1
|
Das P, Das A, Debnath M. Identification and Classification of Functional Split G-Quadruplexes Using Machine Learning-Guided Activity Screening. ACS APPLIED BIO MATERIALS 2025. [PMID: 40415306 DOI: 10.1021/acsabm.5c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Split G-quadruplexes are considered excellent tools for biosensing and diagnostics, but splitting G-quadruplexes may often lead to a loss of function, limiting their effectiveness. This study aims to identify and classify functional split G-quadruplexes based on the ability of the G-quadruplex motif to generate a fluorescence turn-on response and undergo phase separation. A series of split G-quadruplexes were designed, and their characterization was conducted using fluorescence spectroscopy, fluorescence microscopy, UV-vis spectroscopy, and circular dichroism to investigate their functional properties (fluorogenic response, phase separation, and DNAzyme activity). Multivariate analysis and machine learning-based pattern recognition revealed that structural changes due to the splitting of G4-forming sequences correlate with their ability to form phase-separated condensates, which enhance their fluorogenic and DNAzyme activity. The machine learning-based activity screening was used to identify split G-quadruplexes, which may have high, moderate, or low functional activity. This integrative approach provides a predictive framework for engineering functionally active split G-quadruplexes and establishes a platform for their application in molecular diagnostics.
Collapse
Affiliation(s)
- Pranotosh Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avimanyu Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Debnath
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Wang Z, Ferreira Rodrigues C, Jurt S, Domínguez-Martín A, Johannsen S, Sigel RKO. Elucidating the solution structure of the monomolecular BCL2 RNA G-quadruplex: a new robust NMR assignment approach. Chem Sci 2025:d5sc01416f. [PMID: 40181818 PMCID: PMC11962745 DOI: 10.1039/d5sc01416f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
5' untranslated regions (UTRs) of mRNA commonly feature G-quadruplexes (G4s), crucial for translational regulation and promising as drug targets to modulate gene expression. While NMR spectroscopy is well-suited for studying these motifs' structure and dynamics, their guanine-rich nature complicates resonance assignment due to high signal overlap. Exploiting the inherent rigidity of G4 cores, we developed a universally applicable assignment strategy for uniformly isotopically enriched G4 structures, relying solely on through-bond correlations to establish the G-tetrads. Applying this approach, we resolved the solution structures of two triple mutants of the RNA G4 in the 5' UTR of the human BCL2 proto-oncogene, one of the first natural monomolecular RNA G4 structures available to date. Comparative analysis with other RNA and DNA G4s reveals their notably compact and well-defined cores. Moreover, the sugar pucker geometries of the tetrad guanines are far less stringent than previously assumed, adeptly accommodating specific structural features. This contrasts with the canonical base pairing in RNA and DNA, in which the sugar pucker dictates the type of the double-helical structure. The strategy presented provides a direct path to uncovering G4 structural intricacies, advancing our grasp of their biological roles, and paving the way for RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Zenghui Wang
- Department of Chemistry, University of Zürich 8057 Zürich Switzerland
| | | | - Simon Jurt
- Department of Chemistry, University of Zürich 8057 Zürich Switzerland
| | - Alicia Domínguez-Martín
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada 18071 Granada Spain
| | - Silke Johannsen
- Department of Chemistry, University of Zürich 8057 Zürich Switzerland
| | - Roland K O Sigel
- Department of Chemistry, University of Zürich 8057 Zürich Switzerland
| |
Collapse
|
3
|
Michael Sabo T, Trent JO, Chaires JB, Monsen RC. Strategy for modeling higher-order G-quadruplex structures recalcitrant to NMR determination. Methods 2024; 230:9-20. [PMID: 39032720 DOI: 10.1016/j.ymeth.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Guanine-rich nucleic acids can form intramolecularly folded four-stranded structures known as G-quadruplexes (G4s). Traditionally, G4 research has focused on short, highly modified DNA or RNA sequences that form well-defined homogeneous compact structures. However, the existence of longer sequences with multiple G4 repeats, from proto-oncogene promoters to telomeres, suggests the potential for more complex higher-order structures with multiple G4 units that might offer selective drug-targeting sites for therapeutic development. These larger structures present significant challenges for structural characterization by traditional high-resolution methods like multi-dimensional NMR and X-ray crystallography due to their molecular complexity. To address this current challenge, we have developed an integrated structural biology (ISB) platform, combining experimental and computational methods to determine self-consistent molecular models of higher-order G4s (xG4s). Here we outline our ISB method using two recent examples from our lab, an extended c-Myc promoter and long human telomere G4 repeats, that highlights the utility and generality of our approach to characterizing biologically relevant xG4s.
