1
|
Wu X, Li D, Chen Y, Wang L, Xu LY, Li EM, Dong G. Fascin - F-actin interaction studied by molecular dynamics simulation and protein network analysis. J Biomol Struct Dyn 2024; 42:435-444. [PMID: 37029713 DOI: 10.1080/07391102.2023.2199083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Dajia Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liangdong Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
2
|
Sora V, Tiberti M, Beltrame L, Dogan D, Robbani SM, Rubin J, Papaleo E. PyInteraph2 and PyInKnife2 to Analyze Networks in Protein Structural Ensembles. J Chem Inf Model 2023; 63:4237-4245. [PMID: 37437128 DOI: 10.1021/acs.jcim.3c00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Due to the complex nature of noncovalent interactions and their long-range effects, analyzing protein conformations using network theory can be enlightening. Protein Structure Networks (PSNs) provide a convenient formalism to study protein structures in relation to essential properties such as key residues for structural stability, allosteric communication, and the effects of modifications of the protein. PSNs can be defined according to very different principles, and the available tools have limitations in input formats, supported models, and version control. Other outstanding problems are related to the definition of network cutoffs and the assessment of the stability of the network properties. The protein science community could benefit from a common framework to carry out these analyses and make them easier to reproduce, reuse, and evaluate. We here provide two open-source software packages, PyInteraph2 and PyInKnife2, to implement and analyze PSNs in a reproducible and documented manner. PyInteraph2 interfaces with multiple formats for protein ensembles and incorporates different network models with the possibility of integrating them into a macronetwork and performing various downstream analyses, including hubs, connected components, and several other centrality measures, and visualizes the networks or further analyzes them thanks to compatibility with Cytoscape.PyInKnife2 that supports the network models implemented in PyInteraph2. It employs a jackknife resampling approach to estimate the convergence of network properties and streamline the selection of distance cutoffs. We foresee that the modular structure of the code and the supported version control system will promote the transition to a community-driven effort, boost reproducibility, and establish common protocols in the PSN field. As developers, we will guarantee the introduction of new functionalities and maintenance, assistance, and training of new contributors.
Collapse
Affiliation(s)
- Valentina Sora
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Cancer Systems Biology, Section of Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Ludovica Beltrame
- Cancer Systems Biology, Section of Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Deniz Dogan
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Shahriyar Mahdi Robbani
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Joshua Rubin
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Cancer Systems Biology, Section of Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
3
|
Tiberti M, Terkelsen T, Degn K, Beltrame L, Cremers TC, da Piedade I, Di Marco M, Maiani E, Papaleo E. MutateX: an automated pipeline for in silico saturation mutagenesis of protein structures and structural ensembles. Brief Bioinform 2022; 23:6552273. [PMID: 35323860 DOI: 10.1093/bib/bbac074] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Mutations, which result in amino acid substitutions, influence the stability of proteins and their binding to biomolecules. A molecular understanding of the effects of protein mutations is both of biotechnological and medical relevance. Empirical free energy functions that quickly estimate the free energy change upon mutation (ΔΔG) can be exploited for systematic screenings of proteins and protein complexes. In silico saturation mutagenesis can guide the design of new experiments or rationalize the consequences of known mutations. Often software such as FoldX, while fast and reliable, lack the necessary automation features to apply them in a high-throughput manner. We introduce MutateX, a software to automate the prediction of ΔΔGs associated with the systematic mutation of each residue within a protein, or protein complex to all other possible residue types, using the FoldX energy function. MutateX also supports ΔΔG calculations over protein ensembles, upon post-translational modifications and in multimeric assemblies. At the heart of MutateX lies an automated pipeline engine that handles input preparation, parallelization and outputs publication-ready figures. We illustrate the MutateX protocol applied to different case studies. The results of the high-throughput scan provided by our tools can help in different applications, such as the analysis of disease-associated mutations, to complement experimental deep mutational scans, or assist the design of variants for industrial applications. MutateX is a collection of Python tools that relies on open-source libraries. It is available free of charge under the GNU General Public License from https://github.com/ELELAB/mutatex.
Collapse
Affiliation(s)
- Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thilde Terkelsen
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ludovica Beltrame
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Tycho Canter Cremers
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Isabelle da Piedade
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Miriam Di Marco
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Pouyan S, Lagzian M, Sangtarash MH. Enhancing thermostabilization of a newly discovered α-amylase from Bacillus cereus GL96 by combining computer-aided directed evolution and site-directed mutagenesis. Int J Biol Macromol 2022; 197:12-22. [PMID: 34920075 DOI: 10.1016/j.ijbiomac.2021.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
This study has described the characterization of a new a-amylase from the recently isolated Bacillus cereus GL96. Subsequently, an in-silico approach was taken into account to redesign the enzyme to meet higher thermal stability. Finally, the engineered enzyme was constructed experimentally using side-directed mutagenesis (SDM) and characterized accordingly. The enzyme was stable over pH 4-11, with the highest activity at 9.5. The temperature profile of the wild-type enzyme showed optimum activity at 50 °C plus 40% of stability at temperatures up to 70 °C. The in-silico result was indicated D162W, D162R, and D162K as the three stabilizing mutations. Among them, D162K showed better results, especially in the molecular dynamics simulation, and therefore, it was constructed by SDM. This variant was shown 5 °C higher optimum temperature (55 °C) with increasing activity than the native enzyme. In addition, it was significantly more stable than the native form. For example, while the latter almost wholly lost its function at a temperature above 70 °C, the D162K can retain more than 40% of its initial activity up to 80 °C. Considering the promising properties that the mutant enzyme showed, it can be considered for further investigation to meet the industrial requirement completely.
