently emerged as useful resources to study developmental biology. By fusing GFP-targeting nanobodies to well-characterized protein domains residing in discrete sub-cellular locations, it is possible to directly and acutely manipulate the localization of GFP-tagged proteins-of-interest in a predictable manner. Here, we describe a detailed protocol for the application of nanobody-based GFP-binding tools, namely Morphotrap and GrabFP, to study the localization and function of extracellular and intracellular proteins in the Drosophila wing imaginal disc. Given the generality of these methods, they are easily applicable for use in other tissues and model organisms.
Collapse
|
9
|
Lepeta K, Bauer M, Aguilar G, Vigano MA, Matsuda S, Affolter M. Studying Protein Function Using Nanobodies and Other Protein Binders in Drosophila. Methods Mol Biol 2022; 2540:219-237. [PMID: 35980580 DOI: 10.1007/978-1-0716-2541-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The direct manipulation of proteins by nanobodies and other protein binders has become an additional and valuable approach to investigate development and homeostasis in Drosophila. In contrast to other techniques, that indirectly interfere with proteins via their nucleic acids (CRISPR, RNAi, etc.), protein binders permit direct and acute protein manipulation. Since the first use of a nanobody in Drosophila a decade ago, many different applications exploiting protein binders have been introduced. Most of these applications use nanobodies against GFP to regulate GFP fusion proteins. In order to exert specific protein manipulations, protein binders are linked to domains that confer them precise biochemical functions. Here, we reflect on the use of tools based on protein binders in Drosophila. We describe their key features and provide an overview of the available reagents. Finally, we briefly explore the future avenues that protein binders might open up and thus further contribute to better understand development and homeostasis of multicellular organisms.
Collapse
Affiliation(s)
| | - Milena Bauer
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Matsuda S, Schaefer JV, Mii Y, Hori Y, Bieli D, Taira M, Plückthun A, Affolter M. Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc. Nat Commun 2021; 12:6435. [PMID: 34750371 PMCID: PMC8576045 DOI: 10.1038/s41467-021-26726-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
How morphogen gradients control patterning and growth in developing tissues remains largely unknown due to lack of tools manipulating morphogen gradients. Here, we generate two membrane-tethered protein binders that manipulate different aspects of Decapentaplegic (Dpp), a morphogen required for overall patterning and growth of the Drosophila wing. One is "HA trap" based on a single-chain variable fragment (scFv) against the HA tag that traps HA-Dpp to mainly block its dispersal, the other is "Dpp trap" based on a Designed Ankyrin Repeat Protein (DARPin) against Dpp that traps Dpp to block both its dispersal and signaling. Using these tools, we found that, while posterior patterning and growth require Dpp dispersal, anterior patterning and growth largely proceed without Dpp dispersal. We show that dpp transcriptional refinement from an initially uniform to a localized expression and persistent signaling in transient dpp source cells render the anterior compartment robust against the absence of Dpp dispersal. Furthermore, despite a critical requirement of dpp for the overall wing growth, neither Dpp dispersal nor direct signaling is critical for lateral wing growth after wing pouch specification. These results challenge the long-standing dogma that Dpp dispersal is strictly required to control and coordinate overall wing patterning and growth.
Collapse
Affiliation(s)
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- JST PRESTO, Kawaguchi, Saitama, Japan
| | - Yutaro Hori
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | | | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
12
|
Wei S, Zhou S, Huang W, Zan X, Geng W. Efficient Delivery of Antibodies Intracellularly by Co-Assembly with Hexahistidine-Metal Assemblies (HmA). Int J Nanomedicine 2021; 16:7449-7461. [PMID: 34785893 PMCID: PMC8579864 DOI: 10.2147/ijn.s332279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE There has been a substantial global market for antibodies, which are based on extracellular targets. Binding intracellular targets by antibodies will bring new chances in antibody therapeutics and a huge market increase. We aim to evaluate the efficiency of a novel delivery system of His6-metal assembly (HmA) in delivering intracellular antibodies and biofunctions of delivered antibodies. METHODS In this study, the physicochemical properties of HmA@Antibodies generated through co-assembling with antibodies and HmA were well characterized by dynamic light scatter. The cytotoxicity of HmA@Antibodies was investigated by Cell Counting Kit-8 (CCK-8). The endocytic kinetics and lysosome escape process of HmA@Antibodies were studied by flow cytometry and fluorescent staining imaging, respectively. Compared to the commercialized positive control, the intracellular delivery efficiency by HmA@Antibodies and biofunctions of delivered antibodies were evaluated by fluorescent imaging and CCK-8. RESULTS Various antibodies (IgG, anti-β-tubulin and anti-NPC) could co-assemble with HmA under a gentle condition, producing nano-sized (~150 nm) and positively charged (~+30 eV) HmA@Antibodies particles with narrow size distribution (PDI ~ 0.15). HmA displayed very low cytotoxicity to divers cells (DCs, HeLa, HCECs, and HRPE) even after 96 h for the feeding concentration ≤100 μg mL-1, and fast escape from endosomes. In the case of delivery IgG, the delivery efficiency into alive cells of HmA was better than a commercial protein delivery reagent (PULSin). For cases of the anti-β-tubulin and anti-NPC, HmA showed comparable delivery efficiency to their positive controls, but HmA with ability to deliver these antibodies into alive cells was still superior to positive controls delivering antibodies into dead cells through punching holes. CONCLUSION Our results indicate that this strategy is a feasible way to deliver various antibodies intracellularly while preserving their functions, which has great potential in various applications and treating many refractory diseases by intracellular antibody delivery.