Collapse
Affiliation(s)
- T Michael Sabo
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
4
|
Štefan U, Brázda V, Plavec J, Marušič M. The influence of G-tract and loop length on the topological variability of putative five and six G-quartet DNA structures in the human genome. Int J Biol Macromol 2024; 280:136008. [PMID: 39326605 DOI: 10.1016/j.ijbiomac.2024.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Local variation of DNA structure and its dynamic nature play an essential role in the regulation of important biological processes. One of the most prominent noncanonical structures are G-quadruplexes, which form in vivo within guanine-rich regions and have been demonstrated to be involved in the regulation of transcription, translation and telomere maintenance. We provide an analysis of G-quadruplex formation in sequences with five and six guanine residues long G-tracts, which have emerged from the investigation of the gapless human genome and are associated with genes related to cancer and neurodegenerative diseases. We systematically explored the effect of G-tract and loop elongations by means of NMR and CD spectroscopy and polyacrylamide electrophoresis. Despite both types of elongation leading up to structural polymorphism, we successfully determined the topologies of four out of eight examined sequences, one of which contributes to a very scarce selection of currently known intramolecular four G-quartet structures in potassium solutions. We demonstrate that examined sequences are incompatible with five or six G-quartet structures with propeller loops, although the compatibility with other loop types cannot be factored out. Lastly, we propose a novel approach towards specific G-quadruplex targeting that could be implemented in structures with more than four G-quartets.
Collapse
Affiliation(s)
- Urša Štefan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Janez Plavec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia
| | - Maja Marušič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Brázda V, Šislerová L, Cucchiarini A, Mergny JL. G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes. NAR Genom Bioinform 2024; 6:lqae060. [PMID: 38817800 PMCID: PMC11137754 DOI: 10.1093/nargab/lqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anne Cucchiarini
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
6
|
Lopina OD, Sidorenko SV, Fedorov DA, Klimanova EA. G-Quadruplexes as Sensors of Intracellular Na+/K + Ratio: Potential Role in Regulation of Transcription and Translation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S262-S277. [PMID: 38621755 DOI: 10.1134/s0006297924140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 04/17/2024]
Abstract
Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.
Collapse
Affiliation(s)
- Olga D Lopina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | | - Dmitry A Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
7
|
Nicholson DA, Nesbitt DJ. Kinetic and Thermodynamic Control of G-Quadruplex Polymorphism by Na + and K + Cations. J Phys Chem B 2023; 127:6842-6855. [PMID: 37504511 DOI: 10.1021/acs.jpcb.3c01001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
G-Quadruplexes (G4s) are ubiquitous nucleic acid folding motifs that exhibit structural diversity that is dependent on cationic conditions. In this work, we exploit temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) to elucidate the kinetic and thermodynamic mechanisms by which monovalent cations (K+ and Na+) impact folding topologies for a simple G-quadruplex sequence (5'-GGG-(TAAGGG)3-3') with a three-state folding equilibrium. Kinetic measurements indicate that Na+ and K+ influence G4 formation in two distinctly different ways: the presence of Na+ modestly enhances an antiparallel G4 topology through an induced fit (IF) mechanism with a low affinity (Kd = 228 ± 26 mM), while K+ drives G4 into a parallel/hybrid topology via a conformational selection (CS) mechanism with much higher affinity (Kd = 1.9 ± 0.2 mM). Additionally, temperature-dependent studies of folding rate constants and equilibrium ratios reveal distinctly different thermodynamic driving forces behind G4 binding to K+ (ΔH°bind > 0, ΔS°bind > 0) versus Na+ (ΔH°bind < 0, ΔS°bind < 0), which further illuminates the diversity of the possible pathways for monovalent facilitation of G-quadruplex folding.
Collapse
Affiliation(s)
- David A Nicholson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Monsen RC. Higher-order G-quadruplexes in promoters are untapped drug targets. Front Chem 2023; 11:1211512. [PMID: 37351517 PMCID: PMC10282141 DOI: 10.3389/fchem.2023.1211512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid secondary structures that form within guanine-rich regions of chromatin. G4 motifs are abundant in the genome, with a sizable proportion (∼40%) existing within gene promoter regions. G4s are proven epigenetic features that decorate the promoter landscape as binding centers for transcription factors. Stabilizing or disrupting promoter G4s can directly influence adjacent gene transcription, making G4s attractive as indirect drug targets for hard-to-target proteins, particularly in cancer. However, no G4 ligands have progressed through clinical trials, mostly owing to off targeting effects. A major hurdle in G4 drug discovery is the lack of distinctiveness of the small monomeric G4 structures currently used as receptors. This mini review describes and contrasts monomeric and higher-order G-quadruplex structure and function and provides a rationale for switching focus to the higher-order forms as selective molecular targets. The human telomerase reverse transcriptase (hTERT) core promoter G-quadruplex is then used as a case study that highlights the potential for higher-order G4s as selective indirect inhibitors of hard-to-target proteins in cancer.
