1
|
Dingová D, Kučera M, Hodbod T, Fischmeister R, Krejci E, Hrabovská A. Cardiac acetylcholinesterase and butyrylcholinesterase have distinct localization and function. Am J Physiol Heart Circ Physiol 2025; 328:H526-H542. [PMID: 39836467 DOI: 10.1152/ajpheart.00672.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Cholinesterase (ChE) inhibitors are under consideration for use in the treatment of cardiovascular pathologies. A prerequisite to advancing ChE inhibitors into the clinic is their thorough characterization in the heart. The aim here was to provide a detailed analysis of cardiac ChE to understand their molecular composition, localization, and physiological functions. A battery of biochemical, microscopic, and physiological experiments was used to analyze two known ChE, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), in hearts of mutant mice lacking different ChE molecular forms. Overall, AChE activity was exceeded by BChE, while it was localized mainly in the atria and the ventricular epicardium of the heart base. AChE was anchored by collagen Q (ColQ) in the basal lamina or by PRiMA at the plasma membrane and co-localized with the neuronal marker TUJ1. In the absence of anchored AChE, the heart rate was unresponsive to a ChE inhibitor. BChE, the major ChE in the heart, was detected predominantly in ventricles, presumably as a precursor (soluble monomers/dimers). Mice lacking BChE were more sensitive to a ChE inhibitor. Nevertheless, the overall impact on heart physiology was subtle, showing mainly a role in cholinergic antagonism to the positive inotropic effect of β-adrenergic stimulation. Our results help to unravel the mechanisms of ChE in cardiovascular pathologies and provide a foundation to facilitate the design of novel, more effective pharmacotherapies, which may reduce morbidity and mortality of patients with various heart diseases.NEW & NOTEWORTHY Inhibition of cholinesterases has therapeutic potential in cardiovascular pathologies. Both acetylcholinesterase and butyrylcholinesterase are present in the heart. Each cholinesterase has distinct localization patterns in the heart and functions in cardiac physiology. Selective inhibition of acetylcholinesterase or butyrylcholinesterase may be used to alter specific cardiac functions. Butyrylcholinesterase polymorphism may have an impact on the outcome of the cholinesterase inhibitor treatment.
Collapse
Affiliation(s)
- Dominika Dingová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- Centre Borelli, CNRS, ENS Paris Saclay, Université Paris Cité, Paris, France
| | - Matej Kučera
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- UMR-S 1180, Inserm, Université Paris-Saclay, Orsay, France
| | - Tibor Hodbod
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
| | | | - Eric Krejci
- Centre Borelli, CNRS, ENS Paris Saclay, Université Paris Cité, Paris, France
| | - Anna Hrabovská
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Allard JL, Aguirre M, Gupta R, Chua SMH, Shields KA, Lua LHL. Effective parallel evaluation of molecular design, expression and bioactivity of novel recombinant butyrylcholinesterase medical countermeasures. Chem Biol Interact 2024; 403:111219. [PMID: 39222902 DOI: 10.1016/j.cbi.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterised BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.
Collapse
Affiliation(s)
- Joanne L Allard
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia; Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia.
| | - Miguel Aguirre
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Ruchi Gupta
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Sheena M H Chua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Katherine A Shields
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
3
|
Allard JL, Shields KA, Munro T, Lua LHL. Design and production strategies for developing a recombinant butyrylcholinesterase medical countermeasure for Organophosphorus poisoning. Chem Biol Interact 2022; 363:109996. [PMID: 35654125 DOI: 10.1016/j.cbi.2022.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial approach of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.
