1
|
Hasan MN, Badsha MB, Mollah MNH. Robust hierarchical co-clustering for exploring toxicogenomic biomarkers and their chemical regulators. Sci Rep 2025; 15:16676. [PMID: 40369321 PMCID: PMC12078728 DOI: 10.1038/s41598-025-99568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Toxicity measurement of doses of chemicals (DCs) is one of the most important tasks in toxicology studies and the drug discovery and development process. In this issue, toxicogenomic biomarkers are now playing a vital role in measuring the toxicity of DCs. Differentially expressed genes (DEGs) between DCs-treatment and control groups are considered toxicogenomic biomarkers, and associated chemicals are the regulators of DEGs. The co-clustering technique is now used extensively in toxicogenomic research to investigate co-clusters between genomic biomarkers and their chemical regulators. In the literature, there are few approaches to exploring co-clusters. The hierarchical co-clustering (HCoClust) approach is faster, simpler, and more flexible. Nevertheless, it is not robust against outlier data and there is no instruction about separating upregulatory or downregulatory co-clusters, a crucial goal of toxicogenomic data analysis. Therefore, in this article, we proposed a robust HCoClust (rHCoClust) approach and developed an r-package called "rhcoclust" for its implementation. Simulation results showed that the conventional HCoClust and the proposed rHCoClust performed equally well in detecting co-clusters in the absence of outliers, while rHCoClust performed much better than HCoClust in the presence of outliers. However, rHCoClust outperformed the bi-clustering approaches in detecting co-clusters, since bi-clustering methods only work when row and column clusters are equal, and they have no criterion for detecting upregulatory and downregulatory co-clusters. Then rHCoClust was compared with HCoClust through real data analysis and found that rHCoClust performed better than HCoClust. In the case of real data analysis, the proposed method rHCoClust identified top-ranked two DEGs-clusters (GSTA5, MGST2, GCLC, GCLM, G6PD) and (EHHADH, CYP4A1, ANGPT14, CPT1A) that were significantly expressed by the influence of top-ranked two DCs-clusters (acetaminophen_High _24.hr, nitrofurazone_High_24.hr, methapyrilene_High_24.hr) and (WY.14643_High_24.hr, clofibrate_High_24.hr, gemfibrozil_High_24.hr, benzbromarone_High_24.hr, aspirin_High_24.hr) through the glutathione metabolism (GMP) and PPAR signaling pathway (PPAR-SP) respectively. The literature review also supported these results. Thus, the proposed method would be useful to explore toxicogenomic biomarkers and their chemical regulators from the robustness point of view.
Collapse
Affiliation(s)
- Mohammad Nazmol Hasan
- Department of Statistics, Gazipur Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Bahadur Badsha
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
- Sera Prognostics, Inc., Salt Lake City, UT, USA
| | - Md Nurul Haque Mollah
- Bioinformatics Lab., Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Chen E, Pan E, Zhang S. Structure Bioinformatics of Six Human Integral Transmembrane Enzymes and their AlphaFold3 Predicted Water-Soluble QTY Analogs: Insights into FACE1 and STEA4 Binding Mechanisms. Pharm Res 2025; 42:291-305. [PMID: 39966220 PMCID: PMC11880043 DOI: 10.1007/s11095-025-03822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/11/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE Human integral membrane enzymes are essential for catalyzing a wide range of biochemical reactions and regulating key cellular processes. However, studying these enzymes remains challenging due to their hydrophobic nature, which necessitates the use of detergents. This study explores whether applying the QTY code can reduce the hydrophobicity of these enzymes while preserving their structures and functions, thus facilitating bioinformatics analysis of six key integral membrane enzymes: MGST2, LTC4S, PTGES, FACE1, STEA4, and SCD. METHODS The water-soluble QTY analogs of the six membrane enzymes were predicted using AlphaFold3. The predicted structures were superposed with CyroEM determined native structures in PyMOL to observe changes in structure and protein-ligand binding ability. RESULTS The native membrane enzymes superposed well with their respective QTY analogs, with the root mean square deviation (RMSD) ranging from 0.273 Å to 0.875 Å. Surface hydrophobic patches on the QTY analogs were significantly reduced. Importantly, the protein-ligand interactions in FACE1 and STEA4 were largely preserved, indicating maintained functionality. CONCLUSION Our structural bioinformatics studies using the QTY code and AlphaFold3 not only provide the opportunities of designing more water-soluble integral membrane enzymes, but also use these water-soluble QTY analogs as antigens for therapeutic monoclonal antibody discovery to specifically target the key integral membrane enzymes.