Collapse
Affiliation(s)
- Soroosh Pouyan
- Dept. of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Milad Lagzian
- Dept. of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
5
|
Fas BA, Maiani E, Sora V, Kumar M, Mashkoor M, Lambrughi M, Tiberti M, Papaleo E. The conformational and mutational landscape of the ubiquitin-like marker for autophagosome formation in cancer. Autophagy 2021; 17:2818-2841. [PMID: 33302793 PMCID: PMC8525936 DOI: 10.1080/15548627.2020.1847443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy/autophagy is a cellular process to recycle damaged cellular components, and its modulation can be exploited for disease treatments. A key autophagy player is the ubiquitin-like protein MAP1LC3B/LC3B. Mutations and changes in MAP1LC3B expression occur in cancer samples. However, the investigation of the effects of these mutations on MAP1LC3B protein structure is still missing. Despite many LC3B structures that have been solved, a comprehensive study, including dynamics, has not yet been undertaken. To address this knowledge gap, we assessed nine physical models for biomolecular simulations for their capabilities to describe the structural ensemble of MAP1LC3B. With the resulting MAP1LC3B structural ensembles, we characterized the impact of 26 missense mutations from pan-cancer studies with different approaches, and we experimentally validated our prediction for six variants using cellular assays. Our findings shed light on damaging or neutral mutations in MAP1LC3B, providing an atlas of its modifications in cancer. In particular, P32Q mutation was found detrimental for protein stability with a propensity to aggregation. In a broader context, our framework can be applied to assess the pathogenicity of protein mutations or to prioritize variants for experimental studies, allowing to comprehensively account for different aspects that mutational events alter in terms of protein structure and function.Abbreviations: ATG: autophagy-related; Cα: alpha carbon; CG: coarse-grained; CHARMM: Chemistry at Harvard macromolecular mechanics; CONAN: contact analysis; FUNDC1: FUN14 domain containing 1; FYCO1: FYVE and coiled-coil domain containing 1; GABARAP: GABA type A receptor-associated protein; GROMACS: Groningen machine for chemical simulations; HP: hydrophobic pocket; LIR: LC3 interacting region; MAP1LC3B/LC3B microtubule associated protein 1 light chain 3 B; MD: molecular dynamics; OPTN: optineurin; OSF: open software foundation; PE: phosphatidylethanolamine, PLEKHM1: pleckstrin homology domain-containing family M 1; PSN: protein structure network; PTM: post-translational modification; SA: structural alphabet; SLiM: short linear motif; SQSTM1/p62: sequestosome 1; WT: wild-type.
Collapse
Affiliation(s)
- Burcu Aykac Fas
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valentina Sora
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mukesh Kumar
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maliha Mashkoor
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Boucher L, Somani S, Negron C, Ma W, Jacobs S, Chan W, Malia T, Obmolova G, Teplyakov A, Gilliland GL, Luo J. Surface salt bridges contribute to the extreme thermal stability of an FN3-like domain from a thermophilic bacterium. Proteins 2021; 90:270-281. [PMID: 34405904 DOI: 10.1002/prot.26218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/08/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022]
Abstract
This study uses differential scanning calorimetry, X-ray crystallography, and molecular dynamics simulations to investigate the structural basis for the high thermal stability (melting temperature 97.5°C) of a FN3-like protein domain from thermophilic bacteria Thermoanaerobacter tengcongensis (FN3tt). FN3tt adopts a typical FN3 fold with a three-stranded beta sheet packing against a four-stranded beta sheet. We identified three solvent exposed arginine residues (R23, R25, and R72), which stabilize the protein through salt bridge interactions with glutamic acid residues on adjacent strands. Alanine mutation of the three arginine residues reduced melting temperature by up to 22°C. Crystal structures of the wild type (WT) and a thermally destabilized (∆Tm -19.7°C) triple mutant (R23L/R25T/R72I) were found to be nearly identical, suggesting that the destabilization is due to interactions of the arginine residues. Molecular dynamics simulations showed that the salt bridge interactions in the WT were stable and provided a dynamical explanation for the cooperativity observed between R23 and R25 based on calorimetry measurements. In addition, folding free energy changes computed using free energy perturbation molecular dynamics simulations showed high correlation with melting temperature changes. This work is another example of surface salt bridges contributing to the enhanced thermal stability of thermophilic proteins. The molecular dynamics simulation methods employed in this study may be broadly useful for in silico surface charge engineering of proteins.