Collapse
|
9
|
Shitikov EA, Bespiatykh DA, Bodoev IN, Zaychikova MV. G-Quadruplex Structures in Bacteria: Functional Properties and Prospects for Use as Biotargets. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022. [DOI: 10.1134/s1990750822040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Xiang M, Li Y, Liu J, Shi J, Ge Y, Peng C, Bin Y, Wang Z, Wang L. G-Quadruplex Linked DNA Guides Selective Transfection into Nucleolin-Overexpressing Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14102247. [PMID: 36297681 PMCID: PMC9609445 DOI: 10.3390/pharmaceutics14102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gene therapy is a promising approach for treating tumors. Conventional approaches of DNA delivery depending on non-viral or viral vectors are unsatisfactory due to the concerns of biosafety and cell-targeting efficiency. The question how to deliver DNA into tumor cells efficiently and selectively is a major technological problem in tumor gene therapy. Here, we develop a vector-free gene transfer strategy to deliver genes effectively and selectively by taking advantage of targeting nucleolin. Nucleolin, a shuttle protein moving between cell membrane, cytoplasm and nuclei, is overexpressed in tumor cells. It has a natural ligand G-quadruplex (Gq). Gq-linked DNA (Gq-DNA) is likely to be internalized by ligand dependent uptake mechanisms independently of vectors after neutralizing negative charges of cell membrane by targeting nucleolin. This strategy is referred to as Gq-DNA transfection. Benefiting from its high affinity to nucleolin, Gq-DNA can be effectively delivered into nucleolin-positive tumor cells even nuclei. Gq-DNA transfection is characterized by low cytotoxicity, high efficiency, ease of synthesis, high stability in serum, direct access into nuclei, and specific nucleolin-positive tumor cell targeting.
Collapse
Affiliation(s)
- Mengxi Xiang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkui Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yizhi Ge
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Peng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yawen Bin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (Z.W.); (L.W.)
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (Z.W.); (L.W.)
| |
Collapse
|
11
|
Shitikov EA, Bespiatykh DA, Bodoev IN, Zaychikova MV. [G-quadruplex structures in bacteria: functional properties and prospects for use as biotargets]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:93-103. [PMID: 35485483 DOI: 10.18097/pbmc20226802093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
G-quadruplexes (G4), non-canonical secondary DNA structures, are intensively investigated for a long time. In eukaryotic organisms they play an important role in the regulation of gene expression and DNA repair. G4 have also been found in the genomes of numerous bacteria and archaea, but their functional role has not yet been fully explored. Nevertheless, their participation in the formation of antigenic variability, pathogenicity, antibiotic resistance and survival in extreme conditions has been established. Currently, many tools have been developed to detect potential G4 sequences and confirm their formation ability. Since the controlled formation and resolution of the quadruplex are significant means for the regulation of genes critical for survival, a promising direction is the search for ligands - compounds that can have a stabilizing effect on the quadruplex structure and thereby alter gene expression. Currently, a number of ligands are already known, their use stops the growth of pathogenic microorganisms. G4 ligands are of interest as potential antibiotics, which are extremely relevant due to the wide spread of drug resistant pathogens.
Collapse
Affiliation(s)
- E A Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - D A Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - I N Bodoev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - M V Zaychikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
12
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
13
|
Brázda V, Bohálová N, Bowater RP. New telomere to telomere assembly of human chromosome 8 reveals a previous underestimation of G-quadruplex forming sequences and inverted repeats. Gene 2021; 810:146058. [PMID: 34737002 DOI: 10.1016/j.gene.2021.146058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/04/2022]
Abstract
Taking advantage of evolving and improving sequencing methods, human chromosome 8 is now available as a gapless, end-to-end assembly. Thanks to advances in long-read sequencing technologies, its centromere, telomeres, duplicated gene families and repeat-rich regions are now fully sequenced. We were interested to assess if the new assembly altered our understanding of the potential impact of non-B DNA structures within this completed chromosome sequence. It has been shown that non-B secondary structures, such as G-quadruplexes, hairpins and cruciforms, have important regulatory functions and potential as targeted therapeutics. Therefore, we analysed the presence of putative G-quadruplex forming sequences and inverted repeats in the current human reference genome (GRCh38) and in the new end-to-end assembly of chromosome 8. The comparison revealed that the new assembly contains significantly more inverted repeats and G-quadruplex forming sequences compared to the current reference sequence. This observation can be explained by improved accuracy of the new sequencing methods, particularly in regions that contain extensive repeats of bases, as is preferred by many non-B DNA structures. These results show a significant underestimation of the prevalence of non-B DNA secondary structure in previous assembly versions of the human genome and point to their importance being not fully appreciated. We anticipate that similar observations will occur as the improved sequencing technologies fill in gaps across the genomes of humans and other organisms.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic.
