1
|
Sichrovsky M, Lacabanne D, Ruprecht JJ, Rana JJ, Stanik K, Dionysopoulou M, Sowton AP, King MS, Jones SA, Cooper L, Hardwick SW, Paris G, Chirgadze DY, Ding S, Fearnley IM, Palmer SM, Pardon E, Steyaert J, Leone V, Forrest LR, Tavoulari S, Kunji ERS. Molecular basis of pyruvate transport and inhibition of the human mitochondrial pyruvate carrier. SCIENCE ADVANCES 2025; 11:eadw1489. [PMID: 40249800 PMCID: PMC12007569 DOI: 10.1126/sciadv.adw1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
The mitochondrial pyruvate carrier transports pyruvate, produced by glycolysis from sugar molecules, into the mitochondrial matrix, as a crucial transport step in eukaryotic energy metabolism. The carrier is a drug target for the treatment of cancers, diabetes mellitus, neurodegeneration, and metabolic dysfunction-associated steatotic liver disease. We have solved the structure of the human MPC1L/MPC2 heterodimer in the inward- and outward-open states by cryo-electron microscopy, revealing its alternating access rocker-switch mechanism. The carrier has a central binding site for pyruvate, which contains an essential lysine and histidine residue, important for its ΔpH-dependent transport mechanism. We have also determined the binding poses of three chemically distinct inhibitor classes, which exploit the same binding site in the outward-open state by mimicking pyruvate interactions and by using aromatic stacking interactions.
Collapse
Affiliation(s)
- Maximilian Sichrovsky
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Denis Lacabanne
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jonathan J. Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jessica J. Rana
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Klaudia Stanik
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Mariangela Dionysopoulou
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Alice P. Sowton
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Scott A. Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Lee Cooper
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Ian M. Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Shane M. Palmer
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Vanessa Leone
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
- Department of Biophysics and Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| | - Lucy R. Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Sotiria Tavoulari
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| |
Collapse
|
2
|
Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F, Kaifer B, Klostermann M, Will R, Schneider M, Helm D, König J, Zarnack K, Diederichs S, Kettenbach AN, Caudron-Herger M. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. Nat Commun 2025; 16:2325. [PMID: 40057470 PMCID: PMC11890761 DOI: 10.1038/s41467-025-57671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins, which modulate the fate of RNA. Inversely, RNA riboregulates the interactions and functions of the associated proteins. Dysregulation of ribonucleoprotein functions is linked to diseases such as cancer and neurological disorders. In dividing cells, RNA and RNA-binding proteins are present in mitotic structures, but their impact on cell division remains unclear. By applying the proteome-wide R-DeeP strategy to cells synchronized in mitosis versus interphase integrated with the RBP2GO knowledge, we provided an atlas of RNA-dependent proteins in cell division, accessible at R-DeeP3.dkfz.de. We uncovered AURKA, KIFC1 and TPX2 as unconventional RNA-binding proteins. KIFC1 was identified as a new substrate of AURKA, and new TPX2-interacting protein. Their pair-wise interactions were RNA dependent. In addition, RNA stimulated AURKA kinase activity and stabilized its conformation. In this work, we highlighted riboregulation of major mitotic factors as an additional complexity level of cell division.
Collapse
Affiliation(s)
- Varshni Rajagopal
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Seiler
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Simona Cantarella
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Theiss
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Herget
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Kaifer
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany.
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Maïwen Caudron-Herger
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Floyd JA, Shaver JM. Survey of chemical unfolding complexity as a unique stability assessment assay for monoclonal antibodies. Anal Biochem 2025; 698:115729. [PMID: 39617161 DOI: 10.1016/j.ab.2024.115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/31/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Seventy-two intentionally sequence-diverse antibody variable regions were selected, expressed as IgG1 antibodies, and evaluated by chemical unfolding to survey the complexities of denaturant induced unfolding behavior. A two-transition fit well described the curves and uncovered a wide range of sensitivities to denaturant. Four general types of unfolding curves were observed: balanced traces (each transition responsible for half of the total unfolding curve), low-unfolding traces (first transition is a majority of the unfolding curve), high-unfolding traces (the second transition is the majority of the unfolding curve), and coincident traces (the two transitions are found close to each other, approximating a single transition). The complexity of the data from this survey indicates that focusing on the first inflection point or fitting a single transition model is likely an over-simplistic method for measuring stability by the chemical unfolding assay. Additionally, other conformational assays, such as thermal and low pH unfolding, showed no correlation with the chemical unfolding results, indicating that each of these assays provide alternate information on the different pathways of antibody conformational stability. These results provide a basis for beginning to better connect unfolding behavior to other physical phenotypic behaviors and production process behaviors.
Collapse
Affiliation(s)
- J Alaina Floyd
- Just - Evotec Biologics, Inc. 401 Terry Ave N., Seattle, WA USA, 98109.
| | - Jeremy M Shaver
- Just - Evotec Biologics, Inc. 401 Terry Ave N., Seattle, WA USA, 98109
| |
Collapse
|
4
|
Mortensen S, Kuncová S, Lormand J, Myers T, Kim SK, Lee V, Winkler W, Sondermann H. Structural and bioinformatics analyses identify deoxydinucleotide-specific nucleases and their association with genomic islands in gram-positive bacteria. Nucleic Acids Res 2025; 53:gkae1235. [PMID: 39778863 PMCID: PMC11706625 DOI: 10.1093/nar/gkae1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Dinucleases of the DEDD superfamily, such as oligoribonuclease, Rexo2 and nanoRNase C, catalyze the essential final step of RNA degradation, the conversion of di- to mononucleotides. The active sites of these enzymes are optimized for substrates that are two nucleotides long, and do not discriminate between RNA and DNA. Here, we identified a novel DEDD subfamily, members of which function as dedicated deoxydinucleases (diDNases) that specifically hydrolyze single-stranded DNA dinucleotides in a sequence-independent manner. Crystal structures of enzyme-substrate complexes reveal that specificity for DNA stems from a combination of conserved structural elements that exclude diribonucleotides as substrates. Consistently, diDNases fail to complement the loss of enzymes that act on diribonucleotides, indicating that these two groups of enzymes support distinct cellular functions. The genes encoding diDNases are found predominantly in genomic islands of Actinomycetes and Clostridia, which, together with their association with phage-defense systems, suggest potential roles in bacterial immunity.
Collapse
Affiliation(s)
- Sofia Mortensen
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Stanislava Kuncová
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Justin D Lormand
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Tanner M Myers
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wade C Winkler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Christian-Albrechts-University, 24118 Kiel, Germany
| |
Collapse
|
5
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Predictive toxicology of chemical mixtures using proteome-wide thermal profiling and protein target properties. CHEMOSPHERE 2024; 364:143228. [PMID: 39233297 DOI: 10.1016/j.chemosphere.2024.143228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Our capability to predict the impact of exposure to chemical mixtures on environmental and human health is limited in comparison to the advances on the chemical characterization of the exposome. Current approaches, such as new approach methodologies, rely on the characterization of the chemicals and the available toxicological knowledge of individual compounds. In this study, we show a new methodological approach for the assessment of chemical mixtures based on a proteome-wide identification of the protein targets and revealing the relevance of new targets based on their role in the cellular function. We applied a proteome integral solubility alteration assay to identify 24 protein targets from a chemical mixture of 2,3,7,8-tetrachlorodibenzo-p-dioxin, alpha-endosulfan, and bisphenol A among the HepG2 soluble proteome, and validated the chemical mixture-target interaction orthogonally. To define the range of interactive capability of the new targets, the data from intrinsic properties of the targets were retrieved. Introducing the target properties as criteria for a multi-criteria decision-making analysis called the analytical hierarchy process, the prioritization of targets was based on their involvement in multiple pathways. This methodological approach that we present here opens a more realistic and achievable scenario to address the impact of complex and uncharacterized chemical mixtures in biological systems.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden; Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country UPV/EHU, Leioa, 489 40, Spain.
| |
Collapse
|
6
|
Cimadamore-Werthein C, King MS, Lacabanne D, Pyrihová E, Jaiquel Baron S, Kunji ER. Human mitochondrial carriers of the SLC25 family function as monomers exchanging substrates with a ping-pong kinetic mechanism. EMBO J 2024; 43:3450-3465. [PMID: 38937634 PMCID: PMC11329753 DOI: 10.1038/s44318-024-00150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.
Collapse
Affiliation(s)
- Camila Cimadamore-Werthein
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Eva Pyrihová
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Stephany Jaiquel Baron
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Edmund Rs Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
7
|
Jungnickel KEJ, Guelle O, Iguchi M, Dong W, Kotov V, Gabriel F, Debacker C, Dairou J, McCort-Tranchepain I, Laqtom NN, Chan SH, Ejima A, Sato K, Massa López D, Saftig P, Mehdipour AR, Abu-Remaileh M, Gasnier B, Löw C, Damme M. MFSD1 with its accessory subunit GLMP functions as a general dipeptide uniporter in lysosomes. Nat Cell Biol 2024; 26:1047-1061. [PMID: 38839979 PMCID: PMC11252000 DOI: 10.1038/s41556-024-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
The lysosomal degradation of macromolecules produces diverse small metabolites exported by specific transporters for reuse in biosynthetic pathways. Here we deorphanized the major facilitator superfamily domain containing 1 (MFSD1) protein, which forms a tight complex with the glycosylated lysosomal membrane protein (GLMP) in the lysosomal membrane. Untargeted metabolomics analysis of MFSD1-deficient mouse lysosomes revealed an increase in cationic dipeptides. Purified MFSD1 selectively bound diverse dipeptides, while electrophysiological, isotope tracer and fluorescence-based studies in Xenopus oocytes and proteoliposomes showed that MFSD1-GLMP acts as a uniporter for cationic, neutral and anionic dipeptides. Cryoelectron microscopy structure of the dipeptide-bound MFSD1-GLMP complex in outward-open conformation characterized the heterodimer interface and, in combination with molecular dynamics simulations, provided a structural basis for its selectivity towards diverse dipeptides. Together, our data identify MFSD1 as a general lysosomal dipeptide uniporter, providing an alternative route to recycle lysosomal proteolysis products when lysosomal amino acid exporters are overloaded.