Collapse
Affiliation(s)
- Lauren Boucher
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Sandeep Somani
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Wenting Ma
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Steven Jacobs
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Winnie Chan
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Thomas Malia
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Galina Obmolova
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Alexey Teplyakov
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Gary L Gilliland
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Jinquan Luo
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
7
|
Hjörleifsson JG, Helland R, Magnúsdóttir M, Ásgeirsson B. The high catalytic rate of the cold-active Vibrio alkaline phosphatase requires a hydrogen bonding network involving a large interface loop. FEBS Open Bio 2020; 11:173-184. [PMID: 33197282 PMCID: PMC7780099 DOI: 10.1002/2211-5463.13041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
The role of surface loops in mediating communication through residue networks is still a relatively poorly understood part in the study of cold adaptation of enzymes, especially in terms of their quaternary interactions. Alkaline phosphatase (AP) from the psychrophilic marine bacterium Vibrio splendidus (VAP) is characterized by an analogous large surface loop in each monomer, referred to as the large loop, that hovers over the active site of the other monomer. It presumably has a role in the high catalytic efficiency of VAP which accompanies its extremely low thermal stability. Here, we designed several different variants of VAP with the aim of removing intersubunit interactions at the dimer interface. Breaking the intersubunit contacts from one residue in particular (Arg336) reduced the temperature stability of the catalytically potent conformation and caused a 40% drop in catalytic rate. The high catalytic rates of enzymes from cold‐adapted organisms are often associated with increased dynamic flexibility. Comparison of the relative B‐factors of the R336L crystal structure to that of the wild‐type confirmed surface flexibility was increased in a loop on the opposite monomer, but not in the large loop. The increase in flexibility resulted in a reduced catalytic rate. The large loop increases the area of the interface between the subunits through its contacts and may facilitate an alternating structural cycle demanded by a half‐of‐sites reaction mechanism through stronger ties, as the dimer oscillates between high affinity (active) or low phosphoryl group affinity (inactive).
Collapse
Affiliation(s)
| | - Ronny Helland
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT, The Arctic University of Tromsø, Norway
| | - Manuela Magnúsdóttir
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
8
|
Zhang R, He L, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Improving low-temperature activity and thermostability of exo-inulinase InuAGN25 on the basis of increasing rigidity of the terminus and flexibility of the catalytic domain. Bioengineered 2020; 11:1233-1244. [PMID: 33131413 PMCID: PMC8291790 DOI: 10.1080/21655979.2020.1837476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Enzymes displaying high activity at low temperatures and good thermostability are attracting attention in many studies. However, improving low-temperature activity along with the thermostability of enzymes remains challenging. In this study, the mutant Mut8S, including eight sites (N61E, K156R, P236E, T243K, D268E, T277D, Q390K, and R409D) mutated from the exo-inulinase InuAGN25, was designed on the basis of increasing the number of salt bridges through comparison between the low-temperature-active InuAGN25 and thermophilic exo-inulinases. The recombinant Mut8S, which was expressed in Escherichia coli, was digested by human rhinovirus 3 C protease to remove the amino acid fusion sequence at N-terminus, producing RfsMut8S. Compared with wild-type RfsMInuAGN25, the mutant RfsMut8S showed (1) lower root mean square deviation values, (2) lower root mean square fluctuation (RMSF) values of residues in six regions of the N and C termini but higher RMSF values in five regions of the catalytic pocket, (3) higher activity at 0-40°C, and (4) better thermostability at 50°C. This study proposes a way to increase low-temperature activity along with a thermostability improvement of exo-inulinase on the basis of increasing the rigidity of the terminus and the flexibility of the catalytic domain. These findings may prove useful in formulating rational designs for increasing the thermal performance of enzymes.
Collapse
Affiliation(s)
- Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
9
|
Kumar M, Papaleo E. A pan-cancer assessment of alterations of the kinase domain of ULK1, an upstream regulator of autophagy. Sci Rep 2020; 10:14874. [PMID: 32913252 PMCID: PMC7483646 DOI: 10.1038/s41598-020-71527-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a key clearance process to recycle damaged cellular components. One important upstream regulator of autophagy is ULK1 kinase. Several three-dimensional structures of the ULK1 catalytic domain are available, but a comprehensive study, including molecular dynamics, is missing. Also, an exhaustive description of ULK1 alterations found in cancer samples is presently lacking. We here applied a framework which links -omics data to structural protein ensembles to study ULK1 alterations from genomics data available for more than 30 cancer types. We predicted the effects of mutations on ULK1 function and structural stability, accounting for protein dynamics, and the different layers of changes that a mutation can induce in a protein at the functional and structural level. ULK1 is down-regulated in gynecological tumors. In other cancer types, ULK2 could compensate for ULK1 downregulation and, in the majority of the cases, no marked changes in expression have been found. 36 missense mutations of ULK1, not limited to the catalytic domain, are co-occurring with mutations in a large number of ULK1 interactors or substrates, suggesting a pronounced effect of the upstream steps of autophagy in many cancer types. Moreover, our results pinpoint that more than 50% of the mutations in the kinase domain of ULK1, here investigated, are predicted to affect protein stability. Three mutations (S184F, D102N, and A28V) are predicted with only impact on kinase activity, either modifying the functional dynamics or the capability to exert effects from distal sites to the functional and catalytic regions. The framework here applied could be extended to other protein targets to aid the classification of missense mutations from cancer genomics studies, as well as to prioritize variants for experimental validation, or to select the appropriate biological readouts for experiments.