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Richard P Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
14
|
Grün JT, Schwalbe H. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers 2021; 113:e23477. [PMID: 34664713 DOI: 10.1002/bip.23477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4), found in numerous places within the human genome, are involved in essential processes of cell regulation. Chromosomal DNA G4s are involved for example, in replication and transcription as first steps of gene expression. Hence, they influence a plethora of downstream processes. G4s possess an intricate structure that differs from canonical B-form DNA. Identical DNA G4 sequences can adopt multiple long-lived conformations, a phenomenon known as G4 polymorphism. A detailed understanding of the molecular mechanisms that drive G4 folding is essential to understand their ambivalent regulatory roles. Disentangling the inherent dynamic and polymorphic nature of G4 structures thus is key to unravel their biological functions and make them amenable as molecular targets in novel therapeutic approaches. We here review recent experimental approaches to monitor G4 folding and discuss structural aspects for possible folding pathways. Substantial progress in the understanding of G4 folding within the recent years now allows drawing comprehensive models of the complex folding energy landscape of G4s that we herein evaluate based on computational and experimental evidence.
Collapse
Affiliation(s)
- J Tassilo Grün
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt/M, Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/M, Germany
| |
Collapse
|
15
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Vesco G, Lamperti M, Salerno D, Marrano CA, Cassina V, Rigo R, Buglione E, Bondani M, Nicoletto G, Mantegazza F, Sissi C, Nardo L. Double-stranded flanking ends affect the folding kinetics and conformational equilibrium of G-quadruplexes forming sequences within the promoter of KIT oncogene. Nucleic Acids Res 2021; 49:9724-9737. [PMID: 34478543 PMCID: PMC8464035 DOI: 10.1093/nar/gkab674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/13/2021] [Accepted: 09/01/2021] [Indexed: 12/01/2022] Open
Abstract
G-quadruplexes embedded within promoters play a crucial role in regulating the gene expression. KIT is a widely studied oncogene, whose promoter contains three G-quadruplex forming sequences, c-kit1, c-kit2 and c-kit*. For these sequences available studies cover ensemble and single-molecule analyses, although for kit* the latter were limited to a study on a promoter domain comprising all of them. Recently, c-kit2 has been reported to fold according to a multi-step process involving folding intermediates. Here, by exploiting fluorescence resonance energy transfer, both in ensemble and at the single molecule level, we investigated the folding of expressly designed constructs in which, alike in the physiological context, either c-kit2 or c-kit* are flanked by double stranded DNA segments. To assess whether the presence of flanking ends at the borders of the G-quadruplex affects the folding, we studied under the same protocols oligonucleotides corresponding to the minimal G-quadruplex forming sequences. Data suggest that addition of flanking ends results in biasing both the final equilibrium state and the folding kinetics. A previously unconsidered aspect is thereby unravelled, which ought to be taken into account to achieve a deeper insight of the complex relationships underlying the fine tuning of the gene-regulatory properties of these fascinating DNA structures.