Collapse
Affiliation(s)
- Joanne L Allard
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia; The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Katherine A Shields
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - TrentP Munro
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
4
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
5
|
Leung MR, Zeev-Ben-Mordehai T. Cryo-electron microscopy of cholinesterases, present and future. J Neurochem 2020; 158:1236-1243. [PMID: 33222205 PMCID: PMC8518539 DOI: 10.1111/jnc.15245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) exist in a variety of oligomeric forms, each with defined cellular and subcellular distributions. Although crystal structures of AChE and BChE have been available for many years, structures of the physiologically relevant ChE tetramer were only recently solved by cryo‐electron microscopy (cryo‐EM) single‐particle analysis. Here, we briefly review how these structures contribute to our understanding of cholinesterase oligomerization, highlighting the advantages of using cryo‐EM to resolve structures of protein assemblies that cannot be expressed recombinantly. We argue that the next frontier in cholinesterase structural biology is to image membrane‐anchored ChE oligomers directly in their native environment—the cell.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Toker L, Silman I, Zeev-Ben-Mordehai T, Sussman JL, Schopfer LM, Lockridge O. Polyproline-rich peptides associated with Torpedo californica acetylcholinesterase tetramers. Chem Biol Interact 2020; 319:109007. [PMID: 32087110 DOI: 10.1016/j.cbi.2020.109007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 01/30/2023]
Abstract
Acetylcholinesterase (AChE) terminates cholinergic neurotransmission by hydrolyzing acetylcholine. The collagen-tailed AChE tetramer is a product of 2 genes, ACHE and ColQ. The AChE tetramer consists of 4 identical AChE subunits and one polyproline-rich peptide, whose function is to hold the 4 AChE subunits together. Our goal was to determine the amino acid sequence of the polyproline-rich peptide(s) in Torpedo californica AChE (TcAChE) tetramers to aid in the analysis of images that will be acquired by cryo-EM. Collagen-tailed AChE was solubilized from Torpedo californica electric organ, converted to 300 kDa tetramers by digestion with trypsin, and purified by affinity chromatography. Polyproline-rich peptides were released by denaturing the TcAChE tetramers in a boiling water bath, and reducing disulfide bonds with dithiothreitol. Carbamidomethylated peptides were separated from TcAChE protein on a spin filter before they were analyzed by liquid chromatography tandem mass spectrometry on a high resolution Orbitrap Fusion Lumos mass spectrometer. Of the 64 identified collagen-tail (ColQ) peptides, 60 were from the polyproline-rich region near the N-terminus of ColQ. The most abundant proline-rich peptides were SVNKCCLLTPPPPPMFPPPFFTETNILQE, at 40% of total mass-spectral signal intensity, and SVNKCCLLTPPPPPMFPPPFFTETNILQEVDLNNLPLEIKPTEPSCK, at 27% of total intensity. The high abundance of these 2 peptides makes them candidates for the principal form of the polyproline-rich peptide in the trypsin-treated TcAChE tetramers.
Collapse
Affiliation(s)
- Lilly Toker
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, the Netherlands.
| | - Joel L Sussman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
7
|
Characterization of butyrylcholinesterase from porcine milk. Arch Biochem Biophys 2018; 652:38-49. [PMID: 29908755 DOI: 10.1016/j.abb.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022]
Abstract
Human butyrylcholinesterase (HuBChE) is under development for use as a pretreatment antidote against nerve agent toxicity. Animals are used to evaluate the efficacy of HuBChE for protection against organophosphorus nerve agents. Pharmacokinetic studies of HuBChE in minipigs showed a mean residence time of 267 h, similar to the half-life of HuBChE in humans, suggesting a high degree of similarity between BChE from 2 sources. Our aim was to compare the biochemical properties of PoBChE purified from porcine milk to HuBChE purified from human plasma. PoBChE hydrolyzed acetylthiocholine slightly faster than butyrylthiocholine, but was sensitive to BChE-specific inhibitors. PoBChE was 50-fold less sensitive to inhibition by DFP than HuBChE and 5-fold slower to reactivate in the presence of 2-PAM. The amino acid sequence of PoBChE determined by liquid chromatography tandem mass spectrometry was 91% identical to HuBChE. Monoclonal antibodies 11D8, mAb2, and 3E8 (HAH 002) recognized both PoBChE and HuBChE. Assembly of 4 identical subunits into tetramers occurred by noncovalent interaction with polyproline-rich peptides in PoBChE as well as in HuBChE, though the set of polyproline-rich peptides in milk-derived PoBChE was different from the set in plasma-derived HuBChE tetramers. It was concluded that the esterase isolated from porcine milk is PoBChE.