Collapse
Affiliation(s)
- Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
He L, Zhang R, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Removal of N-terminal tail changes the thermostability of the low-temperature-active exo-inulinase InuAGN25. Bioengineered 2020; 11:921-931. [PMID: 32865156 PMCID: PMC8291819 DOI: 10.1080/21655979.2020.1809921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exo-inulinases are members of the glycoside hydrolase family 32 and function by hydrolyzing inulin into fructose with yields up to 90–95%. The N-terminal tail contributes to enzyme thermotolerance, which plays an important role in enzyme applications. However, the role of N-terminal amino acid residues in the thermal performance and structural properties of exo-inulinases remains to be elucidated. In this study, three and six residues of the N-terminus starting from Gln23 of the exo-inulinase InuAGN25 were deleted and expressed in Escherichia coli. After digestion with human rhinovirus 3 C protease to remove the N-terminal amino acid fusion sequence that may affect the thermolability of enzymes, wild-type RfsMInuAGN25 and its mutants RfsMutNGln23Δ3 and RfsMutNGln23Δ6 were produced. Compared with RfsMInuAGN25, thermostability of RfsMutNGln23Δ3 was enhanced while that of RfsMutNGln23Δ6 was slightly reduced. Compared with the N-terminal structures of RfsMInuAGN25 and RfsMutNGln23Δ6, RfsMutNGln23Δ3 had a higher content of (1) the helix structure, (2) salt bridges (three of which were organized in a network), (3) cation–π interactions (one of which anchored the N-terminal tail). These structural properties may account for the improved thermostability of RfsMutNGln23Δ3. The study provides a better understanding of the N-terminus–function relationships that are useful for rational design of thermostability of exo-inulinases.
Collapse
Affiliation(s)
- Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| |
Collapse
|
11
|
Miotto M, Olimpieri PP, Di Rienzo L, Ambrosetti F, Corsi P, Lepore R, Tartaglia GG, Milanetti E. Insights on protein thermal stability: a graph representation of molecular interactions. Bioinformatics 2020; 35:2569-2577. [PMID: 30535291 PMCID: PMC6662296 DOI: 10.1093/bioinformatics/bty1011] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 11/14/2022] Open
Abstract
Motivation Understanding the molecular mechanisms of thermal stability is a challenge in protein biology. Indeed, knowing the temperature at which proteins are stable has important theoretical implications, which are intimately linked with properties of the native fold, and a wide range of potential applications from drug design to the optimization of enzyme activity. Results Here, we present a novel graph-theoretical framework to assess thermal stability based on the structure without any a priori information. In this approach we describe proteins as energy-weighted graphs and compare them using ensembles of interaction networks. Investigating the position of specific interactions within the 3D native structure, we developed a parameter-free network descriptor that permits to distinguish thermostable and mesostable proteins with an accuracy of 76% and area under the receiver operating characteristic curve of 78%. Availability and implementation Code is available upon request to edoardo.milanetti@uniroma1.it Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mattia Miotto
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, Italy.,Center for Life Nano Science@Sapienza, Instituto Italiano di Tecnologia, Viale Regina Elena, 291 Roma (RM), Italy.,Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Lorenzo Di Rienzo
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, Italy
| | - Francesco Ambrosetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, Italy.,Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, the Netherlands
| | - Pietro Corsi
- Department of Science, Università degli Studi "Roma Tre", via della Vasca Navale 84, Rome, Italy
| | - Rosalba Lepore
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader St. 88, Barcelona, Spain.,Institucio' Catalana de Recerca i Estudis Avancats (ICREA), 23 Passeig Lluìs Companys, Barcelona, Spain.,Department of Biology and Biotechnology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, Italy.,Center for Life Nano Science@Sapienza, Instituto Italiano di Tecnologia, Viale Regina Elena, 291 Roma (RM), Italy
| |
Collapse
|
12
|
Osire T, Yang T, Xu M, Zhang X, Li X, Niyomukiza S, Rao Z. Lys-Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions. World J Microbiol Biotechnol 2019; 35:173. [PMID: 31673794 DOI: 10.1007/s11274-019-2751-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Neutral proteases have broad application as additives in modern laundry detergents and therefore, thermostability is an integral parameter for effective production of protein crystals. To improve thermostability, the contribution of individual residues of Bacillus cereus neutral protease was examined by site-directed mutagenesis. The Lys11Arg and Lys211Arg mutants clearly possessed improved thermostabilities (Tm were 63 and 61 °C respectively) compared to the wild-type (Tm was 60 °C). MD simulations further revealed that the mutants had low RMSD and RMSF values compared to wild-type BCN indicating increased stability of the protein structure. Lys11Arg mutant particularly possessed the lowest RMSD values due to increased residue interactions, which resulted in enhanced thermostability. The mutants also displayed strong stability to most inhibitors, organic solvents and surfactants after incubation for 1 h. This study demonstrated Lys-Arg mutation enhanced thermostability of BCN and thus provides insight for engineering stabilizing mutations with improved thermostability for related proteins.