Collapse
Affiliation(s)
- Edward Chen
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Emily Pan
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Morgenstern R. Kinetic Behavior of Glutathione Transferases: Understanding Cellular Protection from Reactive Intermediates. Biomolecules 2024; 14:641. [PMID: 38927045 PMCID: PMC11201704 DOI: 10.3390/biom14060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Glutathione transferases (GSTs) are the primary catalysts protecting from reactive electrophile attack. In this review, the quantitative levels and distribution of glutathione transferases in relation to physiological function are discussed. The catalytic properties (random sequential) tell us that these enzymes have evolved to intercept reactive intermediates. High concentrations of enzymes (up to several hundred micromolar) ensure efficient protection. Individual enzyme molecules, however, turn over only rarely (estimated as low as once daily). The protection of intracellular protein and DNA targets is linearly proportional to enzyme levels. Any lowering of enzyme concentration, or inhibition, would thus result in diminished protection. It is well established that GSTs also function as binding proteins, potentially resulting in enzyme inhibition. Here the relevance of ligand inhibition and catalytic mechanisms, such as negative co-operativity, is discussed. There is a lack of knowledge pertaining to relevant ligand levels in vivo, be they exogenous or endogenous (e.g., bile acids and bilirubin). The stoichiometry of active sites in GSTs is well established, cytosolic enzyme dimers have two sites. It is puzzling that a third of the site's reactivity is observed in trimeric microsomal glutathione transferases (MGSTs). From a physiological point of view, such sub-stoichiometric behavior would appear to be wasteful. Over the years, a substantial amount of detailed knowledge on the structure, distribution, and mechanism of purified GSTs has been gathered. We still lack knowledge on exact cell type distribution and levels in vivo however, especially in relation to ligand levels, which need to be determined. Such knowledge must be gathered in order to allow mathematical modeling to be employed in the future, to generate a holistic understanding of reactive intermediate protection.
Collapse
Affiliation(s)
- Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, P.O. Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
4
|
Chaomulige, Matsuo T, Sugimoto K, Miyaji M, Hosoya O, Ueda M, Kobayashi R, Horii T, Hatada I. Morphometric Analysis of the Eye by Magnetic Resonance Imaging in MGST2-Gene-Deficient Mice. Biomedicines 2024; 12:370. [PMID: 38397974 PMCID: PMC10887158 DOI: 10.3390/biomedicines12020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Strabismus, a neuro-ophthalmological condition characterized by misalignment of the eyes, is a common ophthalmic disorder affecting both children and adults. In our previous study, we identified the microsomal glutathione S-transferase 2 (MGST2) gene as one of the potential candidates for comitant strabismus susceptibility in a Japanese population. The MGST2 gene belongs to the membrane-associated protein involved in the generation of pro-inflammatory mediators, and it is also found in the protection against oxidative stress by decreasing the reactivity of oxidized lipids. To look for the roles of the MGST2 gene in the development, eye alignment, and overall morphology of the eye as the possible background of strabismus, MGST2 gene knockout (KO) mice were generated by CRISPR/Cas9-mediated gene editing with guide RNAs targeting the MGST2 exon 2. The ocular morphology of the KO mice was analyzed through high-resolution images obtained by a magnetic resonance imaging (MRI) machine for small animals. The morphometric analyses showed that the height, width, and volume of the eyeballs in MGST2 KO homozygous mice were significantly greater than those of wild-type mice, indicating that the eyes of MGST2 KO homozygous mice were significantly enlarged. There were no significant differences in the axis length and axis angle. These morphological changes may potentially contribute to the development of a subgroup of strabismus.
Collapse
Affiliation(s)
- Chaomulige
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan;
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan;
- Department of Ophthalmology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kohei Sugimoto
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan;
| | - Mary Miyaji
- Department of Medical Neurobiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.M.); (O.H.)
| | - Osamu Hosoya
- Department of Medical Neurobiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.M.); (O.H.)
| | - Masashi Ueda
- Department of Biofunctional Imaging Analysis, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Ryosuke Kobayashi
- Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; (R.K.); (T.H.); (I.H.)
| | - Takuro Horii
- Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; (R.K.); (T.H.); (I.H.)
| | - Izuho Hatada
- Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; (R.K.); (T.H.); (I.H.)