Collapse
Affiliation(s)
- Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, People’s Republic of China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang Province, People’s Republic of China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, People’s Republic of China
| |
Collapse
|
13
|
Pe KBA, Yatsuzuka K, Hakariya H, Kida T, Katsuda Y, Fukuda M, Sato SI. RNA-based cooperative protein labeling that permits direct monitoring of the intracellular concentration change of an endogenous protein. Nucleic Acids Res 2021; 49:e132. [PMID: 34581825 PMCID: PMC8682759 DOI: 10.1093/nar/gkab839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Imaging the dynamics of proteins in living cells is a powerful means for understanding cellular functions at a deeper level. Here, we report a versatile method for spatiotemporal imaging of specific endogenous proteins in living mammalian cells. The method employs a bifunctional aptamer capable of selective protein recognition and fluorescent probe-binding, which is induced only when the aptamer specifically binds to its target protein. An aptamer for β-actin protein preferentially recognizes its monomer forms over filamentous forms, resulting in selective G-actin staining in both fixed and living cells. Through actin-drug treatment, the method permitted direct monitoring of the intracellular concentration change of endogenous G-actin. This protein-labeling method, which is highly selective and non-covalent, provides rich insights into the study of spatiotemporal protein dynamics in living cells.
Collapse
Affiliation(s)
| | - Kenji Yatsuzuka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hayase Hakariya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoki Kida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yousuke Katsuda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masatora Fukuda
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
14
|
Iwata T, Hirose H, Sakamoto K, Hirai Y, Arafiles JVV, Akishiba M, Imanishi M, Futaki S. Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takahiro Iwata
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Hisaaki Hirose
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Kentarou Sakamoto
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Yusuke Hirai
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | | | - Misao Akishiba
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| |
Collapse
|
15
|
Wang Q, Yang Y, Liu D, Ji Y, Gao X, Yin J, Yao W. Cytosolic Protein Delivery for Intracellular Antigen Targeting Using Supercharged Polypeptide Delivery Platform. NANO LETTERS 2021; 21:6022-6030. [PMID: 34227381 DOI: 10.1021/acs.nanolett.1c01190] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the well-recognized clinical success of therapeutic proteins, especially antibodies, their inability to penetrate the cell membrane restricts them to secretory extracellular or membrane-associated targets. Developing a direct cytosolic protein delivery system would offer unique opportunities for intracellular target-related therapeutic proteins. Here, we generated a supercharged polypeptide (SCP) with high cellular uptake efficiency, endosomal escape ability, and good biosafety and developed an SCP with an unnatural amino acid containing the phenylboronic acid (PBA) group, called PBA-SCP. PBA-SCP is capable of potently delivering proteins with various isoelectric points and molecular sizes into the cytosol of living cells without affecting their bioactivities. Importantly, cytosolically delivered antibodies remain functional and are capable of targeting, labeling, and manipulating diverse intracellular antigens. This study demonstrates an efficient and versatile intracellular protein delivery platform, especially for antibodies, and provides new possibilities for expanding protein-based therapeutics to intracellular "undruggable" targets.
Collapse
Affiliation(s)
- Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
16
|
Iwata T, Hirose H, Sakamoto K, Hirai Y, Arafiles JVV, Akishiba M, Imanishi M, Futaki S. Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angew Chem Int Ed Engl 2021; 60:19804-19812. [PMID: 34114295 DOI: 10.1002/anie.202105527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Indexed: 01/15/2023]
Abstract
Fc region binding peptide conjugated with attenuated cationic amphiphilic lytic peptide L17E trimer [FcB(L17E)3 ] was designed for immunoglobulin G (IgG) delivery into cells. Particle-like liquid droplets were generated by mixing Alexa Fluor 488 labeled IgG (Alexa488-IgG) with FcB(L17E)3 . Droplet contact with the cellular membrane led to spontaneous influx and distribution of Alexa488-IgG throughout cells in serum containing medium. Involvement of cellular machinery accompanied by actin polymerization and membrane ruffling was suggested for the translocation. Alexa488-IgG negative charges were crucial in liquid droplet formation with positively charged FcB(L17E)3 . Binding of IgG to FcB(L17E)3 may not be necessary. Successful intracellular delivery of Alexa Fluor 594-labeled anti-nuclear pore complex antibody and anti-mCherry-nanobody tagged with supernegatively charged green fluorescence protein allowed binding to cellular targets in the presence of FcB(L17E)3 .
Collapse
Affiliation(s)
- Takahiro Iwata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yusuke Hirai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | - Misao Akishiba
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
17
|
Structural insights into two distinct nanobodies recognizing the same epitope of green fluorescent protein. Biochem Biophys Res Commun 2021; 565:57-63. [PMID: 34098312 DOI: 10.1016/j.bbrc.2021.05.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023]
Abstract
Green fluorescent protein (GFP) and its derivatives are widely used in biomedical research, and the manipulation of GFP-tagged proteins by GFP-specific binders is highly desired. However, structural information on how these binders bind with GFP is still lacking. In this study, we determined the crystal structure of the nanobody Nb2 complexed with superfolder GFP (sfGFP) at a resolution of 2.2 Å. Interestingly, although the complementarity-determining regions (CDRs) of Nb2 and LaG16 sequences were only 29.7% identical, they both bound to the same epitope of GFP and existed in the same orientation. Structural analysis indicated that they achieved similar binding characteristics through different mechanisms. We further verified the kinetics and thermodynamics of binding by biolayer interferometry (BLI) and isothermal titration calorimetry (ITC). Nb2 showed a slightly higher binding affinity for sfGFP than LaG16. The stability of GFP-specific nanobodies was verified by nano differential scanning fluorimetry (nanoDSF). Nb2 exhibited the highest melting temperature (Tm); thus, Nb2 is a promising GFP nanobody candidate for use in applications requiring harsh testing conditions. We also compared the binding sites of available GFP nanobodies and showed that some of them can simultaneously bind with GFP and assemble into multifunctional complexes to manipulate GFP-tagged target proteins. Our results provide atomic-scale binding information for Nb2-sfGFP, which is important for the further development of GFP-nanobody based fusion protein manipulation techniques.