Collapse
Affiliation(s)
- Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China.
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Xu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Samuel Niyomukiza
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
13
|
Salt bridges are pivotal for the kinetic stability of GH26 endo-mannanase (ManB-1601). Int J Biol Macromol 2019; 133:1236-1241. [DOI: 10.1016/j.ijbiomac.2019.04.175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/21/2022]
|
14
|
Tang L, Yang J, Chen J, Zhang J, Yu H, Shen Z. Design of salt-bridge cyclization peptide tags for stability and activity enhancement of enzymes. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Óskarsson KR, Kristjánsson MM. Improved expression, purification and characterization of VPR, a cold active subtilisin-like serine proteinase and the effects of calcium on expression and stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:152-162. [PMID: 30502512 DOI: 10.1016/j.bbapap.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023]
Abstract
Cloning into a pET 11a vector, followed by high-level expression of the cold adapted subtilase, VPR, utilizing the rhamnose titratable T7 system of Lemo21, resulted in a dramatic increase of soluble protein compared to the older system used. Expression optimization clearly shows the importance of calcium in the medium after induction, both for stability of the proteinase and cell health. Characterization of the purified enzyme obtained in a redesigned purification protocol which removed apparent RNA contaminants, resulted in a significantly higher value for kcat than previously reported. The new recombinant protein exhibited slightly lower stability against thermal denaturation and thermal inactivation. Our results also indicate that two of the calcium binding sites have apparent binding constants in the mM range. Binding of calcium to the weaker of those two sites only affects resistance of the enzyme against irreversible thermal inactivation. Differential scanning calorimetry revealed a non-two-state denaturation process, with indication of presence of intermediates caused by unfolding of calcium binding motifs.
Collapse
Affiliation(s)
- Kristinn R Óskarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Magnús M Kristjánsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
16
|
Cai ZW, Ge HH, Yi ZW, Zeng RY, Zhang GY. Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. Int J Biol Macromol 2018; 118:2176-2184. [PMID: 30021136 DOI: 10.1016/j.ijbiomac.2018.07.090] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/01/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
Abstract
β-1, 3-Xylanase is one of the most important hydrolytic enzymes to prepare oligosaccharides as functional foods in seaweed industry. However, less than five β-1, 3-xylanases have been experimentally expressed and characterized; moreover, none of them is psychrophilic and salt tolerant. Here, we mined a novel β-1, 3-xylanase (Xyl512) from the genome of the deep-sea bacterium Flammeovirga pacifica strain WPAGA1 and biochemically characterized it in detail. The Xyl512 did not contain any carbohydrate-binding module; the catalytic domain of it belonged to the glycoside hydrolase family 26. The optimum temperature and pH of the purified β-1, 3-xylanase was 20 °C and pH 7.0 in the condition of no NaCl. However, they shifted to 30 °C and 7.5 with 1.5 mol/L NaCl, respectively. In this condition (1.5 mol/L NaCl), the overall activity was 2-fold as high as that without NaCl. Based on the residue interactions and the electrostatic surfaces, we addressed the possible mechanism of its adaption to low temperature and relative high NaCl concentration. The Xyl512 showed significantly reduced numbers of hydrogen bonds leading to a more flexible structure, which is likely to be responsible for its cold adaptation. While the negatively charged surface may contribute to its salt tolerance. The β-1, 3-xylanase we identified here was the first reported psychrophilic and halophilic one with functionally characterized. It could make new contributions to exploring and studying the β-1, 3-xylanase for further associated investigations.
Collapse
Affiliation(s)
- Zheng-Wen Cai
- Department of Biotechnology and Bioengineering, Huaqiao University, Xiamen 361021, Fujian, PR China
| | - Hui-Hua Ge
- Department of Biotechnology and Bioengineering, Huaqiao University, Xiamen 361021, Fujian, PR China
| | - Zhi-Wei Yi
- Department of Biotechnology and Bioengineering, Huaqiao University, Xiamen 361021, Fujian, PR China; State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Xiamen, Fujian 361005, PR China
| | - Run-Ying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Xiamen, Fujian 361005, PR China
| | - Guang-Ya Zhang
- Department of Biotechnology and Bioengineering, Huaqiao University, Xiamen 361021, Fujian, PR China.
| |
Collapse
|
17
|
Buß O, Rudat J, Ochsenreither K. FoldX as Protein Engineering Tool: Better Than Random Based Approaches? Comput Struct Biotechnol J 2018; 16:25-33. [PMID: 30275935 PMCID: PMC6158775 DOI: 10.1016/j.csbj.2018.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/20/2018] [Indexed: 02/04/2023] Open
Abstract
Improving protein stability is an important goal for basic research as well as for clinical and industrial applications but no commonly accepted and widely used strategy for efficient engineering is known. Beside random approaches like error prone PCR or physical techniques to stabilize proteins, e.g. by immobilization, in silico approaches are gaining more attention to apply target-oriented mutagenesis. In this review different algorithms for the prediction of beneficial mutation sites to enhance protein stability are summarized and the advantages and disadvantages of FoldX are highlighted. The question whether the prediction of mutation sites by the algorithm FoldX is more accurate than random based approaches is addressed.