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| |
Collapse
|
5
|
Cebula M, Morgenstern R. Enzymology of reactive intermediate protection: kinetic analysis and temperature dependence of the mesophilic membrane protein catalyst MGST1. FEBS J 2023. [PMID: 36808476 DOI: 10.1111/febs.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Glutathione transferases (GSTs) are a class of phase II detoxifying enzymes catalysing the conjugation of glutathione (GSH) to endogenous and exogenous electrophilic molecules, with microsomal glutathione transferase 1 (MGST1) being one of its key members. MGST1 forms a homotrimer displaying third-of-the-sites-reactivity and up to 30-fold activation through modification of its Cys-49 residue. It has been shown that the steady-state behaviour of the enzyme at 5 °C can be accounted for by its pre-steady-state behaviour if the presence of a natively activated subpopulation (~ 10%) is assumed. Low temperature was used as the ligand-free enzyme is unstable at higher temperatures. Here, we overcame enzyme lability through stop-flow limited turnover analysis, whereby kinetic parameters at 30 °C were obtained. The acquired data are more physiologically relevant and enable confirmation of the previously established enzyme mechanism (at 5 °C), yielding parameters relevant for in vivo modelling. Interestingly, the kinetic parameter defining toxicant metabolism, kcat /KM , is strongly dependent on substrate reactivity (Hammett value 4.2), underscoring that glutathione transferases function as efficient and responsive interception catalysts. The temperature behaviour of the enzyme was also analysed. Both the KM and KD values decreased with increasing temperature, while the chemical step k3 displayed modest temperature dependence (Q10 : 1.1-1.2), mirrored in that of the nonenzymatic reaction (Q10 : 1.1-1.7). Unusually high Q10 values for GSH thiolate anion formation (k2 : 3.9), kcat (2.7-5.6) and kcat /KM (3.4-5.9) support that large structural transitions govern GSH binding and deprotonation, which limits steady-state catalysis.
Collapse
Affiliation(s)
- Marcus Cebula
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ralf Morgenstern
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Haeggström JZ, Newcomer ME. Structures of Leukotriene Biosynthetic Enzymes and Development of New Therapeutics. Annu Rev Pharmacol Toxicol 2023; 63:407-428. [PMID: 36130059 DOI: 10.1146/annurev-pharmtox-051921-085014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Leukotrienes are potent immune-regulating lipid mediators with patho-genic roles in inflammatory and allergic diseases, particularly asthma. These autacoids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, metabolic, and tumor diseases. Biosynthesis of leukotrienes involves release and oxidative metabolism of arachidonic acid and proceeds via a set of cytosolic and integral membrane enzymes that are typically expressed by cells of the innate immune system. In activated cells, these enzymes traffic and assemble at the endoplasmic and perinuclear membrane, together comprising a biosynthetic complex. Here we describe recent advances in our molecular understanding of the protein components of the leukotriene-synthesizing enzyme machinery and also briefly touch upon the leukotriene receptors. Moreover, we discuss emerging opportunities for pharmacological intervention and development of new therapeutics.