Collapse
|
18
|
Sakamoto K, Michibata J, Hirai Y, Ide A, Ikitoh A, Takatani-Nakase T, Futaki S. Potentiating the Membrane Interaction of an Attenuated Cationic Amphiphilic Lytic Peptide for Intracellular Protein Delivery by Anchoring with Pyrene Moiety. Bioconjug Chem 2021; 32:950-957. [PMID: 33861579 DOI: 10.1021/acs.bioconjchem.1c00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported an approach for intracellular protein delivery by attenuating membrane-lytic activity of cationic amphiphilic peptides on cell surfaces. HAad is one such peptides that cytosolically delivers proteins of interest, including antibodies, by stimulating their endosomal escape. Additionally, HAad elicits ruffling of cell membrane, accompanied by transient membrane permeabilization, allowing for the efficient cytosolic translocation of proteins. In this study, we prepared a conjugate of HAad with pyrenebutyric acid as a membrane-anchoring unit (pBu-HAad). pBu-HAad demonstrated protein delivery into cells with only 1/20 concentration of HAad. However, the conjugates with cholesteryl hemisuccinate and aliphatic fatty acids (C = 3, 6, and 10) did not yield such marked effects. The results of time-course and inhibitor studies suggest that the membrane anchoring of HAad by a pyrene moiety leads to enhanced peptide-membrane interaction and to loosen lipid packing, thus facilitating cytosolic translocation through membranes.
Collapse
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Hirai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akiko Ide
- Faculty of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Asuka Ikitoh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
19
|
Abstract
Infection with obligatory intracellular bacteria is difficult to treat, as intracellular targets and delivery methods of therapeutics are not well known. Ehrlichia translocated factor-1 (Etf-1), a type IV secretion system (T4SS) effector, is a primary virulence factor for an obligatory intracellular bacterium, Ehrlichia chaffeensis In this study, we developed Etf-1-specific nanobodies (Nbs) by immunizing a llama to determine if intracellular Nbs block Etf-1 functions and Ehrlichia infection. Of 24 distinct anti-Etf-1 Nbs, NbD7 blocked mitochondrial localization of Etf-1-GFP in cotransfected cells. NbD7 and control Nb (NbD3) bound to different regions of Etf-1. Size-exclusion chromatography showed that the NbD7 and Etf-1 complex was more stable than the NbD3 and Etf-1 complex. Intracellular expression of NbD7 inhibited three activities of Etf-1 and E. chaffeensis: up-regulation of mitochondrial manganese superoxide dismutase, reduction of intracellular reactive oxygen species, and inhibition of cellular apoptosis. Consequently, intracellular NbD7 inhibited Ehrlichia infection, whereas NbD3 did not. To safely and effectively deliver Nbs into the host cell cytoplasm, NbD7 was conjugated to cyclized cell-permeable peptide 12 (CPP12-NbD7). CPP12-NbD7 effectively entered mammalian cells and abrogated the blockade of cellular apoptosis caused by E. chaffeensis and inhibited infection by E. chaffeensis in cell culture and in a severe combined-immunodeficiency mouse model. Our results demonstrate the development of an Nb that interferes with T4SS effector functions and intracellular pathogen infection, along with an intracellular delivery method for this Nb. This strategy should overcome current barriers to advance mechanistic research and develop therapies complementary or alternative to the current broad-spectrum antibiotic.
Collapse
|
20
|
Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J 2021; 289:4304-4327. [DOI: 10.1111/febs.15809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Martin A. Rossotti
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kasandra Bélanger
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kevin A. Henry
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| | - Jamshid Tanha
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| |
Collapse
|
21
|
Vigano MA, Ell CM, Kustermann MMM, Aguilar G, Matsuda S, Zhao N, Stasevich TJ, Affolter M, Pyrowolakis G. Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster. Development 2021; 148:dev191700. [PMID: 33593816 PMCID: PMC7990863 DOI: 10.1242/dev.191700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Cellular development and function rely on highly dynamic molecular interactions among proteins distributed in all cell compartments. Analysis of these interactions has been one of the main topics in cellular and developmental research, and has been mostly achieved by the manipulation of proteins of interest (POIs) at the genetic level. Although genetic strategies have significantly contributed to our current understanding, targeting specific interactions of POIs in a time- and space-controlled manner or analysing the role of POIs in dynamic cellular processes, such as cell migration or cell division, would benefit from more-direct approaches. The recent development of specific protein binders, which can be expressed and function intracellularly, along with advancement in synthetic biology, have contributed to the creation of a new toolbox for direct protein manipulations. Here, we have selected a number of short-tag epitopes for which protein binders from different scaffolds have been generated and showed that single copies of these tags allowed efficient POI binding and manipulation in living cells. Using Drosophila, we also find that single short tags can be used for POI manipulation in vivo.