Collapse
Affiliation(s)
| | - Océane Guelle
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Miharu Iguchi
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Vadim Kotov
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Florian Gabriel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Cécile Debacker
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, Paris, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, Paris, France
| | - Nouf N Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Sze Ham Chan
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Akika Ejima
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenji Sato
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - David Massa López
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Bruno Gasnier
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France.
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany.
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
8
|
Pyrihová E, King MS, King AC, Toleco MR, van der Giezen M, Kunji ERS. A mitochondrial carrier transports glycolytic intermediates to link cytosolic and mitochondrial glycolysis in the human gut parasite Blastocystis. eLife 2024; 13:RP94187. [PMID: 38780415 PMCID: PMC11115451 DOI: 10.7554/elife.94187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.
Collapse
Affiliation(s)
- Eva Pyrihová
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| | - Alannah C King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| | - M Rey Toleco
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
| | - Mark van der Giezen
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
- Research Department Stavanger University HospitalStavangerNorway
| | - Edmund RS Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| |
Collapse
|
9
|
Kar M, Vogel LT, Chauhan G, Felekyan S, Ausserwöger H, Welsh TJ, Dar F, Kamath AR, Knowles TPJ, Hyman AA, Seidel CAM, Pappu RV. Solutes unmask differences in clustering versus phase separation of FET proteins. Nat Commun 2024; 15:4408. [PMID: 38782886 PMCID: PMC11116469 DOI: 10.1038/s41467-024-48775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Phase separation and percolation contribute to phase transitions of multivalent macromolecules. Contributions of percolation are evident through the viscoelasticity of condensates and through the formation of heterogeneous distributions of nano- and mesoscale pre-percolation clusters in sub-saturated solutions. Here, we show that clusters formed in sub-saturated solutions of FET (FUS-EWSR1-TAF15) proteins are affected differently by glutamate versus chloride. These differences on the nanoscale, gleaned using a suite of methods deployed across a wide range of protein concentrations, are prevalent and can be unmasked even though the driving forces for phase separation remain unchanged in glutamate versus chloride. Strikingly, differences in anion-mediated interactions that drive clustering saturate on the micron-scale. Beyond this length scale the system separates into coexisting phases. Overall, we find that sequence-encoded interactions, mediated by solution components, make synergistic and distinct contributions to the formation of pre-percolation clusters in sub-saturated solutions, and to the driving forces for phase separation.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Gaurav Chauhan
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Suren Felekyan
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Hannes Ausserwöger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anjana R Kamath
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Anthony A Hyman
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany.
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
10
|
Feoli A, Sarno G, Castellano S, Sbardella G. DMSO-Related Effects on Ligand-Binding Properties of Lysine Methyltransferases G9a and SETD8. Chembiochem 2024; 25:e202300809. [PMID: 38205880 DOI: 10.1002/cbic.202300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Being the standard solvent for preparing stock solutions of compounds for drug discovery, DMSO is always present in assay buffers in concentrations ranging from 0.1 % to 5 % (v/v). Even at the lowest concentrations, DMSO-containing solutions can have significant effects on individual proteins and possible pitfalls cannot be eliminated. Herein, we used two protein systems, the lysine methyltransferases G9a/KMT1 C and SETD8/KMT5 A, to study the effects of DMSO on protein stability and on the binding of the corresponding inhibitors, using different biophysical methods such as nano Differential Scanning Fluorimetry (nanoDSF), Differential Scanning Fluorimetry (DSF), microscale thermophoresis (MST), and surface plasmon resonance (SPR), all widely used in drug discovery screening campaigns. We demonstrated that the effects of DMSO are protein- and technique-dependent and cannot be predicted or extrapolated on the basis of previous studies using different proteins and/or different assays. Moreover, we showed that the application of orthogonal biophysical methods can lead to different binding affinity data, thus confirming the importance of using at least two different orthogonal assays in screening campaigns. This variability should be taken into account in the selection and characterization of hit compounds, in order to avoid data misinterpretation.
Collapse
Affiliation(s)
- Alessandra Feoli
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Giuliana Sarno
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - Sabrina Castellano
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
11
|
Gooran N, Kopra K. Fluorescence-Based Protein Stability Monitoring-A Review. Int J Mol Sci 2024; 25:1764. [PMID: 38339045 PMCID: PMC10855643 DOI: 10.3390/ijms25031764] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions.
Collapse
Affiliation(s)
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland;
| |
Collapse
|
12
|
Saenger T, Schulte MF, Vordenbäumen S, Hermann FC, Bertelsbeck J, Meier K, Bleck E, Schneider M, Jose J. Structural Analysis of Breast-Milk α S1-Casein: An α-Helical Conformation Is Required for TLR4-Stimulation. Int J Mol Sci 2024; 25:1743. [PMID: 38339021 PMCID: PMC10855866 DOI: 10.3390/ijms25031743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Breast-milk αS1-casein is a Toll-like receptor 4 (TLR4) agonist, whereas phosphorylated αS1-casein does not bind TLR4. The objective of this study was to analyse the structural requirements for these effects. In silico analysis of αS1-casein indicated high α-helical content with coiled-coil characteristics. This was confirmed by CD-spectroscopy, showing the α-helical conformation to be stable between pH 2 and 7.4. After in vitro phosphorylation, the α-helical content was significantly reduced, similar to what it was after incubation at 80 °C. This conformation showed no in vitro induction of IL-8 secretion via TLR4. A synthetic peptide corresponding to V77-E92 of αS1-casein induced an IL-8 secretion of 0.95 ng/mL via TLR4. Our results indicate that αS1-casein appears in two distinct conformations, an α-helical TLR4-agonistic and a less α-helical TLR4 non-agonistic conformation induced by phosphorylation. This is to indicate that the immunomodulatory role of αS1-casein, as described before, could be regulated by conformational changes induced by phosphorylation.
Collapse
Affiliation(s)
- Thorsten Saenger
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Correnstr. 48, 48149 Münster, Germany; (T.S.); (M.F.S.)
| | - Marten F. Schulte
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Correnstr. 48, 48149 Münster, Germany; (T.S.); (M.F.S.)
| | - Stefan Vordenbäumen
- Department of Rheumatology and Hiller Research Unit Rheumatology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Fabian C. Hermann
- Institute for Pharmaceutical Biology and Phytochemie, University of Münster, PharmaCampus, Correnstr. 48, 48149 Münster, Germany
| | - Juliana Bertelsbeck
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Correnstr. 48, 48149 Münster, Germany; (T.S.); (M.F.S.)
| | - Kathrin Meier
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Correnstr. 48, 48149 Münster, Germany; (T.S.); (M.F.S.)
| | - Ellen Bleck
- Department of Rheumatology and Hiller Research Unit Rheumatology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Matthias Schneider
- Department of Rheumatology and Hiller Research Unit Rheumatology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Joachim Jose
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Correnstr. 48, 48149 Münster, Germany; (T.S.); (M.F.S.)
| |
Collapse
|
13
|
Evic V, Soic R, Mocibob M, Kekez M, Houser J, Wimmerová M, Matković-Čalogović D, Gruic-Sovulj I, Kekez I, Rokov-Plavec J. Evolutionarily conserved cysteines in plant cytosolic seryl-tRNA synthetase are important for its resistance to oxidation. FEBS Lett 2023; 597:2975-2992. [PMID: 37804069 DOI: 10.1002/1873-3468.14748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
We have previously identified a unique disulfide bond in the crystal structure of Arabidopsis cytosolic seryl-tRNA synthetase involving cysteines evolutionarily conserved in all green plants. Here, we discovered that both cysteines are important for protein stability, but with opposite effects, and that their microenvironment may promote disulfide bond formation in oxidizing conditions. The crystal structure of the C244S mutant exhibited higher rigidity and an extensive network of noncovalent interactions correlating with its higher thermal stability. The activity of the wild-type showed resistance to oxidation with H2 O2 , while the activities of cysteine-to-serine mutants were impaired, indicating that the disulfide link may enable the protein to function under oxidative stress conditions which can be beneficial for an efficient plant stress response.
Collapse
Affiliation(s)
- Valentina Evic
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ruzica Soic
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Mocibob
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mario Kekez
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Josef Houser
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dubravka Matković-Čalogović
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ivana Kekez
- Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
14
|
Custódio TF, Killer M, Yu D, Puente V, Teufel DP, Pautsch A, Schnapp G, Grundl M, Kosinski J, Löw C. Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1. Nat Commun 2023; 14:5696. [PMID: 37709742 PMCID: PMC10502012 DOI: 10.1038/s41467-023-41420-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
PHT1 is a histidine /oligopeptide transporter with an essential role in Toll-like receptor innate immune responses. It can act as a receptor by recruiting the adaptor protein TASL which leads to type I interferon production via IRF5. Persistent stimulation of this signalling pathway is known to be involved in the pathogenesis of systemic lupus erythematosus (SLE). Understanding how PHT1 recruits TASL at the molecular level, is therefore clinically important for the development of therapeutics against SLE and other autoimmune diseases. Here we present the Cryo-EM structure of PHT1 stabilized in the outward-open conformation. By combining biochemical and structural modeling techniques we propose a model of the PHT1-TASL complex, in which the first 16 N-terminal TASL residues fold into a helical structure that bind in the central cavity of the inward-open conformation of PHT1. This work provides critical insights into the molecular basis of PHT1/TASL mediated type I interferon production.