Collapse
Affiliation(s)
- Oliver Buß
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
18
|
Xia YL, Sun JH, Ai SM, Li Y, Du X, Sang P, Yang LQ, Fu YX, Liu SQ. Insights into the role of electrostatics in temperature adaptation: a comparative study of psychrophilic, mesophilic, and thermophilic subtilisin-like serine proteases. RSC Adv 2018; 8:29698-29713. [PMID: 35547280 PMCID: PMC9085296 DOI: 10.1039/c8ra05845h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/15/2018] [Indexed: 11/21/2022] Open
Abstract
To investigate the role of electrostatics in different temperature adaptations, we performed a comparative study on subtilisin-like serine proteases from psychrophilic Vibrio sp. PA-44 (VPR), mesophilic Engyodontium album (Tritirachium album) (PRK), and thermophilic Thermus aquaticus (AQN) using multiple-replica molecular dynamics (MD) simulations combined with continuum electrostatics calculations. The results reveal that although salt bridges are not a crucial factor in determining the overall thermostability of these three proteases, they on average provide the greatest, moderate, and least electrostatic stabilization to AQN, PRK, and VPR, respectively, at the respective organism growth temperatures. Most salt bridges in AQN are effectively stabilizing and thus contribute to maintaining the overall structural stability at 343 K, while nearly half of the salt bridges in VPR interconvert between being stabilizing and being destabilizing, likely aiding in enhancing the local conformational flexibility at 283 K. The individual salt bridges, salt-bridge networks, and calcium ions contribute differentially to local stability and flexibility of these three enzyme structures, depending on their spatial distributions and electrostatic strengths. The shared negatively charged surface potential at the active center of the three enzymes may provide the active-center flexibility necessary for nucleophilic attack and proton transfer. The differences in distributions of the electro-negative, electro-positive, and electro-neutral potentials, particularly over the back surfaces of the three proteases, may modulate/affect not only protein solubility and thermostability but also structural stability and flexibility/rigidity. These results demonstrate that electrostatics contributes to both heat and cold adaptation of subtilisin-like serine proteases through fine-tuning, either globally or locally, the structural stability and conformational flexibility/rigidity, thus providing a foundation for further engineering and mutagenesis studies. Differently charged surface patches contribute to temperature adaptation of subtilisin-like serine proteases through affecting/modulating the protein solubility and thermostability and the structural flexibility/rigidity/stability.![]()
Collapse
Affiliation(s)
- Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Jian-Hong Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Shi-Meng Ai
- Department of Applied Mathematics
- Yunnan Agricultural University
- Kunming
- P. R. China
| | - Yi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Xing Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Peng Sang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Li-Quan Yang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Yun-Xin Fu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
- Human Genetics Center and Division of Biostatistics
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
- Key Laboratory for Tumor Molecular Biology of High Education in Yunnan Province
| |
Collapse
|
19
|
Harris KL, Thomson RES, Strohmaier SJ, Gumulya Y, Gillam EMJ. Determinants of thermostability in the cytochrome P450 fold. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:97-115. [PMID: 28822812 DOI: 10.1016/j.bbapap.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Cytochromes P450 are found throughout the biosphere in a wide range of environments, serving a multitude of physiological functions. The ubiquity of the P450 fold suggests that it has been co-opted by evolution many times, and likely presents a useful compromise between structural stability and conformational flexibility. The diversity of substrates metabolized and reactions catalyzed by P450s makes them attractive starting materials for use as biocatalysts of commercially useful reactions. However, process conditions impose different requirements on enzymes to those in which they have evolved naturally. Most natural environments are relatively mild, and therefore most P450s have not been selected in Nature for the ability to withstand temperatures above ~40°C, yet industrial processes frequently require extended incubations at much higher temperatures. Thus, there has been considerable interest and effort invested in finding or engineering thermostable P450 systems. Numerous P450s have now been identified in thermophilic organisms and analysis of their structures provides information as to mechanisms by which the P450 fold can be stabilized. In addition, protein engineering, particularly by directed or artificial evolution, has revealed mutations that serve to stabilize particular mesophilic enzymes of interest. Here we review the current understanding of thermostability as it applies to the P450 fold, gleaned from the analysis of P450s characterized from thermophilic organisms and the parallel engineering of mesophilic forms for greater thermostability. We then present a perspective on how this information might be used to design stable P450 enzymes for industrial application. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Kurt L Harris
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
20
|
Cossio-Pérez R, Palma J, Pierdominici-Sottile G. Consistent Principal Component Modes from Molecular Dynamics Simulations of Proteins. J Chem Inf Model 2017; 57:826-834. [PMID: 28301154 DOI: 10.1021/acs.jcim.6b00646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Principal component analysis is a technique widely used for studying the movements of proteins using data collected from molecular dynamics simulations. In spite of its extensive use, the technique has a serious drawback: equivalent simulations do not afford the same PC-modes. In this article, we show that concatenating equivalent trajectories and calculating the PC-modes from the concatenated one significantly enhances the reproducibility of the results. Moreover, the consistency of the modes can be systematically improved by adding more individual trajectories to the concatenated one.