Collapse
Affiliation(s)
- M Alessandra Vigano
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Gustavo Aguilar
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Shinya Matsuda
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Wagner TR, Rothbauer U. Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell. Biomolecules 2020; 10:biom10121701. [PMID: 33371447 PMCID: PMC7767433 DOI: 10.3390/biom10121701] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
In biomedical research, there is an ongoing demand for new technologies to elucidate disease mechanisms and develop novel therapeutics. This requires comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, post-translational modifications and dynamic interactions of cellular components. Traceable intracellular binding molecules provide new opportunities for real-time cellular diagnostics. Most prominently, intrabodies derived from antibody fragments of heavy-chain only antibodies of camelids (nanobodies) have emerged as highly versatile and attractive probes to study and manipulate antigens within the context of living cells. In this review, we provide an overview on the selection, delivery and usage of intrabodies to visualize and monitor cellular antigens in living cells and organisms. Additionally, we summarize recent advances in the development of intrabodies as cellular biosensors and their application to manipulate disease-related cellular processes. Finally, we highlight switchable intrabodies, which open entirely new possibilities for real-time cell-based diagnostics including live-cell imaging, target validation and generation of precisely controllable binding reagents for future therapeutic applications.
Collapse
Affiliation(s)
- Teresa R. Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-5153-0415; Fax: +49-7121-5153-0816
| |
Collapse
|
23
|
Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proc Natl Acad Sci U S A 2020; 117:30476-30487. [PMID: 33214152 DOI: 10.1073/pnas.2007443117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous β2-adrenoreceptor (β2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated β2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated β2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.
Collapse
|
24
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
25
|
Sakamoto K, Akishiba M, Iwata T, Murata K, Mizuno S, Kawano K, Imanishi M, Sugiyama F, Futaki S. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Misao Akishiba
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Takahiro Iwata
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
26
|
Sakamoto K, Akishiba M, Iwata T, Murata K, Mizuno S, Kawano K, Imanishi M, Sugiyama F, Futaki S. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Angew Chem Int Ed Engl 2020; 59:19990-19998. [PMID: 32557993 DOI: 10.1002/anie.202005887] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Indexed: 12/31/2022]
Abstract
Endocytic pathways are practical routes for the intracellular delivery of biomacromolecules. Along with this, effective strategies for endosomal cargo release into the cytosol are desired to achieve successful delivery. Focusing on compositional differences between the cell and endosomal membranes and the pH decrease within endosomes, we designed the lipid-sensitive and pH-responsive endosome-lytic peptide HAad. This peptide contains aminoadipic acid (Aad) residues, which serve as a safety catch for preferential permeabilization of endosomal membranes over cell membranes, and His-to-Ala substitutions enhance the endosomolytic activity. The ability of HAad to destabilize endosomal membranes was supported by model studies using large unilamellar vesicles (LUVs) and by increased intracellular delivery of biomacromolecules (including antibodies) into live cells. Cerebral ventricle injection of Cre recombinase with HAad led to Cre/loxP recombination in a mouse model, thus demonstrating potential applicability of HAad in vivo.
Collapse
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Misao Akishiba
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahiro Iwata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
27
|
Tai W, Zhao P, Gao X. Cytosolic delivery of proteins by cholesterol tagging. SCIENCE ADVANCES 2020; 6:eabb0310. [PMID: 32596467 PMCID: PMC7304968 DOI: 10.1126/sciadv.abb0310] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 05/24/2023]
Abstract
Protein-based imaging agents and therapeutics are superior in structural and functional diversity compared to small molecules and are much easier to design or screen. Antibodies or antibody fragments can be easily raised against virtually any target. Despite these fundamental advantages, the power and impact of protein-based agents are substantially undermined, only acting on a limited number of extracellular targets because macrobiomolecules cannot spontaneously cross the cell membrane. Conventional protein delivery techniques fail to address this fundamental problem in that protein cargos are predominantly delivered inside cells via endocytosis, a remarkably effective cell defense mechanism developed by Mother Nature to prevent intact biomolecules from entering the cytoplasm. Here, we report a unique concept, noncovalent cholesterol tagging, enabling virtually any compact proteins to permeate through the cell membrane, completely bypassing endocytosis. This simple plug-and-play platform greatly expands the biological target space and has the potential to transform basic biology studies and drug discovery.
Collapse
|
28
|
Xiao Q, Xu C. Research progress on chemiluminescence immunoassay combined with novel technologies. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115780] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Redchuk TA, Karasev MM, Verkhusha PV, Donnelly SK, Hülsemann M, Virtanen J, Moore HM, Vartiainen MK, Hodgson L, Verkhusha VV. Optogenetic regulation of endogenous proteins. Nat Commun 2020; 11:605. [PMID: 32001718 PMCID: PMC6992714 DOI: 10.1038/s41467-020-14460-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
Techniques of protein regulation, such as conditional gene expression, RNA interference, knock-in and knock-out, lack sufficient spatiotemporal accuracy, while optogenetic tools suffer from non-physiological response due to overexpression artifacts. Here we present a near-infrared light-activatable optogenetic system, which combines the specificity and orthogonality of intrabodies with the spatiotemporal precision of optogenetics. We engineer optically-controlled intrabodies to regulate genomically expressed protein targets and validate the possibility to further multiplex protein regulation via dual-wavelength optogenetic control. We apply this system to regulate cytoskeletal and enzymatic functions of two non-tagged endogenous proteins, actin and RAS GTPase, involved in complex functional networks sensitive to perturbations. The optogenetically-enhanced intrabodies allow fast and reversible regulation of both proteins, as well as simultaneous monitoring of RAS signaling with visible-light biosensors, enabling all-optical approach. Growing number of intrabodies should make their incorporation into optogenetic tools the versatile technology to regulate endogenous targets.