Collapse
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, Stockholm, Sweden;
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA;
| |
Collapse
|
7
|
Luo Z, Yao J, Xu J. Reactive oxygen and nitrogen species regulate porcine embryo development during pre-implantation period: A mini-review. ACTA ACUST UNITED AC 2021; 7:823-828. [PMID: 34466686 PMCID: PMC8384778 DOI: 10.1016/j.aninu.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Significant porcine embryonic loss occurs during conceptus morphological elongation and attachment from d 10 to 20 of pregnancy, which directly decreases the reproductive efficiency of sows. A successful establishment of pregnancy mainly depends on the endometrium receptivity, embryo quality, and utero-placental microenvironment, which requires complex cross-talk between the conceptus and uterus. The understanding of the molecular mechanism regulating the uterine-conceptus communication during porcine conceptus elongation and attachment has developed in the past decades. Reactive oxygen and nitrogen species, which are intracellular reactive metabolites that regulate cell fate decisions and alter their biological functions, have recently reportedly been involved in porcine conceptus elongation and attachment. This mini-review will mainly focus on the recent researches about the role of reactive oxygen and nitrogen species in regulating porcine embryo development during the pre-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
8
|
Zhao G, Zhao W, Cui X, Xu B, Liu Q, Li H, Guo X. Identification of an MGST2 gene and analysis of its function in antioxidant processes in Apis cerana cerana. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21770. [PMID: 33660279 DOI: 10.1002/arch.21770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
MGST2 is a member of the MAPEG superfamily, which participates in LTC4 synthesis and plays important roles in the regulation of the oxidative stress pathway and some diseases. Here, we isolated a previously uncharacterized gene in Apis cerana cerana named AccMGST2 by reverse transcription-polymerase chain reaction. The biological characteristics of AccMGST2 were analyzed by bioinformatics. The amino acid sequence similarity between AccMGST2 and AmMGST2 of Apis mellifera reached 96.08%. The expression characteristics of AccMGST2 were explored in several tissues. The quantitative real-time polymerase chain reaction results showed that the AccMGST2 gene was highly expressed in the head and muscle and that AccMGST2 expression responded to oxidative stress caused by different abiotic stresses. AccMGST2 was silenced using RNA interference, which decreased the expression levels of some MAPK and antioxidant genes. Therefore, we conclude that AccMGST2 is involved in the regulation of oxidative stress in A. cerana cerana.
Collapse
Affiliation(s)
- Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Wenchun Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
9
|
Hilario E, De Keyser S, Fan L. Structural and biochemical characterization of a glutathione transferase from the citrus canker pathogen Xanthomonas. Acta Crystallogr D Struct Biol 2020; 76:778-789. [PMID: 32744260 PMCID: PMC7397488 DOI: 10.1107/s2059798320009274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
The genus Xanthomonas comprises several cosmopolitan plant-pathogenic bacteria that affect more than 400 plant species, most of which are of economic interest. Citrus canker is a bacterial disease that affects citrus species, reducing fruit yield and quality, and is caused by the bacterium Xanthomonas citri subsp. citri (Xac). The Xac3819 gene, which has previously been reported to be important for citrus canker infection, encodes an uncharacterized glutathione S-transferase (GST) of 207 amino-acid residues in length (XacGST). Bacterial GSTs are implicated in a variety of metabolic processes such as protection against chemical and oxidative stresses. XacGST shares high sequence identity (45%) with the GstB dehalogenase from Escherichia coli O6:H1 strain CFT073 (EcGstB). Here, XacGST is reported to be able to conjugate glutathione (GSH) with bromoacetate with a Km of 6.67 ± 0.77 mM, a kcat of 42.69 ± 0.32 s-1 and a kcat/Km of 6.40 ± 0.72 mM-1 s-1 under a saturated GSH concentration (3.6 mM). These values are comparable to those previously reported for EcGstB. In addition, crystal structures of XacGST were determined in the apo form (PDB entry 6nxv) and in a GSH-bound complex (PDB entry 6nv6). XacGST has a canonical GST-like fold with a conserved serine residue (Ser12) at the GSH-binding site near the N-terminus, indicating XacGST to be a serine-type GST that probably belongs to the theta-class GSTs. GSH binding stabilizes a loop of about 20 residues containing a helix that is disordered in the apo XacGST structure.
Collapse
Affiliation(s)
- Eduardo Hilario
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Sawyer De Keyser
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Li Fan
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
10
|
Thulasingam M, Haeggström JZ. Integral Membrane Enzymes in Eicosanoid Metabolism: Structures, Mechanisms and Inhibitor Design. J Mol Biol 2020; 432:4999-5022. [PMID: 32745470 DOI: 10.1016/j.jmb.2020.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Eicosanoids are potent lipid mediators involved in central physiological processes such as hemostasis, renal function and parturition. When formed in excess, eicosanoids become critical players in a range of pathological conditions, in particular pain, fever, arthritis, asthma, cardiovascular disease and cancer. Eicosanoids are generated via oxidative metabolism of arachidonic acid along the cyclooxygenase (COX) and lipoxygenase (LOX) pathways. Specific lipid species are formed downstream of COX and LOX by specialized synthases, some of which reside on the nuclear and endoplasmic reticulum, including mPGES-1, FLAP, LTC4 synthase, and MGST2. These integral membrane proteins are members of the family "membrane-associated proteins in eicosanoid and glutathione metabolism" (MAPEG). Here we focus on this enzyme family, which encompasses six human members typically catalyzing glutathione dependent transformations of lipophilic substrates. Enzymes of this family have evolved to combat the topographical challenge and unfavorable energetics of bringing together two chemically different substrates, from cytosol and lipid bilayer, for catalysis within a membrane environment. Thus, structural understanding of these enzymes are of utmost importance to unravel their molecular mechanisms, mode of substrate entry and product release, in order to facilitate novel drug design against severe human diseases.