Collapse
Affiliation(s)
- Rodrigo Cossio-Pérez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes , Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes , Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Gustavo Pierdominici-Sottile
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes , Sáenz Peña 352, B1876BXD Bernal, Argentina
| |
Collapse
|
21
|
P Barros E, Malmstrom RD, Nourbakhsh K, Del Rio JC, Kornev AP, Taylor SS, Amaro RE. Electrostatic Interactions as Mediators in the Allosteric Activation of Protein Kinase A RIα. Biochemistry 2017; 56:1536-1545. [PMID: 28221775 DOI: 10.1021/acs.biochem.6b01152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Close-range electrostatic interactions that form salt bridges are key components of protein stability. Here we investigate the role of these charged interactions in modulating the allosteric activation of protein kinase A (PKA) via computational and experimental mutational studies of a conserved basic patch located in the regulatory subunit's B/C helix. Molecular dynamics simulations evidenced the presence of an extended network of fluctuating salt bridges spanning the helix and connecting the two cAMP binding domains in its extremities. Distinct changes in the flexibility and conformational free energy landscape induced by the separate mutations of Arg239 and Arg241 suggested alteration of cAMP-induced allosteric activation and were verified through in vitro fluorescence polarization assays. These observations suggest a mechanical aspect to the allosteric transition of PKA, with Arg239 and Arg241 acting in competition to promote the transition between the two protein functional states. The simulations also provide a molecular explanation for the essential role of Arg241 in allowing cooperative activation, by evidencing the existence of a stable interdomain salt bridge with Asp267. Our integrated approach points to the role of salt bridges not only in protein stability but also in promoting conformational transition and function.
Collapse
Affiliation(s)
- Emília P Barros
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| | - Robert D Malmstrom
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| | - Kimya Nourbakhsh
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Jason C Del Rio
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| |
Collapse
|
22
|
Sang P, Du X, Yang LQ, Meng ZH, Liu SQ. Molecular motions and free-energy landscape of serine proteinase K in relation to its cold-adaptation: a comparative molecular dynamics simulation study and the underlying mechanisms. RSC Adv 2017. [DOI: 10.1039/c6ra23230b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physicochemical bases for enzyme cold-adaptation remain elusive.
Collapse
Affiliation(s)
- Peng Sang
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources
- Yunnan University
- Kunming
- P. R. China
- Department of Biochemistry and Molecular Biology
| | - Li-Quan Yang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Zhao-Hui Meng
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| | - Shu-Qun Liu
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| |
Collapse
|
23
|
Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 2016; 42:117-128. [PMID: 28040640 DOI: 10.1016/j.sbi.2016.12.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/15/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022]
Abstract
The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design.
Collapse
|
24
|
Nygaard M, Terkelsen T, Vidas Olsen A, Sora V, Salamanca Viloria J, Rizza F, Bergstrand-Poulsen S, Di Marco M, Vistesen M, Tiberti M, Lambrughi M, Jäättelä M, Kallunki T, Papaleo E. The Mutational Landscape of the Oncogenic MZF1 SCAN Domain in Cancer. Front Mol Biosci 2016; 3:78. [PMID: 28018905 PMCID: PMC5156680 DOI: 10.3389/fmolb.2016.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/17/2016] [Indexed: 11/24/2022] Open
Abstract
SCAN domains in zinc-finger transcription factors are crucial mediators of protein-protein interactions. Up to 240 SCAN-domain encoding genes have been identified throughout the human genome. These include cancer-related genes, such as the myeloid zinc finger 1 (MZF1), an oncogenic transcription factor involved in the progression of many solid cancers. The mechanisms by which SCAN homo- and heterodimers assemble and how they alter the transcriptional activity of zinc-finger transcription factors in cancer and other diseases remain to be investigated. Here, we provide the first description of the conformational ensemble of the MZF1 SCAN domain cross-validated against NMR experimental data, which are probes of structure and dynamics on different timescales. We investigated the protein-protein interaction network of MZF1 and how it is perturbed in different cancer types by the analyses of high-throughput proteomics and RNASeq data. Collectively, we integrated many computational approaches, ranging from simple empirical energy functions to all-atom microsecond molecular dynamics simulations and network analyses to unravel the effects of cancer-related substitutions in relation to MZF1 structure and interactions.