Collapse
Affiliation(s)
- Taras A Redchuk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Polina V Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara K Donnelly
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maren Hülsemann
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jori Virtanen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Henna M Moore
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
30
|
Bery N, Keller L, Soulié M, Gence R, Iscache AL, Cherier J, Cabantous S, Sordet O, Lajoie-Mazenc I, Pedelacq JD, Favre G, Olichon A. A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular RHOB GTP-Bound Conformation. Cell Chem Biol 2019; 26:1544-1558.e6. [PMID: 31522999 DOI: 10.1016/j.chembiol.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/22/2018] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
Abstract
The selective downregulation of activated intracellular proteins is a key challenge in cell biology. RHO small GTPases switch between a guanosine diphosphate (GDP)-bound and a guanosine triphosphate (GTP)-bound state that drives downstream signaling. At present, no tool is available to study endogenous RHO-GTPinduced conformational changes in live cells. Here, we established a cell-based screen to selectively degrade RHOB-GTP using F-box-intracellular single-domain antibody fusion. We identified one intracellular antibody (intrabody) that shows selective targeting of endogenous RHOB-GTP mediated by interactions between the CDR3 loop of the domain antibody and the GTP-binding pocket of RHOB. Our results suggest that, while RHOB is highly regulated at the expression level, only the GTP-bound pool, but not its global expression, mediates RHOB functions in genomic instability and in cell invasion. The F-box/intrabody-targeted protein degradation represents a unique approach to knock down the active form of small GTPases or other proteins with multiple cellular activities.
Collapse
Affiliation(s)
- Nicolas Bery
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Keller
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Marjorie Soulié
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne-Laure Iscache
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Julia Cherier
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Sordet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Lajoie-Mazenc
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France.
| | - Aurélien Olichon
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
31
|
Chia HE, Marsh ENG, Biteen JS. Extending fluorescence microscopy into anaerobic environments. Curr Opin Chem Biol 2019; 51:98-104. [DOI: 10.1016/j.cbpa.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022]
|
32
|
Rothbauer U. Speed up to find the right ones: rapid discovery of functional nanobodies. Nat Struct Mol Biol 2019; 25:199-201. [PMID: 29507400 DOI: 10.1038/s41594-018-0038-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Reutlingen, Germany. .,Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany.
| |
Collapse
|
33
|
Aguilar G, Vigano MA, Affolter M, Matsuda S. Reflections on the use of protein binders to study protein function in developmental biology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e356. [PMID: 31265212 PMCID: PMC6851689 DOI: 10.1002/wdev.356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/01/2023]
Abstract
Studies in the field of developmental biology aim to unravel how a fertilized egg develops into an adult organism and how proteins and other macromolecules work together during this process. With regard to protein function, most of the developmental studies have used genetic and RNA interference approaches, combined with biochemical analyses, to reach this goal. However, there always remains much room for interpretation on how a given protein functions, because proteins work together with many other molecules in complex regulatory networks and it is not easy to reveal the function of one given protein without affecting the networks. Likewise, it has remained difficult to experimentally challenge and/or validate the proposed concepts derived from mutant analyses without tools that directly manipulate protein function in a predictable manner. Recently, synthetic tools based on protein binders such as scFvs, nanobodies, DARPins, and others have been applied in developmental biology to directly manipulate target proteins in a predicted manner. Although such tools would have a great impact in filling the gap of knowledge between mutant phenotypes and protein functions, careful investigations are required when applying functionalized protein binders to fundamental questions in developmental biology. In this review, we first summarize how protein binders have been used in the field, and then reflect on possible guidelines for applying such tools to study protein functions in developmental biology. This article is categorized under: Technologies > Analysis of Proteins Establishment of Spatial and Temporal Patterns > Gradients Invertebrate Organogenesis > Flies.
Collapse
|
34
|
Singh K, Ejaz W, Dutta K, Thayumanavan S. Antibody Delivery for Intracellular Targets: Emergent Therapeutic Potential. Bioconjug Chem 2019; 30:1028-1041. [PMID: 30830750 PMCID: PMC6470022 DOI: 10.1021/acs.bioconjchem.9b00025] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteins have sparked fast growing interest as biological therapeutic agents for several diseases. Antibodies, in particular, carry an enormous potential as drugs owing to their remarkable target specificity and low immunogenicity. Although the market has numerous antibodies directed toward extracellular targets, their use in targeting therapeutically important intracellular targets is limited by their inability to cross cellular membrane. Realizing the potential for antibody therapy in disease treatment, progress has been made in the development of methods to deliver antibodies intracellularly. In this review, we address various platforms for delivery of antibodies and their merits and drawbacks.