Collapse
Affiliation(s)
- Madhuranayaki Thulasingam
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Nartey MN, Peña-Castillo L, LeGrow M, Doré J, Bhattacharya S, Darby-King A, Carew SJ, Yuan Q, Harley CW, McLean JH. Learning-induced mRNA alterations in olfactory bulb mitral cells in neonatal rats. ACTA ACUST UNITED AC 2020; 27:209-221. [PMID: 32295841 PMCID: PMC7164515 DOI: 10.1101/lm.051177.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
In the olfactory bulb, a cAMP/PKA/CREB-dependent form of learning occurs in the first week of life that provides a unique mammalian model for defining the epigenetic role of this evolutionarily ancient plasticity cascade. Odor preference learning in the week-old rat pup is rapidly induced by a 10-min pairing of odor and stroking. Memory is demonstrable at 24 h, but not 48 h, posttraining. Using this paradigm, pups that showed peppermint preference 30 min posttraining were sacrificed 20 min later for laser microdissection of odor-encoding mitral cells. Controls were given odor only. Microarray analysis revealed that 13 nonprotein-coding mRNAs linked to mRNA translation and splicing and 11 protein-coding mRNAs linked to transcription differed with odor preference training. MicroRNA23b, a translation inhibitor of multiple plasticity-related mRNAs, was down-regulated. Protein-coding transcription was up-regulated for Sec23b, Clic2, Rpp14, Dcbld1, Magee2, Mstn, Fam229b, RGD1566265, and Mgst2. Gng12 and Srcg1 mRNAs were down-regulated. Increases in Sec23b, Clic2, and Dcbld1 proteins were confirmed in mitral cells in situ at the same time point following training. The protein-coding changes are consistent with extracellular matrix remodeling and ryanodine receptor involvement in odor preference learning. A role for CREB and AP1 as triggers of memory-related mRNA regulation is supported. The small number of gene changes identified in the mitral cell input/output link for 24 h memory will facilitate investigation of the nature, and reversibility, of changes supporting temporally restricted long-term memory.
Collapse
Affiliation(s)
- Michaelina N Nartey
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X5, Canada
| | - Megan LeGrow
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Jules Doré
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Sriya Bhattacharya
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Andrea Darby-King
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Samantha J Carew
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Qi Yuan
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X9, Canada
| | - John H McLean
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| |
Collapse
|
12
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Kammerscheit X, Chauvat F, Cassier-Chauvat C. From Cyanobacteria to Human, MAPEG-Type Glutathione-S-Transferases Operate in Cell Tolerance to Heat, Cold, and Lipid Peroxidation. Front Microbiol 2019; 10:2248. [PMID: 31681188 PMCID: PMC6798054 DOI: 10.3389/fmicb.2019.02248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/13/2019] [Indexed: 11/18/2022] Open
Abstract
The MAPEG2 sub-family of glutathione-S-transferase proteins (GST) has been poorly investigated in vivo, even in prokaryotes such as cyanobacteria the organisms that are regarded as having developed glutathione-dependent enzymes to protect themselves against the reactive oxygen species (ROS) often produced by their powerful photosynthesis. We report the first in vivo analysis of a cyanobacterial MAPEG2-like protein (Sll1147) in the model cyanobacterium Synechocystis PCC 6803. While Sll1147 is dispensable to cell growth in standard photo-autotrophic conditions, it plays an important role in the resistance to heat and cold, and to n-tertbutyl hydroperoxide (n-tBOOH) that induces lipid peroxidation. These findings suggest that Sll1147 could be involved in membrane fluidity, which is critical for photosynthesis. Attesting its sensitivity to these stresses, the Δsll1147 mutant lacking Sll1147 challenged by heat, cold, or n-tBOOH undergoes transient accumulation of peroxidized lipids and then of reduced and oxidized glutathione. These results are welcome because little is known concerning the signaling and/or protection mechanisms used by cyanobacteria to cope with heat and cold, two inevitable environmental stresses that limit their growth, and thus their production of biomass for our food chain and of biotechnologically interesting chemicals. Also interestingly, the decreased resistance to heat, cold and n-tBOOH of the Δsll1147 mutant could be rescued back to normal (wild-type) levels upon the expression of synthetic MAPEG2-encoding human genes adapted to the cyanobacterial codon usage. These synthetic hmGST2 and hmGST3 genes were also able to increase the Escherichia coli tolerance to heat and n-tBOOH. Collectively, these finding indicate that the activity of the MAPEG2 proteins have been conserved, at least in part, during evolution from (cyano)bacteria to human.