Collapse
Affiliation(s)
- Mads Nygaard
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Thilde Terkelsen
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - André Vidas Olsen
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Valentina Sora
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Juan Salamanca Viloria
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Fabio Rizza
- Department of Biomedical Sciences, University of Padua Padua, Italy
| | - Sanne Bergstrand-Poulsen
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Miriam Di Marco
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Mette Vistesen
- Cell Stress and Survival Unit and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Matteo Tiberti
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Matteo Lambrughi
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Marja Jäättelä
- Unit of Cell Death and Metabolism and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Tuula Kallunki
- Unit of Cell Death and Metabolism and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center Copenhagen, Denmark
| |
Collapse
|
25
|
Miao LL, Fan HX, Qu J, Liu Y, Liu ZP. Specific amino acids responsible for the cold adaptedness of Micrococcus antarcticus β-glucosidase BglU. Appl Microbiol Biotechnol 2016; 101:2033-2041. [PMID: 27858137 DOI: 10.1007/s00253-016-7990-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/01/2016] [Accepted: 11/05/2016] [Indexed: 12/30/2022]
Abstract
Psychrophilic enzymes display efficient activity at moderate or low temperatures (4-25 °C) and are therefore of great interest in biotechnological industries. We previously examined the crystal structure of BglU, a psychrophilic β-glucosidase from the bacterium Micrococcus antarcticus, at 2.2 Å resolution. In structural comparison and sequence alignment with mesophilic (BglB) and thermophilic (GlyTn) counterpart enzymes, BglU showed much lower contents of Pro residue and of charged amino acids (particularly positively charged) on the accessible surface area. In the present study, we investigated the roles of specific amino acid residues in the cold adaptedness of BglU. Mutagenesis assays showed that the mutations G261R and Q448P increased optimal temperature (from 25 to 40-45 °C) at the expense of low-temperature activity, but had no notable effects on maximal activity or heat lability. Mutations A368P, T383P, and A389E significantly increased optimal temperature (from 25 to 35-40 °C) and maximal activity (~1.5-fold relative to BglU). Thermostability of A368P and A389E increased slightly at 30 °C. Mutations K163P, N228P, and H301A greatly reduced enzymatic activity-almost completely in the case of H301A. Low contents of Pro, Arg, and Glu are important factors contributing to BglU's psychrophilic properties. Our findings will be useful in structure-based engineering of psychrophilic enzymes and in production of mutants suitable for a variety of industrial processes (e.g., food production, sewage treatment) at cold or moderate temperatures.
Collapse
Affiliation(s)
- Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Hong-Xia Fan
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Qu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
26
|
A single mutation Gln142Lys doubles the catalytic activity of VPR, a cold adapted subtilisin-like serine proteinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1436-43. [PMID: 27456266 DOI: 10.1016/j.bbapap.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022]
Abstract
Structural comparisons of the cold adapted subtilase VPR and its thermophilic homologue, aqualysin I (AQUI) indicated the presence of additional salt bridges in the latter. Few of those appear to contribute significantly to thermal stability of AQUI. This includes a putative salt bridge between residues Lys142 and Glu172 as its deletion did not have any significant effect on its stability or activity (Jónsdóttir et al. (2014)). Insertion of this putative salt bridge into the structure of VPR, in a double mutant (VPRΔC_Q142K/S172E), however was detrimental to the stability of the enzyme. Incorporation of either the Q142K or S172E mutations into VPR, were found to significantly affect the catalytic properties of the enzyme. The single mutation Q142K was highly effective, as it increased the kcat and kcat/Km more than twofold. When the Q142K mutation was inserted into a thermostabilized, but a low activity mutant of VPR (VPRΔC_N3P/I5P), the activity increased about tenfold in terms of kcat and kcat/Km, while retaining the stability of the mutant. Molecular dynamics simulations of the single mutants were carried out to provide structural rationale for these experimental observations. Based on root mean square fluctuation (RMSF) profiles, the two mutants were more flexible in certain regions of the structure and the Q142K mutant had the highest overall flexibility of the three enzymes. The results suggest that weakening of specific H-bonds resulting from the mutations may be propagated over some distance giving rise to higher flexibility in the active site regions of the enzyme, causing higher catalytic activity in the mutants.
Collapse
|
27
|
Yang J, Li L, Xiao Y, Li J, Long L, Wang F, Zhang S. Identification and thermoadaptation engineering of thermostability conferring residue of deep sea bacterial α-amylase AMY121. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Sawle L, Ghosh K. Convergence of Molecular Dynamics Simulation of Protein Native States: Feasibility vs Self-Consistency Dilemma. J Chem Theory Comput 2016; 12:861-9. [DOI: 10.1021/acs.jctc.5b00999] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lucas Sawle
- Department of Physics and
Astronomy, University of Denver, Denver, Colorado 80209, United States
| | - Kingshuk Ghosh
- Department of Physics and
Astronomy, University of Denver, Denver, Colorado 80209, United States
| |
Collapse
|
29
|
Papaleo E. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity. Front Mol Biosci 2015; 2:28. [PMID: 26075210 PMCID: PMC4445042 DOI: 10.3389/fmolb.2015.00028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022] Open
Abstract
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.
Collapse
Affiliation(s)
- Elena Papaleo
- Structural Biology and Nuclear Magnetic Resonance Laboratory, Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
30
|
Vojcic L, Pitzler C, Körfer G, Jakob F, Ronny Martinez, Maurer KH, Schwaneberg U. Advances in protease engineering for laundry detergents. N Biotechnol 2015; 32:629-34. [PMID: 25579194 DOI: 10.1016/j.nbt.2014.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/02/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023]
Abstract
Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents.
Collapse
Affiliation(s)
- Ljubica Vojcic
- RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany
| | | | | | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Ronny Martinez
- RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany; EW-Nutrition GmbH, Enzyme Technology, Nattermannallee 1, D-50829 Köln, Germany
| | | | - Ulrich Schwaneberg
- RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| |
Collapse
|