Collapse
|
35
|
Aguilar G, Matsuda S, Vigano MA, Affolter M. Using Nanobodies to Study Protein Function in Developing Organisms. Antibodies (Basel) 2019; 8:E16. [PMID: 31544822 PMCID: PMC6640693 DOI: 10.3390/antib8010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/28/2022] Open
Abstract
Polyclonal and monoclonal antibodies have been invaluable tools to study proteins over the past decades. While indispensable for most biological studies including developmental biology, antibodies have been used mostly in fixed tissues or as binding reagents in the extracellular milieu. For functional studies and for clinical applications, antibodies have been functionalized by covalently fusing them to heterologous partners (i.e., chemicals, proteins or other moieties). Such functionalized antibodies have been less widely used in developmental biology studies. In the past few years, the discovery and application of small functional binding fragments derived from single-chain antibodies, so-called nanobodies, has resulted in novel approaches to study proteins during the development of multicellular animals in vivo. Expression of functionalized nanobody fusions from integrated transgenes allows manipulating proteins of interest in the extracellular and the intracellular milieu in a tissue- and time-dependent manner in an unprecedented manner. Here, we describe how nanobodies have been used in the field of developmental biology and look into the future to imagine how else nanobody-based reagents could be further developed to study the proteome in living organisms.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Shinya Matsuda
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - M Alessandra Vigano
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Markus Affolter
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
36
|
A Strategy to Optimize the Generation of Stable Chromobody Cell Lines for Visualization and Quantification of Endogenous Proteins in Living Cells. Antibodies (Basel) 2019; 8:antib8010010. [PMID: 31544816 PMCID: PMC6640688 DOI: 10.3390/antib8010010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Single-domain antibodies have emerged as highly versatile nanoprobes for advanced cellular imaging. For real-time visualization of endogenous antigens, fluorescently labelled nanobodies (chromobodies, CBs) are introduced as DNA-encoded expression constructs in living cells. Commonly, CB expression is driven from strong, constitutively active promoters. However, high expression levels are sometimes accompanied by misfolding and aggregation of those intracellular nanoprobes. Moreover, stable cell lines derived from random genomic insertion of CB-encoding transgenes bear the risk of disturbed cellular processes and inhomogeneous CB signal intensities due to gene positioning effects and epigenetic silencing. In this study we propose a strategy to generate optimized CB expressing cell lines. We demonstrate that expression as ubiquitin fusion increases the fraction of intracellularly functional CBs and identified the elongation factor 1α (EF1-α) promoter as highly suited for constitutive CB expression upon long-term cell line cultivation. Finally, we applied a CRISPR/Cas9-based gene editing approach for targeted insertion of CB expression constructs into the adeno-associated virus integration site 1 (AAVS1) safe harbour locus of human cells. Our results indicate that this combinatorial approach facilitates the generation of fully functional and stable CB cell lines for quantitative live-cell imaging of endogenous antigens.
Collapse
|
37
|
Selection and Characterization of a Nanobody Biosensor of GTP-Bound RHO Activities. Antibodies (Basel) 2019; 8:antib8010008. [PMID: 31544814 PMCID: PMC6640709 DOI: 10.3390/antib8010008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
RHO (Ras HOmologous) GTPases are molecular switches that activate, in their state bound to Guanosine triphosphate (GTP), key signaling pathways, which involve actin cytoskeleton dynamics. Previously, we selected the nanobody RH12, from a synthetic phage display library, which binds the GTP-bound active conformation of RHOA (Ras Homologous family member A). However, when expressed as an intracellular antibody, its blocking effect on RHO signaling led to a loss of actin fibers, which in turn affected cell shape and cell survival. Here, in order to engineer an intracellular biosensor of RHOA-GTP activation, we screened the same phage nanobody library and identified another RHO-GTP selective intracellular nanobody, but with no apparent toxicity. The recombinant RH57 nanobody displays high affinity towards GTP-bound RHOA/B/C subgroup of small GTPases in vitro. Intracellular expression of the RH57 allowed selective co-precipitation with the GTP-bound state of the endogenous RHOA subfamily. When expressed as a fluorescent fusion protein, the chromobody GFP-RH57 was localized to the inner plasma membrane upon stimulation of the activation of endogenous RHO. Finally, the RH57 nanobody was used to establish a BRET-based biosensor (Bioluminescence Resonance Energy Transfer) of RHO activation. The dynamic range of the BRET signal could potentially offer new opportunities to develop cell-based screening of RHOA subfamily activation modulators.
Collapse
|
38
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
39
|
Gorshkova EN, Efimov GA, Ermakova KD, Vasilenko EA, Yuzhakova DV, Shirmanova MV, Mokhonov VV, Tillib SV, Nedospasov SA, Astrakhantseva IV. Properties of Fluorescent Far-Red Anti-TNF Nanobodies. Antibodies (Basel) 2018; 7:antib7040043. [PMID: 31544893 PMCID: PMC6698962 DOI: 10.3390/antib7040043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/31/2023] Open
Abstract
Upregulation of the expression of tumor necrosis factor (TNF-α, TNF) has a significant role in the development of autoimmune diseases. The fluorescent antibodies binding TNF may be used for personalized therapy of TNF-dependent diseases as a tool to predict the response to anti-TNF treatment. We generated recombinant fluorescent proteins consisting of the anti-TNF module based on the variable heavy chain (VHH) of camelid antibodies fused with the far-red fluorescent protein Katushka (Kat). Two types of anti-TNF VHH were developed: one (BTN-Kat) that was bound both human or mouse TNF, but did not neutralize their activity, and a second (ITN-Kat) that was binding and neutralizing human TNF. BTN-Kat does not interfere with TNF biological functions and can be used for whole-body imaging. ITN-Kat can be evaluated in humanized mice or in cells isolated from humanized mice. It is able to block human TNF (hTNF) activities both in vitro and in vivo and may be considered as a prototype of a theranostic agent for autoimmune diseases.
Collapse
Affiliation(s)
- Ekaterina N Gorshkova
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
| | - Grigory A Efimov
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow 125167, Russia.
| | - Ksenia D Ermakova
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
| | - Ekaterina A Vasilenko
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
| | - Diana V Yuzhakova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhniy Novgorod 603005, Russia.
| | - Marina V Shirmanova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhniy Novgorod 603005, Russia.
| | - Vladislav V Mokhonov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Sergei V Tillib
- Lomonosov Moscow State University, Moscow 119991, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Sergei A Nedospasov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Irina V Astrakhantseva
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod 603950, Russia.