Collapse
Affiliation(s)
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Zhao W, Chao Y, Wang Y, Wang L, Wang X, Li H, Xu B. Role of AccMGST1 in oxidative stress resistance in Apis cerana cerana. Cell Stress Chaperones 2019; 24:793-805. [PMID: 31175533 PMCID: PMC6629756 DOI: 10.1007/s12192-019-01007-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
As detoxification enzymes, proteins in the glutathione S-transferase (GST) superfamily are reported to participate in oxidative stress resistance. Nevertheless, microsomal GSTs (MGSTs), a unique subclass of the GST superfamily associated with membranes, are rarely studied in insects. Here, we isolated an MGST gene in Apis cerana cerana (AccMGST1) and verified its role in oxidative stress response. We found higher expression of AccMGST1 in protective or defensive tissue, that is, the epidermis, which indicated its role in stress resistance. Real-time quantitative PCR (qRT-PCR) analysis indicated that AccMGST1 was upregulated by oxidative stresses at the transcriptional level. In contrast, AccMGST1 expression was inhibited when the antioxidant vitamin C (VC) was fed to experimental bees. Through western blotting, we found that the protein level of AccMGST1 under oxidative stress corresponded to the transcript level. Disc diffusion and mixed-function oxidation (MFO) assays suggested that AccMGST1 can protect not only cells but also DNA against oxidative damage. Furthermore, we discovered that the expression patterns of known antioxidant genes were changed in A. cerana cerana after AccMGST1 was silenced by RNA interference (RNAi). Thus, we concluded that the gene AccMGST1 exerts a significant role in the antioxidant mechanism.
Collapse
Affiliation(s)
- Wenchun Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yuzhen Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xinxin Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Wielgus-Kutrowska B, Grycuk T, Bzowska A. Part-of-the-sites binding and reactivity in the homooligomeric enzymes - facts and artifacts. Arch Biochem Biophys 2018; 642:31-45. [PMID: 29408402 DOI: 10.1016/j.abb.2018.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/13/2018] [Accepted: 01/17/2018] [Indexed: 01/18/2023]
Abstract
For a number of enzymes composed of several subunits with the same amino acid sequence, it was documented, or suggested, that binding of a ligand, or catalysis, is carried out by a single subunit. This phenomenon may be the result of a pre-existent asymmetry of subunits or a limiting case of the negative cooperativity, and is sometimes called "half-of-the-sites binding (or reactivity)" for dimers and could be called "part-of-the-sites binding (or reactivity)" for higher oligomers. In this article, we discuss molecular mechanisms that may result in "part-of-the-sites binding (and reactivity)", offer possible explanations why it may have a beneficial role in enzyme function, and point to experimental problems in documenting this behaviour. We describe some cases, for which such a mechanism was first reported and later disproved. We also give several examples of enzymes, for which this mechanism seems to be well documented, and profitable. A majority of enzymes identified in this study as half-of-the-sites binding (or reactive) use it in the flip-flop version, in which "half-of-the-sites" refers to a particular moment in time. In general, the various variants of the mechanism seems to be employed often by oligomeric enzymes for allosteric regulation to enhance the efficiency of enzymatic reactions in many key metabolic pathways.