Collapse
|
8
|
Wang Q, Chen CH, Chung CY, Priola J, Chu JH, Tang J, Ulmschneider MB, Betenbaugh MJ. Proline-Rich Chaperones Are Compared Computationally and Experimentally for Their Abilities to Facilitate Recombinant Butyrylcholinesterase Tetramerization in CHO Cells. Biotechnol J 2017; 13:e1700479. [DOI: 10.1002/biot.201700479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/26/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Charles H. Chen
- Department of Materials Science and Engineering, Johns Hopkins University; 204C Shaffer Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
- Department of Chemistry, King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Cheng-yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Joseph Priola
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Jeffrey H. Chu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Juechun Tang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| | - Martin B. Ulmschneider
- Department of Materials Science and Engineering, Johns Hopkins University; 204C Shaffer Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
- Department of Chemistry, King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; 221 Maryland Hall, 3400 N. Charles St. Baltimore Maryland 21218 USA
| |
Collapse
|
9
|
Dafferner AJ, Schopfer LM, Xiao G, Cashman JR, Yerramalla U, Johnson RC, Blake TA, Lockridge O. Immunopurification of Acetylcholinesterase from Red Blood Cells for Detection of Nerve Agent Exposure. Chem Res Toxicol 2017; 30:1897-1910. [PMID: 28892361 PMCID: PMC5646370 DOI: 10.1021/acs.chemrestox.7b00209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Nerve agents and
organophosphorus pesticides make a covalent bond
with the active site serine of acetylcholinesterase (AChE), resulting
in inhibition of AChE activity and toxic symptoms. AChE in red blood
cells (RBCs) serves as a surrogate for AChE in the nervous system.
Mass spectrometry analysis of adducts on RBC AChE could provide evidence
of exposure. Our goal was to develop a method of immunopurifying human
RBC AChE in quantities adequate for detecting exposure by mass spectrometry.
For this purpose, we immobilized 3 commercially available anti-human
acetylcholinesterase monoclonal antibodies (AE-1, AE-2, and HR2) plus
3 new monoclonal antibodies. The monoclonal antibodies were characterized
for binding affinity, epitope mapping by pairing analysis, and nucleotide
and amino acid sequences. AChE was solubilized from frozen RBCs with
1% (v/v) Triton X-100. A 16 mL sample containing 5.8 μg of RBC
AChE was treated with a quantity of soman model compound that inhibited
50% of the AChE activity. Native and soman-inhibited RBC AChE samples
were immunopurified on antibody–Sepharose beads. The immunopurified
RBC AChE was digested with pepsin and analyzed by liquid chromatography
tandem mass spectrometry on a 6600 Triple-TOF mass spectrometer. The
aged soman-modified PheGlyGluSerAlaGlyAlaAlaSer (FGESAGAAS) peptide
was detected using a targeted analysis method. It was concluded that
all 6 monoclonal antibodies could be used to immunopurify RBC AChE
and that exposure to nerve agents could be detected as adducts on
the active site serine of RBC AChE.