Collapse
Affiliation(s)
- Tânia F Custódio
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Maxime Killer
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Collaboration for joint PhD degree between EMBL, and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Dingquan Yu
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Collaboration for joint PhD degree between EMBL, and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Virginia Puente
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Daniel P Teufel
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Alexander Pautsch
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Marc Grundl
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
| |
Collapse
|
15
|
Kotov V, Killer M, Jungnickel KEJ, Lei J, Finocchio G, Steinke J, Bartels K, Strauss J, Dupeux F, Humm AS, Cornaciu I, Márquez JA, Pardon E, Steyaert J, Löw C. Plasticity of the binding pocket in peptide transporters underpins promiscuous substrate recognition. Cell Rep 2023; 42:112831. [PMID: 37467108 DOI: 10.1016/j.celrep.2023.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Proton-dependent oligopeptide transporters (POTs) are promiscuous transporters of the major facilitator superfamily that constitute the main route of entry for a wide range of dietary peptides and orally administrated peptidomimetic drugs. Given their clinical and pathophysiological relevance, several POT homologs have been studied extensively at the structural and molecular level. However, the molecular basis of recognition and transport of diverse peptide substrates has remained elusive. We present 14 X-ray structures of the bacterial POT DtpB in complex with chemically diverse di- and tripeptides, providing novel insights into the plasticity of the conserved central binding cavity. We analyzed binding affinities for more than 80 peptides and monitored uptake by a fluorescence-based transport assay. To probe whether all 8400 natural di- and tripeptides can bind to DtpB, we employed state-of-the-art molecular docking and machine learning and conclude that peptides with compact hydrophobic residues are the best DtpB binders.
Collapse
Affiliation(s)
- Vadim Kotov
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Maxime Killer
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Hamburg, Germany
| | - Katharina E J Jungnickel
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jian Lei
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Giada Finocchio
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Josi Steinke
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Kim Bartels
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Strauss
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Florine Dupeux
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - José A Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Christian Löw
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
16
|
Pham PN, Zahradník J, Kolářová L, Schneider B, Fuertes G. Regulation of IL-24/IL-20R2 complex formation using photocaged tyrosines and UV light. Front Mol Biosci 2023; 10:1214235. [PMID: 37484532 PMCID: PMC10361524 DOI: 10.3389/fmolb.2023.1214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Human interleukin 24 (IL-24) is a multifunctional cytokine that represents an important target for autoimmune diseases and cancer. Since the biological functions of IL-24 depend on interactions with membrane receptors, on-demand regulation of the affinity between IL-24 and its cognate partners offers exciting possibilities in basic research and may have applications in therapy. As a proof-of-concept, we developed a strategy based on recombinant soluble protein variants and genetic code expansion technology to photocontrol the binding between IL-24 and one of its receptors, IL-20R2. Screening of non-canonical ortho-nitrobenzyl-tyrosine (NBY) residues introduced at several positions in both partners was done by a combination of biophysical and cell signaling assays. We identified one position for installing NBY, tyrosine70 of IL-20R2, which results in clear impairment of heterocomplex assembly in the dark. Irradiation with 365-nm light leads to decaging and reconstitutes the native tyrosine of the receptor that can then associate with IL-24. Photocaged IL-20R2 may be useful for the spatiotemporal control of the JAK/STAT phosphorylation cascade.
Collapse
Affiliation(s)
- Phuong Ngoc Pham
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Zahradník
- First Faculty of Medicine, BIOCEV Center, Charles University, Prague, Czechia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lucie Kolářová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Gustavo Fuertes
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| |
Collapse
|
17
|
Jones SA, Gogoi P, Ruprecht JJ, King MS, Lee Y, Zögg T, Pardon E, Chand D, Steimle S, Copeman DM, Cotrim CA, Steyaert J, Crichton PG, Moiseenkova-Bell V, Kunji ER. Structural basis of purine nucleotide inhibition of human uncoupling protein 1. SCIENCE ADVANCES 2023; 9:eadh4251. [PMID: 37256948 PMCID: PMC10413660 DOI: 10.1126/sciadv.adh4251] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.
Collapse
Affiliation(s)
- Scott A. Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Prerana Gogoi
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, 10-124 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA
| | - Jonathan J. Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Yang Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Deepak Chand
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Stefan Steimle
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Danielle M. Copeman
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Camila A. Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Paul G. Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, 10-124 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA
| | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| |
Collapse
|
18
|
Llowarch P, Usselmann L, Ivanov D, Holdgate GA. Thermal unfolding methods in drug discovery. BIOPHYSICS REVIEWS 2023; 4:021305. [PMID: 38510342 PMCID: PMC10903397 DOI: 10.1063/5.0144141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/13/2023] [Indexed: 03/22/2024]
Abstract
Thermal unfolding methods, applied in both isolated protein and cell-based settings, are increasingly used to identify and characterize hits during early drug discovery. Technical developments over recent years have facilitated their application in high-throughput approaches, and they now are used more frequently for primary screening. Widespread access to instrumentation and automation, the ability to miniaturize, as well as the capability and capacity to generate the appropriate scale and quality of protein and cell reagents have all played a part in these advances. As the nature of drug targets and approaches to their modulation have evolved, these methods have broadened our ability to provide useful chemical start points. Target proteins without catalytic function, or those that may be difficult to express and purify, are amenable to these methods. Here, we provide a review of the applications of thermal unfolding methods applied in hit finding during early drug discovery.
Collapse
Affiliation(s)
- Poppy Llowarch
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Laura Usselmann
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Delyan Ivanov
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Geoffrey A. Holdgate
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| |
Collapse
|
19
|
Yu X, Xu T, Su B, Zhou J, Xu B, Zhang Y, Zhu Y, Jiang N, He Z. The novel role of etoposide in inhibiting the migration and proliferation of small cell lung cancer and breast cancer via targeting Daam1. Biochem Pharmacol 2023; 210:115468. [PMID: 36858182 DOI: 10.1016/j.bcp.2023.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES Daam1 (Dishevelled-associated activator of morphogenesis 1) is a Wnt/PCP signaling protein that engages in cytoskeleton reorganization and is abnormally activated in certain tumors. Daam1 is closely related to cancer metastasis, which is expected to become a target for cancer treatment. However, the natural small molecules targeting Daam1 have not been identified. MATERIALS AND METHODS We screened several natural small molecules that may bind to Daam1 by Sybyl molecular simulation docking technique. As a first-line drug for the treatment of small cell lung cancer, etoposide was chosen for further investigation. Next, we used Micro Scale Thermophoresis (MST) to verify the interaction of etoposide and Daam1. Small cell lung cancer H446 cells and breast cancer MCF-7 cells were treated with etoposide and subjected to Western blotting to measure the Daam1 expression. The effect of etoposide on cell proliferation was determined by CCK-8 assay in vitro and by a tumor-bearing mouse model in vivo. Wound healing assay and Boyden chamber assay were used to evaluate the role of etoposide in the migration and invasion ability of tumor cells. The effect of etoposide on the microfilament assembly was visualized by immunofluorescence staining with phalloidine. Finally, the possible mechanism of down-regulation of Daam1 expression after etoposide-induced small cell lung cancer cells was detected by a half-life experiment and immunofluorescence staining with lysosomal marker LAMP1. RESULTS Sybyl molecular modeling docking technique was performed to screen a natural chemical library for molecules that bound to the FH2 domain of Daam1 and found etoposide was virtually interacted with Daam1. MST validated etoposide directly bound to the FH2 domain of Daam1. Etoposide significantly down-regulated the expression of Daam1 in small cell lung cancer H446 cells and breast cancer MCF-7 cells. Moreover, 270 μmol/L etoposide largely inhibited the proliferation, migration, and invasion of H446 cells and MCF-7 cells. Immunofluorescence staining experiments revealed that etoposide induced the disassembly of microfilaments in H446 cells and MCF-7 cells, which were rescued by Daam1 overexpression. In nude mice transplanted with H446 cells, 5, 10, 20 mg/kg etoposide (drug/weight) injected via tail vein largely retarded the proliferation of subcutaneous tumors. Etoposide induced Daam1 to shorten its half-life and enter the lysosome degradation pathway, and eventually leading to the downregulation of Daam1 expression. CONCLUSIONS Etoposide is a novel natural small molecule targeting Daam1. Etoposide inhibits the proliferation, migration and invasion of small cell lung cancer cells and breast cancer cells, and also suppresses tumor proliferation of small cell lung cancer in vivo.
Collapse
Affiliation(s)
- Xinqian Yu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Tong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Bei Su
- Department of Breast Surgery, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China.
| | - Jiaofeng Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Bujie Xu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Yitao Zhang
- The Faculty of Engineering, McMaster University, Hamilton L8S4L8, Canada.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Zhicheng He
- Department of Thoracic Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
20
|
Dominelli N, Regaiolo A, Willy L, Heermann R. Interkingdom Signaling of the Insect Pathogen Photorhabdus luminescens with Plants Via the LuxR solo SdiA. Microorganisms 2023; 11:microorganisms11040890. [PMID: 37110313 PMCID: PMC10143992 DOI: 10.3390/microorganisms11040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
In bacteria, group-coordinated behavior such as biofilm formation or virulence are often mediated via cell–cell communication, a process referred to as quorum sensing (QS). The canonical QS system of Gram-negative bacteria uses N-acyl homoserine lactones (AHLs) as communication molecules, which are produced by LuxI-type synthases and sensed by cognate LuxR-type receptors. These receptors act as transcriptional regulators controlling the expression of specific genes. Some bacteria harbor LuxR-type receptors lacking a cognate LuxI-type synthases, designated as LuxR solos. Among many other LuxR solos, the entomopathogenic enteric bacterium Photorhabdus luminescens harbors a SdiA-like LuxR solo containing an AHL signal-binding domain, for which a respective signal molecule and target genes have not been identified yet. Here we performed SPR analysis to demonstrate that SdiA acts as a bidirectional regulator of transcription, tightly controlling its own expression and the adjacent PluDJC_01670 (aidA) gene in P. luminescens, a gene supposed to be involved in the colonization of eukaryotes. Via qPCR we could further determine that in sdiA deletion mutant strains, aidA is upregulated, indicating that SdiA negatively affects expression of aidA. Furthermore, the ΔsdiA deletion mutant exhibited differences in biofilm formation and motility compared with the wild-type. Finally, using nanoDSF analysis we could identify putative binding ability of SdiA towards diverse AHLs, but also to plant-derived signals, modulating the DNA-binding capacity of SdiA, suggesting that this LuxR solo acts as an important player in interkingdom signaling between P. luminescens and plants.