Collapse
Affiliation(s)
- Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Department of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland.
| | - Tomasz Grycuk
- Division of Biophysics, Institute of Experimental Physics, Department of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Department of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland.
| |
Collapse
|
16
|
Microsomal glutathione transferase 2 modulates LTC4 synthesis and ROS production in Apostichopus japonicus. Mol Immunol 2017; 91:114-122. [DOI: 10.1016/j.molimm.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023]
|
17
|
Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation. Sci Rep 2017; 7:7897. [PMID: 28801553 PMCID: PMC5554250 DOI: 10.1038/s41598-017-07912-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/04/2017] [Indexed: 01/01/2023] Open
Abstract
Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in an extended conformation at the interface between two subunits of the trimer supported by new in vitro mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map reveals side chain movements opening a cavity that defines the second substrate site.
Collapse
|
18
|
Zhang Z, Lv Z, Shao Y, Qiu Q, Zhang W, Duan X, Li Y, Li C. Microsomal glutathione transferase 1 attenuated ROS-induced lipid peroxidation in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:79-87. [PMID: 28302499 DOI: 10.1016/j.dci.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Microsomal glutathione transferase (mGST) is a membrane bound glutathione transferase in multifunctional detoxification isoenzymes family and also plays crucial roles in innate immunity. In the present study, a novel microsomal GST homology was identified from Apostichopus japonicus (designated as AjmGST1) by RACE approaches. The full-length cDNA of AjmGST1 was of 1296 bp encoded a protein of 169 amino acids residues. Multiple sequence alignment and phylogenetic analysis together supported that AjmGST1 belonged to a new member in invertebrates mGST family. Spatial expression analysis revealed that AjmGST1was ubiquitously expressed in all examined tissues with the larger magnitude in tentacle. Time-course expression of AjmGST1 mRNA in coelomocytes was up-regulated after Vibrio splendidus challenge from 6 h until 72 h with the peak expression in 24 h, compared with that in the control group. Similarly, the induced expression of AjmGST1 expression was also detected in lipopolysaccharide (LPS) exposed primary coelomocytes. The purified recombinant protein of AjmGST1 showed high activity with GST substrate at pH of 7.0 and temperature of 35 °C. Meantime, the recombinant AjmGST1 depressed H2O2-induced MDA production both in vivo and in vitro. All of these results indicated that AjmGST1 was an important regulator in elimination of lipid peroxidation under immune response.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuemei Duan
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
19
|
Spahiu L, Ålander J, Ottosson-Wadlund A, Svensson R, Lehmer C, Armstrong RN, Morgenstern R. Global Kinetic Mechanism of Microsomal Glutathione Transferase 1 and Insights into Dynamic Enzyme Activation. Biochemistry 2017; 56:3089-3098. [PMID: 28558199 DOI: 10.1021/acs.biochem.7b00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microsomal glutathione transferase 1 (MGST1) has a unique ability to be activated, ≤30-fold, by modification with sulfhydryl reagents. MGST1 exhibits one-third-of-the-sites reactivity toward glutathione and hence heterogeneous binding to different active sites in the homotrimer. Limited turnover stopped-flow kinetic measurements of the activated enzyme allowed us to more accurately determine the KD for the "third" low-affinity GSH binding site (1.4 ± 0.3 mM). The rate of thiolate formation, k2 (0.77 ± 0.06 s-1), relevant to turnover, could also be determined. By deriving the steady-state rate equation for a random sequential mechanism for MGST1, we can predict KM, kcat, and kcat/KM values from these and previously determined pre-steady-state rate constants (all determined at 5 °C). To assess whether the pre-steady-state behavior can account for the steady-state kinetic behavior, we have determined experimental values for kinetic parameters at 5 °C. For reactive substrates and the activated enzyme, data for the microscopic steps account for the global mechanism of MGST1. For the unactivated enzyme and more reactive electrophilic substrates, pre-steady-state and steady-state data can be reconciled only if a more active subpopulation of MGST1 is assumed. We suggest that unactivated MGST1 can be partially activated in its unmodified form. The existence of an activated subpopulation (approximately 10%) could be demonstrated in limited turnover experiments. We therefore suggest that MSGT1 displays a preexisting dynamic equilibrium between high- and low-activity forms.
Collapse
Affiliation(s)
- Linda Spahiu
- Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| | - Johan Ålander
- Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| | | | - Richard Svensson
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University , 753 12 Uppsala, Sweden.,Science for Life Laboratory, Drug Discovery Platform, Uppsala University , Uppsala, Sweden
| | - Carina Lehmer
- Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| | - Richard N Armstrong
- Departments of Biochemistry and Chemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Ralf Morgenstern
- Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| |
Collapse
|