| |
Collapse
|
40
|
Keller BM, Maier J, Secker KA, Egetemaier SM, Parfyonova Y, Rothbauer U, Traenkle B. Chromobodies to Quantify Changes of Endogenous Protein Concentration in Living Cells. Mol Cell Proteomics 2018; 17:2518-2533. [PMID: 30228193 DOI: 10.1074/mcp.tir118.000914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/04/2018] [Indexed: 11/06/2022] Open
Abstract
Understanding cellular processes requires the determination of dynamic changes in the concentration of genetically nonmodified, endogenous proteins, which, to date, is commonly accomplished by end-point assays in vitro Molecular probes such as fluorescently labeled nanobodies (chromobodies, CBs) are powerful tools to visualize the dynamic subcellular localization of endogenous proteins in living cells. Here, we employed the dependence of intracellular levels of chromobodies on the amount of their endogenous antigens, a phenomenon, which we termed antigen-mediated CB stabilization (AMCBS), for simultaneous monitoring of time-resolved changes in the concentration and localization of native proteins. To improve the dynamic range of AMCBS we generated turnover-accelerated CBs and demonstrated their application in visualization and quantification of fast reversible changes in antigen concentration upon compound treatment by quantitative live-cell imaging. We expect that this broadly applicable strategy will enable unprecedented insights into the dynamic regulation of proteins, e.g. during cellular signaling, cell differentiation, or upon drug action.
Collapse
Affiliation(s)
| | - Julia Maier
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany
| | - Kathy-Ann Secker
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany
| | | | - Yana Parfyonova
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany; Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany.
| | - Bjoern Traenkle
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany.
| |
Collapse
|
41
|
Enhancing bacterial production of a recombinant cetuximab-Fab by partial humanization and its utility for drug conjugation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Harmansa S, Affolter M. Protein binders and their applications in developmental biology. Development 2018; 145:145/2/dev148874. [PMID: 29374062 DOI: 10.1242/dev.148874] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developmental biology research would benefit greatly from tools that enable protein function to be regulated, both systematically and in a precise spatial and temporal manner, in vivo In recent years, functionalized protein binders have emerged as versatile tools that can be used to target and manipulate proteins. Such protein binders can be based on various scaffolds, such as nanobodies, designed ankyrin repeat proteins (DARPins) and monobodies, and can be used to block or perturb protein function in living cells. In this Primer, we provide an overview of the protein binders that are currently available and highlight recent progress made in applying protein binder-based tools in developmental and synthetic biology.
Collapse
Affiliation(s)
- Stefan Harmansa
- Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
43
|
Zhang JF, Xiong HL, Cao JL, Wang SJ, Guo XR, Lin BY, Zhang Y, Zhao JH, Wang YB, Zhang TY, Yuan Q, Zhang J, Xia NS. A cell-penetrating whole molecule antibody targeting intracellular HBx suppresses hepatitis B virus via TRIM21-dependent pathway. Am J Cancer Res 2018; 8:549-562. [PMID: 29290826 PMCID: PMC5743566 DOI: 10.7150/thno.20047] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Rationale: Monoclonal antibodies (mAbs) mostly targeting extracellular or cell surface molecules have been widely used in the treatment of various diseases. However, mAbs cannot pass through the cell membrane as efficiently as small compounds, thus limiting their use against intracellular targets. Methods to shuttle antibodies into living cells may largely expand research and application in areas based on mAbs. Hepatitis B virus X protein (HBx) is an important intracellular multi-functional viral protein in the life cycle of hepatitis B virus (HBV). HBx plays essential roles in virus infection and replication and is strongly associated with HBV-related carcinogenesis. Methods: In this study, we developed a cell-penetrating whole molecule antibody targeting HBx (9D11-Tat) by the fusion of a cell penetrating peptide (CPP) on the C-terminus of the heavy chain of a potent mAb specific to HBx (9D11). The anti-HBV effect and mechanism of 9D11-Tat were investigated in cell and mouse models mimicking chronic HBV infection. Results: Our results demonstrated that the recombinant 9D11-Tat antibody could efficiently internalize into living cells and significantly suppress viral transcription, replication, and protein production both in vitro and in vivo. Further analyses suggested the internalized 9D11-Tat antibody could greatly reduce intracellular HBx via Fc binding receptor TRIM21-mediated protein degradation. This process simultaneously stimulated the activations of NF-κB, AP-1, and IFN-β, which promoted an antiviral state of the host cell. Conclusion: In summary, our study offers a new approach to target intracellular pathogenesis-related protein by engineered cell-penetrating mAb expanding their potential for therapeutic applications. Moreover, the 9D11-Tat antibody may provide a novel therapeutic agent against human chronic HBV infection.
Collapse
|
44
|
Traenkle B, Rothbauer U. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy. Front Immunol 2017; 8:1030. [PMID: 28883823 PMCID: PMC5573807 DOI: 10.3389/fimmu.2017.01030] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.
Collapse
Affiliation(s)
- Bjoern Traenkle
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| |
Collapse
|
45
|
Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat Chem 2017; 9:751-761. [DOI: 10.1038/nchem.2779] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
|
46
|
Harmansa S, Alborelli I, Bieli D, Caussinus E, Affolter M. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife 2017; 6. [PMID: 28395731 PMCID: PMC5388529 DOI: 10.7554/elife.22549] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
The role of protein localization along the apical-basal axis of polarized cells is difficult to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a collection of four nanobody-based GFP-traps that localize to defined positions along the apical-basal axis. We show that the localization preference of the GrabFP traps can impose a novel localization on GFP-tagged target proteins and results in their controlled mislocalization. These new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the Drosophila wing disc epithelium and to investigate the effect of protein mislocalization. Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.