Collapse
|
21
|
Lizano-Fallas V, Carrasco del Amor A, Cristobal S. Prediction of Molecular Initiating Events for Adverse Outcome Pathways Using High-Throughput Identification of Chemical Targets. TOXICS 2023; 11:189. [PMID: 36851063 PMCID: PMC9965981 DOI: 10.3390/toxics11020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The impact of exposure to multiple chemicals raises concerns for human and environmental health. The adverse outcome pathway method offers a framework to support mechanism-based assessment in environmental health starting by describing which mechanisms are triggered upon interaction with different stressors. The identification of the molecular initiating event and the molecular interaction between a chemical and a protein target is still a challenge for the development of adverse outcome pathways. The cellular response to chemical exposure studied with omics could not directly identify the protein targets. However, recent mass spectrometry-based methods are offering a proteome-wide identification of protein targets interacting with s but unrevealing a molecular initiating event from a set of targets is still dependent on available knowledge. Here, we directly coupled the target identification findings from the proteome integral solubility alteration assay with an analytical hierarchy process for the prediction of a prioritized molecular initiating event. We demonstrate the applicability of this combination of methodologies with a test compound (TCDD), and it could be further studied and integrated into AOPs. From the eight protein targets identified by the proteome integral solubility alteration assay after analyzing 2824 human hepatic proteins, the analytical hierarchy process can select the most suitable protein for an AOP. Our combined method solves the missing links between high-throughput target identification and prediction of the molecular initiating event. We anticipate its utility to decipher new molecular initiating events and support more sustainable methodologies to gain time and resources in chemical assessment.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Ana Carrasco del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
- Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country (UPV/EHU), 489 40 Leioa, Spain
| |
Collapse
|
22
|
Sander S, Müller I, Alai MG, Nicke A, Tidow H. New insights into P2X7 receptor regulation: Ca 2+-calmodulin and GDP bind to the soluble P2X7 ballast domain. J Biol Chem 2022; 298:102495. [PMID: 36115462 PMCID: PMC9574498 DOI: 10.1016/j.jbc.2022.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022] Open
Abstract
P2X7 receptors are nonselective cation channels that are activated by extracellular ATP and play important roles in inflammation. They differ from other P2X family members by a large intracellular C-terminus that mediates diverse signaling processes that are little understood. A recent cryo-EM study revealed that the C-terminus of the P2X7 receptor forms a unique cytoplasmic ballast domain that possesses a GDP-binding site as well as a dinuclear Zn2+ site. However, the molecular basis for the regulatory function of the ballast domain as well as the interplay between the various ligands remain unclear. Here, we successfully expressed a soluble trimeric P2X7 ballast domain (P2X7BD) and characterized its ligand binding properties using a biophysical approach. We identified calmodulin (CaM)-binding regions within the ballast domain and found that binding of Ca2+-CaM and GDP to P2X7BD have opposite effects on its stability. Small-angle X-ray scattering experiments indicate that Ca2+-CaM binding disrupts the trimeric state of P2X7BD. Our results provide a possible framework for the intracellular regulation of the P2X7 receptor.
Collapse
Affiliation(s)
- Simon Sander
- The Hamburg Advanced Research Centre for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Isabel Müller
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Maria Garcia Alai
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Henning Tidow
- The Hamburg Advanced Research Centre for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| |
Collapse
|
23
|
Chen X, Bi S, Ma X, Sourjik V, Lai L. Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing. ACS BIO & MED CHEM AU 2022; 2:386-394. [PMID: 37102165 PMCID: PMC10125284 DOI: 10.1021/acsbiomedchemau.1c00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Motile bacteria use chemotaxis to search for nutrients and escape from harmful chemicals. While the sensing mechanisms for chemical attractants are well established, the molecular details of chemorepellent detection are poorly understood. Here, by using combined computational and experimental approaches to screen potential chemoeffectors for the Escherichia coli chemoreceptor Tsr, we identified a specific chemorepellent, 1-aminocyclohexanecarboxylic acid (ACHC). Our study strongly suggests that ACHC directly binds to the periplasmic sensory domain of Tsr and competes with l-serine, the amino acid attractant of Tsr. We further characterized the binding features of l-serine, ACHC, and l-leucine (a natural repellent that binds Tsr) and found that Asn68 plays a key role in mediating chemotactic response. Mutating Asn68 to Ala inverted the response to l-leucine from a repellent to an attractant. Our study provides important insights into the molecular mechanisms of ligand sensing via bacterial chemoreceptors.
Collapse
Affiliation(s)
- Xi Chen
- BNLMS,
Peking-Tsinghua Center for Life Sciences at College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuangyu Bi
- Max
Planck Institute for Terrestrial Microbiology & LOEWE Center for
Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaomin Ma
- BNLMS,
Peking-Tsinghua Center for Life Sciences at College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Victor Sourjik
- Max
Planck Institute for Terrestrial Microbiology & LOEWE Center for
Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany
| | - Luhua Lai
- BNLMS,
Peking-Tsinghua Center for Life Sciences at College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Kalbas D, Meleshin M, Liebscher S, Zessin M, Melesina J, Schiene-Fischer C, Bülbül EF, Bordusa F, Sippl W, Schutkowski M. Small Changes Make the Difference for SIRT2: Two Different Binding Modes for 3-Arylmercapto-Acylated Lysine Derivatives. Biochemistry 2022; 61:1705-1722. [PMID: 35972884 DOI: 10.1021/acs.biochem.2c00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.
Collapse
Affiliation(s)
- Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Matthes Zessin
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Jelena Melesina
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Emre Fatih Bülbül
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Wolfgang Sippl
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| |
Collapse
|
25
|
El Deeb S, Al-Harrasi A, Khan A, Al-Broumi M, Al-Thani G, Alomairi M, Elumalai P, Sayed RA, Ibrahim AE. Microscale thermophoresis as a powerful growing analytical technique for the investigation of biomolecular interaction and the determination of binding parameters. Methods Appl Fluoresc 2022; 10. [PMID: 35856854 DOI: 10.1088/2050-6120/ac82a6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022]
Abstract
The in vitro panel of technologies to address biomolecular interactions are in play, however microscale thermophoresis is continuously increasing in use to represent a key player in this arena. This review highlights the usefulness of microscale thermophoresis in the determination of molecular and biomolecular affinity interactions. This work reviews the literature from January 2016 to January 2022 about microscale thermophoresis. It gives a summarized overview about both the state-of the art and the development in the field of microscale thermophoresis. The principle of microscale thermophoresis is also described supported with self-created illustrations. Moreover, some recent advances are mentioned that showing application of the technique in investigating biomolecular interactions in different fields. Finally, advantages as well as drawbacks of the technique in comparison with other competing techniques are summarized.
Collapse
Affiliation(s)
- Sami El Deeb
- Technische Universitat Braunschweig, Braunschweig, Braunschweig, Niedersachsen, 38106, GERMANY
| | | | - Ajmal Khan
- University of Nizwa, Nizwa, Nizwa, 616, OMAN
| | | | | | | | | | - Rania A Sayed
- Pharmaceutical analytical chemistry department, Zagazig University, Zagazig, Zagazig, 44519, EGYPT
| | - Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry, Port Said University, Port Said, Port Said, 42526, EGYPT
| |
Collapse
|
26
|
Kopra K, Valtonen S, Mahran R, Kapp JN, Hassan N, Gillette W, Dennis B, Li L, Westover KD, Plückthun A, Härmä H. Thermal Shift Assay for Small GTPase Stability Screening: Evaluation and Suitability. Int J Mol Sci 2022; 23:7095. [PMID: 35806100 PMCID: PMC9266822 DOI: 10.3390/ijms23137095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Thermal unfolding methods are commonly used as a predictive technique by tracking the protein's physical properties. Inherent protein thermal stability and unfolding profiles of biotherapeutics can help to screen or study potential drugs and to find stabilizing or destabilizing conditions. Differential scanning calorimetry (DSC) is a 'Gold Standard' for thermal stability assays (TSA), but there are also a multitude of other methodologies, such as differential scanning fluorimetry (DSF). The use of an external probe increases the assay throughput, making it more suitable for screening studies, but the current methodologies suffer from relatively low sensitivity. While DSF is an effective tool for screening, interpretation and comparison of the results is often complicated. To overcome these challenges, we compared three thermal stability probes in small GTPase stability studies: SYPRO Orange, 8-anilino-1-naphthalenesulfonic acid (ANS), and the Protein-Probe. We studied mainly KRAS, as a proof of principle to obtain biochemical knowledge through TSA profiles. We showed that the Protein-Probe can work at lower concentration than the other dyes, and its sensitivity enables effective studies with non-covalent and covalent drugs at the nanomolar level. Using examples, we describe the parameters, which must be taken into account when characterizing the effect of drug candidates, of both small molecules and Designed Ankyrin Repeat Proteins.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Salla Valtonen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Jonas N. Kapp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (J.N.K.); (A.P.)
| | - Nazia Hassan
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - William Gillette
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Dr., Frederick, MD 21702, USA;
| | - Bryce Dennis
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (J.N.K.); (A.P.)