Collapse
Affiliation(s)
- Alicia J Dafferner
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Gaoping Xiao
- Syd Labs, Inc , Natick, Massachusetts 01760, United States
| | - John R Cashman
- Human BioMolecular Research Institute , 5310 Eastgate Mall, San Diego, California 92121, United States
| | - Udaya Yerramalla
- Precision Antibody , 91330 Red Branch Rd, Columbia, Maryland 21045, United States
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , 4770 Buford Highway, Chamblee, Georgia 30341, United States
| | - Thomas A Blake
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , 4770 Buford Highway, Chamblee, Georgia 30341, United States
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
10
|
Baudier J. ATAD3 proteins: brokers of a mitochondria-endoplasmic reticulum connection in mammalian cells. Biol Rev Camb Philos Soc 2017; 93:827-844. [PMID: 28941010 DOI: 10.1111/brv.12373] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
In yeast, a sequence of physical and genetic interactions termed the endoplasmic reticulum (ER)-mitochondria organizing network (ERMIONE) controls mitochondria-ER interactions and mitochondrial biogenesis. Several functions that characterize ERMIONE complexes are conserved in mammalian cells, suggesting that a similar tethering complex must exist in metazoans. Recent studies have identified a new family of nuclear-encoded ATPases associated with diverse cellular activities (AAA+-ATPase) mitochondrial membrane proteins specific to multicellular eukaryotes, called the ATPase family AAA domain-containing protein 3 (ATAD3) proteins (ATAD3A and ATAD3B). These proteins are crucial for normal mitochondrial-ER interactions and lie at the heart of processes underlying mitochondrial biogenesis. ATAD3A orthologues have been studied in flies, worms, and mammals, highlighting the widespread importance of this gene during embryonic development and in adulthood. ATAD3A is a downstream effector of target of rapamycin (TOR) signalling in Drosophila and exhibits typical features of proteins from the ERMIONE-like complex in metazoans. In humans, mutations in the ATAD3A gene represent a new link between altered mitochondrial-ER interaction and recognizable neurological syndromes. The primate-specific ATAD3B protein is a biomarker of pluripotent embryonic stem cells. Through negative regulation of ATAD3A function, ATAD3B supports mitochondrial stemness properties.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284, Marseille Cedex 07, France.,Institut de Biologie du Développement de Marseille-UMR CNRS 7288, 13288, Marseille Cedex 9, France
| |
Collapse
|
11
|
Rotundo RL. Biogenesis, assembly and trafficking of acetylcholinesterase. J Neurochem 2017; 142 Suppl 2:52-58. [PMID: 28326552 PMCID: PMC5550332 DOI: 10.1111/jnc.13982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) is expressed as several homomeric and heterooligomeric forms in a wide variety of tissues such as neurons in the central and peripheral nervous systems and their targets including skeletal muscle, endocrine and exocrine glands. In addition, glycolipid-anchored forms are expressed in erythropoietic and lymphopoietic cells. While transcriptional and post-transcriptional regulation is important for determining which AChE oligomeric forms are expressed in a given tissue, translational and post-translational regulatory mechanisms at the level of protein folding, assembly and sorting play equally important roles in assuring that the AChE molecules reach their intended sites on the cell surface in the appropriate numbers. This brief review will focus on the latter events in the cell with the goal of providing novel therapeutic interventional strategies for the treatment of organophosphate and carbamate pesticide and nerve agent exposure. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Richard L Rotundo
- Department of Cell Biology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
12
|
Characterization of butyrylcholinesterase in bovine serum. Chem Biol Interact 2017; 266:17-27. [PMID: 28189703 DOI: 10.1016/j.cbi.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
Human butyrylcholinesterase (HuBChE) protects from nerve agent toxicity. Our goal was to determine whether bovine serum could be used as a source of BChE. Bovine BChE (BoBChE) was immunopurified from 100 mL fetal bovine serum (FBS) or 380 mL adult bovine serum by binding to immobilized monoclonal mAb2. Bound proteins were digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The results proved that FBS and adult bovine serum contain BoBChE. The concentration of BoBChE was estimated to be 0.04 μg/mL in FBS, and 0.03 μg/mL in adult bovine serum, values lower than the 4 μg/mL BChE in human serum. Nondenaturing gel electrophoresis showed that monoclonal mAb2 bound BoBChE but not bovine acetylcholinesterase (BoAChE) and confirmed that FBS contains BoBChE and BoAChE. Recombinant bovine BChE (rBoBChE) expressed in serum-free culture medium spontaneously reactivated from inhibition by chlorpyrifos oxon at a rate of 0.0023 min-1 (t1/2 = 301 min-1) and aged at a rate of 0.0138 min-1 (t1/2 = 50 min-1). Both BoBChE and HuBChE have 574 amino acids per subunit and 90% sequence identity. However, the apparent size of serum BoBChE and rBoBChE tetramers was much greater than the 340,000 Da of HuBChE tetramers. Whereas HuBChE tetramers include short polyproline rich peptides derived from lamellipodin, no polyproline peptides have been identified in BoBChE. We hypothesize that BoBChE tetramers use a large polyproline-rich protein to organize subunits into a tetramer and that the low concentration of BoBChE in serum is explained by limited quantities of an unidentified polyproline-rich protein.
Collapse
|