Collapse
Affiliation(s)
- Stefan Harmansa
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Dimitri Bieli
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Emmanuel Caussinus
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
47
|
Abstract
Fluorescent tools have revolutionized our ability to probe biological dynamics, particularly at the cellular level. Fluorescent sensors have been developed on several platforms, utilizing either small-molecule dyes or fluorescent proteins, to monitor proteins, RNA, DNA, small molecules, and even cellular properties, such as pH and membrane potential. We briefly summarize the impressive history of tool development for these various applications and then discuss the most recent noteworthy developments in more detail. Particular emphasis is placed on tools suitable for single-cell analysis and especially live-cell imaging applications. Finally, we discuss prominent areas of need in future fluorescent tool development-specifically, advancing our capability to analyze and integrate the plethora of high-content data generated by fluorescence imaging.
Collapse
Affiliation(s)
- Elizabeth A Specht
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303;
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| | - Esther Braselmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303;
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303;
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| |
Collapse
|
48
|
Lim SI, Lukianov CI, Champion JA. Self-assembled protein nanocarrier for intracellular delivery of antibody. J Control Release 2017; 249:1-10. [PMID: 28069555 DOI: 10.1016/j.jconrel.2017.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Despite the great potential of antibodies as intracellular therapeutics, there is a significant, unmet challenge in delivering sufficient amounts of folded antibodies inside cells. We describe an all-protein self-assembled nanocarrier capable of delivering functional antibodies to the cytosol. By combining an α-helical peptide that self-assembles into a hexameric coiled-coil bundle and an Fc-binding Protein A fragment, we generated the Hex nanocarrier that is efficiently internalized by cells without cytotoxicity. Localization of multiple Fc-binding domains on the hexameric core allowed the Hex nanocarrier to tightly bind antibody with sub-nanomolar affinity regardless of pH and the antibody's originating species. The size of the Hex nanocarrier ranges from 25 to 35nm depending on the antibody loading ratio. We demonstrated the capacity of the Hex nanocarrier to deliver functional antibodies to the cytosol by employing anti-β-tubulin or anti-nuclear pore complex antibody as cargo. The design of the Hex nanocarrier is modular, which enables functionalization beyond Fc-binding. We exploited this feature to improve the cytosolic delivery efficiency of the Hex nanocarrier by addition of an endosomolytic motif to the core. The modified Hex nanocarrier exhibited similar antibody-binding behavior, but delivered more antibodies to their cytosolic targets at a faster rate. This work demonstrates an efficient intracellular antibody delivery platform with significant advantages over existing approaches as it does not require modification of the antibody, is biodegradable, and has an antibody to carrier mass ratio of 13, which is greater than other reported antibody carriers.
Collapse
Affiliation(s)
- Sung In Lim
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Cyril I Lukianov
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
49
|
Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2016; 584:59-97. [PMID: 28065273 DOI: 10.1016/bs.mie.2016.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The study of membrane protein function and structure requires their successful detection, expression, solubilization, and/or reconstitution, which poses a challenging task and relies on the availability of suitable tools. Several research groups have successfully applied Nanobodies in the purification, as well as the functional and structural characterization of membrane proteins. Nanobodies are small, single-chain antibody fragments originating from camelids presenting on average a longer CDR3 which enables them to bind in cavities and clefts (such as active and allosteric sites). Notably, Nanobodies generally bind conformational epitopes making them very interesting tools to stabilize, dissect, and characterize specific protein conformations. In the clinic, several Nanobodies are under evaluation either as potential drug candidates or as diagnostic tools. In recent years, we have successfully generated high-affinity, conformation-sensitive anti-γ-secretase Nanobodies. γ-Secretase is a multimeric membrane protease involved in processing of the amyloid precursor protein with high clinical relevance as mutations in its catalytic subunit (Presenilin) cause early-onset Alzheimer's disease. Advancing our knowledge on the mechanisms governing γ-secretase intramembrane proteolysis through various strategies may lead to novel therapeutic avenues for Alzheimer's disease. In this chapter, we present the strategies we have developed and applied for the screening and characterization of anti-γ-secretase Nanobodies. These protocols could be of help in the generation of Nanobodies targeting other membrane proteins.
Collapse
Affiliation(s)
- S Veugelen
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - M Dewilde
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - B De Strooper
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium; UCL Institute of Neurology, London, United Kingdom
| | - L Chávez-Gutiérrez
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium.
| |
Collapse
|
50
|
Maier J, Traenkle B, Rothbauer U. Visualizing Epithelial-Mesenchymal Transition Using the Chromobody Technology. Cancer Res 2016; 76:5592-5596. [PMID: 27634766 DOI: 10.1158/0008-5472.can-15-3419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/15/2016] [Indexed: 11/16/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a complex cellular program involved in the progression of epithelial cancers to a metastatic stage. Along this process, epithelial traits are repressed in favor of a motile mesenchymal phenotype. A detailed characterization and monitoring of EMT-related processes is required for the design of screening strategies needed to develop novel antimetastatic therapies. Overexpression of the canonical EMT biomarker vimentin correlates with increased tumor growth and invasiveness, as well as with reduced patient survival across various epithelial cancers. Moreover, recent findings have demonstrated an active role of vimentin in regulating and reorganizing the cellular architecture toward a migratory and invasive phenotype. However, current studies suffer from a lack of appropriate methods to trace the induction and dynamics of vimentin in cell-based assays. Recently, we have reported a novel intrabody (chromobody)-based approach to study the spatiotemporal organization of endogenous vimentin upon induction of EMT by high-content imaging. In this review, we discuss the relevance of the chromobody technology with regard to the visualization of EMT-related processes in living systems. Cancer Res; 76(19); 5592-6. ©2016 AACR.
Collapse
Affiliation(s)
- Julia Maier
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bjoern Traenkle
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany. Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany.
| |
Collapse
|