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| |
Collapse
|
27
|
The Insect Pathogen Photorhabdus luminescens Protects Plants from Phytopathogenic Fusarium graminearum via Chitin Degradation. Appl Environ Microbiol 2022; 88:e0064522. [PMID: 35604230 DOI: 10.1128/aem.00645-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phytopathogens represent a large agricultural challenge. The use of chemical pesticides is harmful to the environment, animals, and humans. Therefore, new sustainable and biological alternatives are urgently needed. The insect-pathogenic bacterium Photorhabdus luminescens, already used in combination with entomopathogenic nematodes (EPNs) as a biocontrol agent, is characterized by two different phenotypic cell forms, called primary (1°) and secondary (2°). The 1° cells are symbiotic with EPNs and are used for biocontrol, and the 2° cells are unable to undergo symbiosis with EPNs, remain in the soil after insect infection, and specifically interact with plant roots. A previous RNA sequencing (RNAseq) analysis showed that genes encoding the exochitinase Chi2A and chitin binding protein (CBP) are highly upregulated in 2° cells exposed to plant root exudates. Here, we investigate Chi2A and CBP functions and demonstrate that both are necessary for P. luminescens 2° cells to inhibit the growth of the phytopathogenic fungus Fusarium graminearum. We provide evidence that Chi2A digests chitin and thereby inhibits fungal growth. Furthermore, we show that 2° cells specifically colonize fungal hyphae as one of the first mechanisms to protect plants from fungal phytopathogens. Finally, soil pot bioassays proved plant protection from F. graminearum by 2° cells, where Chi2A and CPB were essential for this process. This work gives molecular insights into the new applicability of P. luminescens as a plant-growth-promoting and plant-protecting organism in agriculture. IMPORTANCE The enteric enterobacterium Photorhabdus luminescens is already being used as a bioinsecticide since it is highly pathogenic toward a broad range of insects. However, the bacteria exist in two phenotypically different cell types, called 1° and 2° cells. Whereas only 1° cells are symbiotic with their nematode partner to infect insects, 2° cells were shown to remain in the soil after an insect infection cycle. It was demonstrated that 2° cells specifically interact with plant roots. Here, we show that the bacteria are beneficial for the plants by protecting them from phytopathogenic fungi. Specific colonization of the fungus mycelium as well as chitin-degrading activity mediated by the chitin binding protein (CBP) and the chitinase Chi2A are essential for this process. Our data give evidence for the novel future applicability of P. luminescens as a plant-growth-promoting organism and biopesticide.
Collapse
|
28
|
Kwan TOC, Kolek SA, Danson AE, Reis RI, Camacho IS, Shaw Stewart PD, Moraes I. Measuring Protein Aggregation and Stability Using High-Throughput Biophysical Approaches. Front Mol Biosci 2022; 9:890862. [PMID: 35651816 PMCID: PMC9149252 DOI: 10.3389/fmolb.2022.890862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Structure-function relationships of biological macromolecules, in particular proteins, provide crucial insights for fundamental biochemistry, medical research and early drug discovery. However, production of recombinant proteins, either for structure determination, functional studies, or to be used as biopharmaceutical products, is often hampered by their instability and propensity to aggregate in solution in vitro. Protein samples of poor quality are often associated with reduced reproducibility as well as high research and production expenses. Several biophysical methods are available for measuring protein aggregation and stability. Yet, discovering and developing means to improve protein behaviour and structure-function integrity remains a demanding task. Here, we discuss workflows that are made possible by adapting established biophysical methods to high-throughput screening approaches. Rapid identification and optimisation of conditions that promote protein stability and reduce aggregation will support researchers and industry to maximise sample quality, stability and reproducibility, thereby reducing research and development time and costs.
Collapse
Affiliation(s)
| | | | - Amy E. Danson
- National Physical Laboratory, Teddington, United Kingdom
| | - Rosana I. Reis
- National Physical Laboratory, Teddington, United Kingdom
| | | | - Patrick D. Shaw Stewart
- Douglas Instruments Ltd., Hungerford, United Kingdom
- *Correspondence: Patrick D. Shaw Stewart, ; Isabel Moraes,
| | - Isabel Moraes
- National Physical Laboratory, Teddington, United Kingdom
- *Correspondence: Patrick D. Shaw Stewart, ; Isabel Moraes,
| |
Collapse
|
29
|
Dahms SO, Schnapp G, Winter M, Büttner FH, Schlepütz M, Gnamm C, Pautsch A, Brandstetter H. Dichlorophenylpyridine-Based Molecules Inhibit Furin through an Induced-Fit Mechanism. ACS Chem Biol 2022; 17:816-821. [PMID: 35377598 PMCID: PMC9016704 DOI: 10.1021/acschembio.2c00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Inhibitors of the
proprotein convertase furin might serve as broad-spectrum
antiviral therapeutics. High cellular potency and antiviral activity
against acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have
been reported for (3,5-dichlorophenyl)pyridine-derived furin inhibitors.
Here we characterized the binding mechanism of this inhibitor class
using structural, biophysical, and biochemical methods. We established
a MALDI-TOF-MS-based furin activity assay, determined IC50 values, and solved X-ray structures of (3,5-dichlorophenyl)pyridine-derived
compounds in complex with furin. The inhibitors induced a substantial
conformational rearrangement of the active-site cleft by exposing
a central buried tryptophan residue. These changes formed an extended
hydrophobic surface patch where the 3,5-dichlorophenyl moiety of the
inhibitors was inserted into a newly formed binding pocket. Consistent
with these structural rearrangements, we observed slow off-rate binding
kinetics and strong structural stabilization in surface plasmon resonance
and differential scanning fluorimetry experiments, respectively. The
discovered furin conformation offers new opportunities for structure-based
drug discovery.
Collapse
Affiliation(s)
- Sven O. Dahms
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße 34, A-5020 Salzburg, Austria
| | - Gisela Schnapp
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Martin Winter
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Frank H. Büttner
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Marco Schlepütz
- Department of I&R Research, R&D Project Management and Development Strategies, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Christian Gnamm
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Alexander Pautsch
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH& Co KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße 34, A-5020 Salzburg, Austria
| |
Collapse
|
30
|
Pichard S, Troffer-Charlier N, Kolb-Cheynel I, Poussin-Courmontagne P, Abdulrahman W, Birck C, Cura V, Poterszman A. Insect Cells-Baculovirus System for the Production of Difficult to Express Proteins: From Expression Screening for Soluble Constructs to Protein Quality Control. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2406:281-317. [PMID: 35089564 DOI: 10.1007/978-1-0716-1859-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid preparation of proteins for functional and structural analysis is a major challenge both in academia and industry. The number potential targets continuously increases and many are difficult to express proteins which, when produced in bacteria, result in insoluble and/or misfolded recombinant proteins, protein aggregates, or unusable low protein yield. We focus here on the baculovirus expression vector system which is now commonly used for heterologous production of human targets. This chapter describes simple and cost-effective protocols that enable iterative cycles of construct design, expression screening and optimization of protein production. We detail time- and cost-effective methods for generation of baculoviruses by homologous recombination and titer evaluation. Handling of insect cell cultures and preparation of bacmid for cotransfection are also presented.
Collapse
Affiliation(s)
- Simon Pichard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Center for Integrated Structural Biology (CBI), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg, Illkirch, France
| | - Nathalie Troffer-Charlier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Center for Integrated Structural Biology (CBI), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg, Illkirch, France
| | - Isabelle Kolb-Cheynel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Center for Integrated Structural Biology (CBI), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg, Illkirch, France
| | - Pierre Poussin-Courmontagne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Center for Integrated Structural Biology (CBI), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg, Illkirch, France
| | | | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Center for Integrated Structural Biology (CBI), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg, Illkirch, France
| | - Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Center for Integrated Structural Biology (CBI), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Center for Integrated Structural Biology (CBI), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
31
|
Kozeleková A, Náplavová A, Brom T, Gašparik N, Šimek J, Houser J, Hritz J. Phosphorylated and Phosphomimicking Variants May Differ—A Case Study of 14-3-3 Protein. Front Chem 2022; 10:835733. [PMID: 35321476 PMCID: PMC8935074 DOI: 10.3389/fchem.2022.835733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Protein phosphorylation is a critical mechanism that biology uses to govern cellular processes. To study the impact of phosphorylation on protein properties, a fully and specifically phosphorylated sample is required although not always achievable. Commonly, this issue is overcome by installing phosphomimicking mutations at the desired site of phosphorylation. 14-3-3 proteins are regulatory protein hubs that interact with hundreds of phosphorylated proteins and modulate their structure and activity. 14-3-3 protein function relies on its dimeric nature, which is controlled by Ser58 phosphorylation. However, incomplete Ser58 phosphorylation has obstructed the detailed study of its effect so far. In the present study, we describe the full and specific phosphorylation of 14-3-3ζ protein at Ser58 and we compare its characteristics with phosphomimicking mutants that have been used in the past (S58E/D). Our results show that in case of the 14-3-3 proteins, phosphomimicking mutations are not a sufficient replacement for phosphorylation. At physiological concentrations of 14-3-3ζ protein, the dimer-monomer equilibrium of phosphorylated protein is much more shifted towards monomers than that of the phosphomimicking mutants. The oligomeric state also influences protein properties such as thermodynamic stability and hydrophobicity. Moreover, phosphorylation changes the localization of 14-3-3ζ in HeLa and U251 human cancer cells. In summary, our study highlights that phosphomimicking mutations may not faithfully represent the effects of phosphorylation on the protein structure and function and that their use should be justified by comparing to the genuinely phosphorylated counterpart.
Collapse
Affiliation(s)
- Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Tomáš Brom
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Norbert Gašparik
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Šimek
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
- *Correspondence: Jozef Hritz,
| |
Collapse
|
32
|
Konoplev G, Agafonova D, Bakhchova L, Mukhin N, Kurachkina M, Schmidt MP, Verlov N, Sidorov A, Oseev A, Stepanova O, Kozyrev A, Dmitriev A, Hirsch S. Label-Free Physical Techniques and Methodologies for Proteins Detection in Microfluidic Biosensor Structures. Biomedicines 2022; 10:207. [PMID: 35203416 PMCID: PMC8868674 DOI: 10.3390/biomedicines10020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays. In contrast to universally accepted analytical methods involving protein labeling, label-free approaches often allow the development of biosensors with minimal requirements for sample preparation by omitting expensive labelling reagents. The aim of the present work is to review the variety of physical label-free techniques of protein detection and characterization which are suitable for application in micro-fluidic structures and analyze the technological and material aspects of label-free biosensors that implement these methods. The most widely used optical and impedance spectroscopy techniques: absorption, fluorescence, surface plasmon resonance, Raman scattering, and interferometry, as well as new trends in photonics are reviewed. The challenges of materials selection, surfaces tailoring in microfluidic structures, and enhancement of the sensitivity and miniaturization of biosensor systems are discussed. The review provides an overview for current advances and future trends in microfluidics integrated technologies for label-free protein biomarkers detection and discusses existing challenges and a way towards novel solutions.
Collapse
Affiliation(s)
- Georgii Konoplev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Darina Agafonova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Liubov Bakhchova
- Institute for Automation Technology, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
| | - Nikolay Mukhin
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marharyta Kurachkina
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marc-Peter Schmidt
- Faculty of Electrical Engineering, University of Applied Sciences Dresden, 01069 Dresden, Germany;
| | - Nikolay Verlov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, National Research Centre Kurchatov Institute, 188300 Gatchina, Russia;
| | - Alexander Sidorov
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Fuculty of Photonics, ITMO University, 197101 Saint Petersburg, Russia
| | - Aleksandr Oseev
- FEMTO-ST Institute, CNRS UMR-6174, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Oksana Stepanova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Andrey Kozyrev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Alexander Dmitriev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FSBSI “IEM”), 197376 Saint Petersburg, Russia;
| | - Soeren Hirsch
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| |
Collapse
|
33
|
Microbial Transglutaminase-Mediated Formation of Erythropoietin-Polyester Conjugates. J Biotechnol 2022; 346:1-10. [PMID: 35038459 DOI: 10.1016/j.jbiotec.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023]
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that has been used to treat anemia in patients with chronic kidney disease and in cancer patients who are receiving chemotherapy. Here, we investigated the accessibility of the glutamine (Gln, Q) residues of recombinant human erythropoietin (rHuEPO) towards a thermoresistant variant microbial transglutaminase (mTGase), TG16 with the aim of developing novel rHuEPO conjugates that may potentially enhance its biological efficacy. As a model bioconjugation, we studied the reactivity of rHuEPO towards TG16 with a low molar mass amine group containing substrate, monodansyl cadaverine (MDC). The reactions were carried out at a Tm of 54.3 °C, the transition temperature of rHuEPO. Characterization by SDS-PAGE and mass spectrometry confirmed the conjugates formation. Then, we examined the conjugation of rHuEPO with a biodegradable and biocompatible polyester, poly(D-sorbitol adipate) (PDSA). To achieve this, PDSA was enzymatically synthesized using lipase B from Candida antartica (CAL-B), chemically modified with side chains having free primary amine (NH2) groups that can be acyl acceptor substrate of TG16, thoroughly characterized by 1H NMR spectroscopy, and then applied for the TG16-mediated conjugation reaction with rHuEPO. rHuEPO conjugates generated by this approach were identified by SDS-PAGE proving that the amine-grafted PDSA is accepted as a substrate for TG16. The successful conjugation was further verified by the detection of high molar mass fluorescent bands after labelling of amine-grafted PDSA with rhodamine B-isothiocyanate. Overall, this enzymatic procedure is considered as an effective approach to prepare biodegradable rHuEPO-polymer conjugates even in the presence of N- and O-glycans.
Collapse
|
34
|
Kunz P. Assessing the Aggregation Propensity of Single-Domain Antibodies upon Heat-Denaturation Employing the ΔT m Shift. Methods Mol Biol 2022; 2446:233-244. [PMID: 35157276 DOI: 10.1007/978-1-0716-2075-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nano differential scanning fluorimetry is used to quantify protein thermostability and has substantially expanded the spectrum of convenient biophysical parameters used to characterize proteins. Here, this technique is used to measure the ΔTm shift for single-domain antibodies (sdAbs), which represents a comprehensive metric for the aggregation propensity of sdAbs upon heat-denaturation. By relating two melting curves at different protein concentrations, the ΔTm shift described in this protocol is ideally suited for high-throughput measurements to guide protein engineering, formulation development, and developability assessment of sdAbs.
Collapse
Affiliation(s)
- Patrick Kunz
- Coriolis Pharma Research GmbH, Martinsried, Germany.
| |
Collapse
|
35
|
Alexander Harrison J, Pruška A, Oganesyan I, Bittner P, Zenobi R. Temperature-Controlled Electrospray Ionization: Recent Progress and Applications. Chemistry 2021; 27:18015-18028. [PMID: 34632657 PMCID: PMC9298390 DOI: 10.1002/chem.202102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/11/2022]
Abstract
Native electrospray ionization (ESI) and nanoelectrospray ionization (nESI) allow researchers to analyze intact biomolecules and their complexes by mass spectrometry (MS). The data acquired using these soft ionization techniques provide a snapshot of a given biomolecules structure in solution. Over the last thirty years, several nESI and ESI sources capable of controlling spray solution temperature have been developed. These sources can be used to elucidate the thermodynamics of a given analyte, as well as provide structural information that cannot be readily obtained by other, more commonly used techniques. This review highlights how the field of temperature-controlled mass spectrometry has developed.
Collapse
Affiliation(s)
| | - Adam Pruška
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Irina Oganesyan
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Philipp Bittner
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| |
Collapse
|
36
|
Wang B, Wu H, Hu C, Wang H, Liu J, Wang W, Liu Q. An overview of kinase downregulators and recent advances in discovery approaches. Signal Transduct Target Ther 2021; 6:423. [PMID: 34924565 PMCID: PMC8685278 DOI: 10.1038/s41392-021-00826-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Since the clinical approval of imatinib, the discovery of protein kinase downregulators entered a prosperous age. However, challenges still exist in the discovery of kinase downregulator drugs, such as the high failure rate during development, side effects, and drug-resistance problems. With the progress made through multidisciplinary efforts, an increasing number of new approaches have been applied to solve the above problems during the discovery process of kinase downregulators. In terms of in vitro and in vivo drug evaluation, progress was also made in cellular and animal model platforms for better and more clinically relevant drug assessment. Here, we review the advances in drug design strategies, drug property evaluation technologies, and efficacy evaluation models and technologies. Finally, we discuss the challenges and perspectives in the development of kinase downregulator drugs.
Collapse
Affiliation(s)
- Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Haizhen Wang
- Hefei PreceDo pharmaceuticals Co., Ltd, Hefei, Anhui, 230088, People's Republic of China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
37
|
Aziz YMA, Lotfy G, Said MM, El Ashry ESH, El Tamany ESH, Soliman SM, Abu-Serie MM, Teleb M, Yousuf S, Dömling A, Domingo LR, Barakat A. Design, Synthesis, Chemical and Biochemical Insights Into Novel Hybrid Spirooxindole-Based p53-MDM2 Inhibitors With Potential Bcl2 Signaling Attenuation. Front Chem 2021; 9:735236. [PMID: 34970530 PMCID: PMC8713455 DOI: 10.3389/fchem.2021.735236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The tumor resistance to p53 activators posed a clinical challenge. Combination studies disclosed that concomitant administration of Bcl2 inhibitors can sensitize the tumor cells and induce apoptosis. In this study, we utilized a rapid synthetic route to synthesize two novel hybrid spirooxindole-based p53-MDM2 inhibitors endowed with Bcl2 signaling attenuation. The adducts mimic the thematic features of the chemically stable potent spiro [3H-indole-3,2'-pyrrolidin]-2(1H)-ones p53-MDM2 inhibitors, while installing a pyrrole ring via a carbonyl spacer inspired by the natural marine or synthetic products that efficiently inhibit Bcl2 family functions. A chemical insight into the two synthesized spirooxindoles including single crystal x-ray diffraction analysis unambiguously confirmed their structures. The synthesized spirooxindoles 2a and 2b were preliminarily tested for cytotoxic activities against normal cells, MDA-MB 231, HepG-2, and Caco-2 via MTT assay. 2b was superior to 5-fluorouracil. Mechanistically, 2b induced apoptosis-dependent anticancer effect (43%) higher than that of 5-fluorouracil (34.95%) in three studied cancer cell lines, activated p53 (47%), downregulated the Bcl2 gene (1.25-fold), and upregulated p21 (2-fold) in the treated cancer cells. Docking simulations declared the possible binding modes of the synthesized compounds within MDM2.
Collapse
Affiliation(s)
- Yasmine M. Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Gehad Lotfy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - El Sayed H. El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Lotfy G, Abdel Aziz YM, Said MM, El Ashry ESH, El Tamany ESH, Abu-Serie MM, Teleb M, Dömling A, Barakat A. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorg Chem 2021; 117:105427. [PMID: 34794098 DOI: 10.1016/j.bioorg.2021.105427] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Despite the achieved progress in developing efficient MDM2-p53 protein-protein interaction inhibitors (MDM2 inhibitors), the acquired resistance of tumor cells to such p53 activators posed an argument about the druggability of the pathway. Combination studies disclosed that concomitant inhibition of MDM2 and BCL2 functions can sensitize the tumor cells and synergistically induce apoptosis. Herein, we employed a rapid combinatorial approach to generate a novel series of hybrid spirooxindole-based MDM2 inhibitors (5a-s) endowed with BCL2 signaling attenuation. The adducts were designed to mimic the thematic features of the chemically stable potent spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-ones MDM2 inhibitors while installing a pyrrole ring on the core via a carbonyl spacer inspired by the natural product marinopyrrole A that efficiently inhibits BCL2 family functions by various mechanisms. NCI 60 cell-line panel screening revealed their promising broad-spectrum antiproliferative activities. The NCI-selected derivatives were screened for cytotoxic activities against normal fibroblasts, MDA-MB 231, HepG-2, and Caco-2 cells via MTT assay, subjected to mechanistic apoptosis studies for assessment of p53, BCL2, p21, and caspase 3/7 status, then evaluated for potential MDM2 inhibition utilizing MST assay. The most balanced potent and safe derivatives; 5i and 5q were more active than 5-fluorouracil, exhibited low μmrange MDM2 binding (KD=1.32and 1.72 μm, respectively), induced apoptosis-dependent anticancer activities up to 50%, activated p53 by 47-63%, downregulated the BCL2 gene to 59.8%, and reduced its protein level (13.75%) in the treated cancer cells. Further downstream p53 signaling studies revealed > 2 folds p21 upregulation and > 3 folds caspase 3/7 activation. Docking simulations displayed that the active MDM2 inhibitors resided well into the p53 binding sites of MDM2, and shared key interactions with the co-crystalized inhibitor posed by the indolinone scaffold (5i, 5p, and 5q), the halogen substituents (5r), or the installed spiro ring (5s). Finally, in silico ADMET profiling predicted acceptable drug-like properties with full accordance to Lipinski's, Veber's, and Muegge's bioavailability parameters for 5i and a single violation for 5q.
Collapse
Affiliation(s)
- Gehad Lotfy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasmine M Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed M Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - El Sayed H El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - El Sayed H El Tamany
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
39
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
40
|
Bucher M, Niebling S, Han Y, Molodenskiy D, Hassani Nia F, Kreienkamp HJ, Svergun D, Kim E, Kostyukova AS, Kreutz MR, Mikhaylova M. Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses. eLife 2021; 10:66165. [PMID: 33945465 PMCID: PMC8169116 DOI: 10.7554/elife.66165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/01/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the SH3- and ankyrin repeat (SHANK) protein family are considered as master scaffolds of the postsynaptic density of glutamatergic synapses. Several missense mutations within the canonical SHANK3 isoform have been proposed as causative for the development of autism spectrum disorders (ASDs). However, there is a surprising paucity of data linking missense mutation-induced changes in protein structure and dynamics to the occurrence of ASD-related synaptic phenotypes. In this proof-of-principle study, we focus on two ASD-associated point mutations, both located within the same domain of SHANK3 and demonstrate that both mutant proteins indeed show distinct changes in secondary and tertiary structure as well as higher conformational fluctuations. Local and distal structural disturbances result in altered synaptic targeting and changes of protein turnover at synaptic sites in rat primary hippocampal neurons.
Collapse
Affiliation(s)
- Michael Bucher
- AG Optobiology, Institute of Biology, Humboldt-University, Berlin, Germany.,DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,RG Neuroplasticity, Leibniz-Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Stephan Niebling
- Molecular Biophysics and High-Throughput Crystallization, European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Yuhao Han
- DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Structural Cell Biology of Viruses, Centre for Structural Systems Biology (CSSB) and Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Dmitry Molodenskiy
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, DESY, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute of Human Genetics, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, DESY, Hamburg, Germany
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS) and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Alla S Kostyukova
- DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University (WSU), Pullman, United States
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz-Institute for Neurobiology (LIN), Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt-University, Berlin, Germany.,DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
41
|
Huang B, Guo Q, Niedermeier ML, Cheng J, Engler T, Maurer M, Pautsch A, Baumeister W, Stengel F, Kochanek S, Fernández-Busnadiego R. Pathological polyQ expansion does not alter the conformation of the Huntingtin-HAP40 complex. Structure 2021; 29:804-809.e5. [PMID: 33909994 DOI: 10.1016/j.str.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 01/12/2023]
Abstract
The abnormal amplification of a CAG repeat in the gene coding for huntingtin (HTT) leads to Huntington's disease (HD). At the protein level, this translates into the expansion of a polyglutamine (polyQ) stretch located at the HTT N terminus, which renders HTT aggregation prone by unknown mechanisms. Here we investigated the effects of polyQ expansion on HTT in a complex with its stabilizing interaction partner huntingtin-associated protein 40 (HAP40). Surprisingly, our comprehensive biophysical, crosslinking mass spectrometry and cryo-EM experiments revealed no major differences in the conformation of HTT-HAP40 complexes of various polyQ length, including 17QHTT-HAP40 (wild type), 46QHTT-HAP40 (typical polyQ length in HD patients), and 128QHTT-HAP40 (extreme polyQ length). Thus, HTT polyQ expansion does not alter the global conformation of HTT when associated with HAP40.
Collapse
Affiliation(s)
- Bin Huang
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany
| | - Qiang Guo
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Marie L Niedermeier
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jingdong Cheng
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Tatjana Engler
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany
| | - Melanie Maurer
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Alexander Pautsch
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany.
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
42
|
Microscale Thermophoresis and additional effects measured in NanoTemper Monolith instruments. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:653-660. [DOI: 10.1007/s00249-021-01529-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
|
43
|
Kotov V, Mlynek G, Vesper O, Pletzer M, Wald J, Teixeira‐Duarte CM, Celia H, Garcia‐Alai M, Nussberger S, Buchanan SK, Morais‐Cabral JH, Loew C, Djinovic‐Carugo K, Marlovits TC. In-depth interrogation of protein thermal unfolding data with MoltenProt. Protein Sci 2021; 30:201-217. [PMID: 33140490 PMCID: PMC7737771 DOI: 10.1002/pro.3986] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Protein stability is a key factor in successful structural and biochemical research. However, the approaches for systematic comparison of protein stability are limited by sample consumption or compatibility with sample buffer components. Here we describe how miniaturized measurement of intrinsic tryptophan fluorescence (NanoDSF assay) in combination with a simplified description of protein unfolding can be used to interrogate the stability of a protein sample. We demonstrate that improved protein stability measures, such as apparent Gibbs free energy of unfolding, rather than melting temperature Tm , should be used to rank the results of thermostability screens. The assay is compatible with protein samples of any composition, including protein complexes and membrane proteins. Our data analysis software, MoltenProt, provides an easy and robust way to perform characterization of multiple samples. Potential applications of MoltenProt and NanoDSF include buffer and construct optimization for X-ray crystallography and cryo-electron microscopy, screening for small-molecule binding partners and comparison of effects of point mutations.
Collapse
Affiliation(s)
- Vadim Kotov
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
| | - Oliver Vesper
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Marina Pletzer
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
| | - Jiri Wald
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Celso M. Teixeira‐Duarte
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Maria Garcia‐Alai
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- European Molecular Biology Laboratory (EMBL)Hamburg UnitHamburgGermany
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular SystemsUniversity of StuttgartStuttgartGermany
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - João H. Morais‐Cabral
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Christian Loew
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- European Molecular Biology Laboratory (EMBL)Hamburg UnitHamburgGermany
| | - Kristina Djinovic‐Carugo
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
- Department of Biochemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
| | - Thomas C. Marlovits
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| |
Collapse
|
44
|
Structure of High-Risk Papillomavirus 31 E6 Oncogenic Protein and Characterization of E6/E6AP/p53 Complex Formation. J Virol 2020; 95:JVI.00730-20. [PMID: 33115863 DOI: 10.1128/jvi.00730-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
The degradation of p53 is a hallmark of high-risk human papillomaviruses (HPVs) of the alpha genus and HPV-related carcinogenicity. The oncoprotein E6 forms a ternary complex with the E3 ubiquitin ligase E6-associated protein (E6AP) and tumor suppressor protein p53 targeting p53 for ubiquitination. The extent of p53 degradation by different E6 proteins varies greatly, even for the closely related HPV16 and HPV31. HPV16 E6 and HPV31 E6 display high sequence identity (∼67%). We report here, for the first time, the structure of HPV31 E6 bound to the LxxLL motif of E6AP. HPV16 E6 and HPV31 E6 are structurally very similar, in agreement with the high sequence conservation. Both E6 proteins bind E6AP and degrade p53. However, the binding affinities of 31 E6 to the LxxLL motif of E6AP and p53, respectively, are reduced 2-fold and 5.4-fold compared to 16 E6. The affinity of E6-E6AP-p53 ternary complex formation parallels the efficacy of the subsequent reaction, namely, degradation of p53. Therefore, closely related E6 proteins addressing the same cellular targets may still diverge in their binding efficiencies, possibly explaining their different phenotypic or pathological impacts.IMPORTANCE Variations of carcinogenicity of human papillomaviruses are related to variations of the E6 and E7 interactome. While different HPV species and genera are known to target distinct host proteins, the fine differences between E6 and E7 of closely related HPVs, supposed to target the same cellular protein pools, remain to be addressed. We compare the oncogenic E6 proteins of the closely related high-risk HPV31 and HPV16 with regard to their structure and their efficiency of ternary complex formation with their cellular targets p53 and E6AP, which results in p53 degradation. We solved the crystal structure of 31 E6 bound to the E6AP LxxLL motif. HPV16 E6 and 31 E6 structures are highly similar, but a few sequence variations lead to different protein contacts within the ternary complex and, as quantified here, an overall lower binding affinity of 31 E6 than 16 E6. These results align with the observed lower p53 degradation potential of 31 E6.
Collapse
|
45
|
Current pivotal strategies leading a difficult target protein to a sample suitable for crystallographic analysis. Biochem Soc Trans 2020; 48:1661-1673. [PMID: 32677661 DOI: 10.1042/bst20200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Crystallographic structural analysis is an essential method for the determination of protein structure. However, crystallization of a protein of interest is the most difficult process in the analysis. The process is often hampered during the sample preparation, including expression and purification. Even after a sample has been purified, not all candidate proteins crystallize. In this mini-review, the current methodologies used to overcome obstacles encountered during protein crystallization are sorted. Specifically, the strategy for an effective crystallization is compared with a pipeline where various expression hosts and constructs, purification and crystallization conditions, and crystallization chaperones as target-specific binder proteins are assessed by a precrystallization screening. These methodologies are also developed continuously to improve the process. The described methods are useful for sample preparation in crystallographic analysis and other structure determination techniques, such as cryo-electron microscopy.
Collapse
|
46
|
Linsenmeier M, Kopp MRG, Stavrakis S, de Mello A, Arosio P. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118823. [PMID: 32800925 DOI: 10.1016/j.bbamcr.2020.118823] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
An increasing body of evidence shows that membraneless organelles are key components in cellular organization. These observations open a variety of outstanding questions about the physico-chemical rules underlying their assembly, disassembly and functions. Some molecular determinants of biomolecular condensates are challenging to probe and understand in complex in vivo systems. Minimalistic in vitro reconstitution approaches can fill this gap, mimicking key biological features, while maintaining sufficient simplicity to enable the analysis of fundamental aspects of biomolecular condensates. In this context, microfluidic technologies are highly attractive tools for the analysis of biomolecular phase transitions. In addition to enabling high-throughput measurements on small sample volumes, microfluidic tools provide for exquisite control of self-assembly in both time and space, leading to accurate quantitative analysis of biomolecular phase transitions. Here, with a specific focus on droplet-based microfluidics, we describe the advantages of microfluidic technology for the analysis of several aspects of phase separation. These include phase diagrams, dynamics of assembly and disassembly, rheological and surface properties, exchange of materials with the surrounding environment and the coupling between compartmentalization and biochemical reactions. We illustrate these concepts with selected examples, ranging from simple solutions of individual proteins to more complex mixtures of proteins and RNA, which represent synthetic models of biological membraneless organelles. Finally, we discuss how this technology may impact the bottom-up fabrication of synthetic artificial cells and for the development of synthetic protein materials in biotechnology.
Collapse
Affiliation(s)
- Miriam Linsenmeier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Andrew de Mello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
47
|
Winning the numbers game in enzyme evolution - fast screening methods for improved biotechnology proteins. Curr Opin Struct Biol 2020; 63:123-133. [PMID: 32615371 DOI: 10.1016/j.sbi.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/02/2023]
Abstract
The booming demand for environmentally benign industrial processes relies on the ability to quickly find or engineer a biocatalyst suitable to ideal process conditions. Both metagenomic approaches and directed evolution involve the screening of huge libraries of protein variants, which can only be managed reasonably by flexible platforms for (ultra)high-throughput profiling against the desired criteria. Here, we review the most recent additions toward a growing toolbox of versatile assays using fluorescence, absorbance and mass spectrometry readouts. While conventional solution based high-throughput screening in microtiter plate formats is still important, the implementation of novel screening protocols for microfluidic cell or droplet sorting systems supports technological advances for ultra-high-frequency screening that now can dramatically reduce the timescale of engineering projects. We discuss practical issues of scope, scalability, sensitivity and stereoselectivity for the improvement of biotechnologically relevant enzymes from different classes.
Collapse
|
48
|
Real-Hohn A, Groznica M, Löffler N, Blaas D, Kowalski H. nanoDSF: In vitro Label-Free Method to Monitor Picornavirus Uncoating and Test Compounds Affecting Particle Stability. Front Microbiol 2020; 11:1442. [PMID: 32676065 PMCID: PMC7333345 DOI: 10.3389/fmicb.2020.01442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
Thermal shift assays measure the stability of macromolecules and macromolecular assemblies as a function of temperature. The Particle Stability Thermal Release Assay (PaSTRy) of picornaviruses is based on probes becoming strongly fluorescent upon binding to hydrophobic patches of the protein capsid (e.g., SYPRO Orange) or to the viral RNA genome (e.g., SYTO-82) that become exposed upon heating virus particles. PaSTRy has been exploited for studying the stability of viral mutants, viral uncoating, and the effect of capsid-stabilizing compounds. While the results were usually robust, the thermal shift assay with SYPRO Orange is sensitive to surfactants and EDTA and failed at least to correctly report the effect of excipients on an inactivated poliovirus 3 vaccine. Furthermore, interactions between the probe and capsid-binding antivirals as well as mutual competition for binding sites cannot be excluded. To overcome these caveats, we assessed differential scanning fluorimetry with a nanoDSF device as a label-free alternative. NanoDSF monitors the changes in the intrinsic tryptophan fluorescence (ITF) resulting from alterations of the 3D-structure of proteins as a function of the temperature. Using rhinovirus A2 as a model, we demonstrate that nanoDFS is well suited for recording the temperature-dependence of conformational changes associated with viral uncoating with minute amounts of sample. We compare it with orthogonal methods and correlate the increase in viral RNA exposure with PaSTRy measurements. Importantly, nanoDSF correctly identified the thermal stabilization of RV-A2 by pleconaril, a prototypic pocket-binding antiviral compound. NanoDFS is thus a label-free, high throughput-customizable, attractive alternative for the discovery of capsid-binding compounds impacting on viral stability.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Heinrich Kowalski
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Xia Z, Lau BLT. Mitigating effects of osmolytes on the interactions between nanoparticles and supported lipid bilayer. J Colloid Interface Sci 2020; 568:1-7. [PMID: 32070850 DOI: 10.1016/j.jcis.2020.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
To maintain osmotic balance, cells usually produce neutral solutes (i.e., osmolytes), together with charged species to cope with salinity stress. Osmolytes are known to be important in stabilizing/destabilizing macromolecules (e.g., proteins) via depletion /accumulation around their surfaces. To better understand the physiological fate of nanoparticles (NPs), we investigated the effect of osmolytes [(urea and trimethylamine N-oxide (TMAO)] and specific anions (NO3- and F-) on the interactions between NPs and supported lipid bilayers (SLBs). Carboxylated polystyrene NPs (60 nm) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were chosen as model NPs and lipid. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to quantify NP deposition dynamics. Microscale thermophoresis (MST) was used to characterize the affinity between DOPC vesicles (or NPs) and osmolytes. Our results show that osmolytes are capable of protecting SLBs from NP-induced disruption. Upon NP deposition onto supported vesicle layers (SVLs), the leakage of encapsulated dyes decreased with the addition of osmolytes. The combination of kosmotropes (TMAO and F-) are more efficient than that of chaotropes (urea and NO3-) in weakening the hydrophobic interaction between NPs and SLBs by preferential binding to NPs and/or SLBs.
Collapse
Affiliation(s)
- Zehui Xia
- Department of Civil & Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Road, Amherst, MA 01003, USA
| | - Boris L T Lau
- Department of Civil & Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Road, Amherst, MA 01003, USA.
| |
Collapse
|
50
|
Legrand C, Saleppico R, Sticht J, Lolicato F, Müller HM, Wegehingel S, Dimou E, Steringer JP, Ewers H, Vattulainen I, Freund C, Nickel W. The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P 2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol 2020; 3:141. [PMID: 32214225 PMCID: PMC7096399 DOI: 10.1038/s42003-020-0871-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
FGF2 is a tumor cell survival factor that is exported from cells by an ER/Golgi-independent secretory pathway. This unconventional mechanism of protein secretion is based on direct translocation of FGF2 across the plasma membrane. The Na,K-ATPase has previously been shown to play a role in this process, however, the underlying mechanism has remained elusive. Here, we define structural elements that are critical for a direct physical interaction between FGF2 and the α1 subunit of the Na,K-ATPase. In intact cells, corresponding FGF2 mutant forms were impaired regarding both recruitment at the inner plasma membrane leaflet and secretion. Ouabain, a drug that inhibits both the Na,K-ATPase and FGF2 secretion, was found to impair the interaction of FGF2 with the Na,K-ATPase in cells. Our findings reveal the Na,K-ATPase as the initial recruitment factor for FGF2 at the inner plasma membrane leaflet being required for efficient membrane translocation of FGF2 to cell surfaces. Legrand et al. identify two lysine residues on molecular surface of Fibroblast Growth Factor 2 (FGF2) essential for its interaction with α1 subunit of the Na,K-ATPase. They further conclude that this interaction precedes interaction of the FGF2 with PI(4,5)P2 and facilitates its unconventional secretion across the membrane, which is impaired by Ouabain, an Na,K-ATPase inhibitor.
Collapse
Affiliation(s)
- Cyril Legrand
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Roberto Saleppico
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Jana Sticht
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.,Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.,Department of Physics, University of Helsinki, FL-00014, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Fl-33100, Tampere, Finland
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Sabine Wegehingel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Eleni Dimou
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FL-00014, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Fl-33100, Tampere, Finland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|