Collapse
Affiliation(s)
- Guglielmo Vesco
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| | - Marco Lamperti
- Department of Physics, Polytechnic of Milan, 23900 Lecco, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Claudia Adriana Marrano
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Valeria Cassina
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Enrico Buglione
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Maria Bondani
- Institute for Photonics and Nanotechnology, IFN-CNR, 22100 Como, Italy
| | - Giulia Nicoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
| | - Luca Nardo
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| |
Collapse
|
17
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
González-Jiménez M, Ramakrishnan G, Tukachev NV, Senn HM, Wynne K. Low-frequency vibrational modes in G-quadruplexes reveal the mechanical properties of nucleic acids. Phys Chem Chem Phys 2021; 23:13250-13260. [PMID: 34095914 PMCID: PMC8207511 DOI: 10.1039/d0cp05404f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low-frequency vibrations play an essential role in biomolecular processes involving DNA such as gene expression, charge transfer, drug intercalation, and DNA–protein recognition. However, understanding the vibrational basis of these mechanisms relies on theoretical models due to the lack of experimental evidence. Here we present the low-frequency vibrational spectra of G-quadruplexes (structures formed by four strands of DNA) and B-DNA characterized using femtosecond optical Kerr-effect spectroscopy. Contrary to expectation, we found that G-quadruplexes show several strongly underdamped delocalized phonon-like modes that have the potential to contribute to the biology of the DNA at the atomic level. In addition, G-quadruplexes present modes at a higher frequency than B-DNA demonstrating that changes in the stiffness of the molecule alter its gigahertz to terahertz vibrational profile. Low-frequency vibrations play an essential role in biomolecular processes involving DNA such as gene expression, charge transfer, drug intercalation, and DNA–protein recognition.![]()
Collapse
|
19
|
Bohálová N, Cantara A, Bartas M, Kaura P, Šťastný J, Pečinka P, Fojta M, Mergny JL, Brázda V. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie 2021; 186:13-27. [PMID: 33839192 DOI: 10.1016/j.biochi.2021.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
G-quadruplexes contribute to the regulation of key molecular processes. Their utilization for antiviral therapy is an emerging field of contemporary research. Here we present comprehensive analyses of the presence and localization of putative G-quadruplex forming sequences (PQS) in all viral genomes currently available in the NCBI database (including subviral agents). The G4Hunter algorithm was applied to a pool of 11,000 accessible viral genomes representing 350 Mbp in total. PQS frequencies differ across evolutionary groups of viruses, and are enriched in repeats, replication origins, 5'UTRs and 3'UTRs. Importantly, PQS presence and localization is connected to viral lifecycles and corresponds to the type of viral infection rather than to nucleic acid type; while viruses routinely causing persistent infections in Metazoa hosts are enriched for PQS, viruses causing acute infections are significantly depleted for PQS. The unique localization of PQS identifies the importance of G-quadruplex-based regulation of viral replication and life cycle, providing a tool for potential therapeutic targeting.
Collapse
Affiliation(s)
- Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Alessio Cantara
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Patrik Kaura
- Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jiří Šťastný
- Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896/2, 616 69, Brno, Czech Republic; Department of Informatics, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic.
| |
Collapse
|
20
|
Identification of a Novel Cis-Acting Regulator of HIV-1 Genome Packaging. Int J Mol Sci 2021; 22:ijms22073435. [PMID: 33810482 PMCID: PMC8036536 DOI: 10.3390/ijms22073435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) uptakes homo-dimerized viral RNA genome into its own particle. A cis-acting viral RNA segment responsible for this event, termed packaging signal (psi), is located at the 5′-end of the viral genome. Although the psi segment exhibits nucleotide variation in nature, its effects on the psi function largely remain unknown. Here we show that a psi sequence from an HIV-1 regional variant, subtype D, has a lower packaging ability compared with that from another regional variant, HIV-1 subtype B, despite maintaining similar genome dimerization activities. A series of molecular genetic investigations narrowed down the responsible element of the selective attenuation to the two sequential nucleotides at positions 226 and 227 in the psi segment. Molecular dynamics simulations predicted that the dinucleotide substitution alters structural dynamics, fold, and hydrogen-bond networks primarily of the psi-SL2 element that contains the binding interface of viral nucleocapsid protein for the genome packaging. In contrast, such structural changes were minimal within the SL1 element involved in genome dimerization. These results suggest that the psi 226/227 dinucleotide pair functions as a cis-acting regulator to control the psi structure to selectively tune the efficiency of packaging, but not dimerization of highly variable HIV-1 genomes.
Collapse
|
21
|
Harkness RW, Hennecker C, Grün JT, Blümler A, Heckel A, Schwalbe H, Mittermaier AK. Parallel reaction pathways accelerate folding of a guanine quadruplex. Nucleic Acids Res 2021; 49:1247-1262. [PMID: 33469659 PMCID: PMC7897495 DOI: 10.1093/nar/gkaa1286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are four-stranded, guanine-rich nucleic acid structures that can influence a variety of biological processes such as the transcription and translation of genes and DNA replication. In many cases, a single G4-forming nucleic acid sequence can adopt multiple different folded conformations that interconvert on biologically relevant timescales, entropically stabilizing the folded state. The coexistence of different folded conformations also suggests that there are multiple pathways leading from the unfolded to the folded state ensembles, potentially modulating the folding rate and biological activity. We have developed an experimental method for quantifying the contributions of individual pathways to the folding of conformationally heterogeneous G4s that is based on mutagenesis, thermal hysteresis kinetic experiments and global analysis, and validated our results using photocaged kinetic NMR experiments. We studied the regulatory Pu22 G4 from the c-myc oncogene promoter, which adopts at least four distinct folded isomers. We found that the presence of four parallel pathways leads to a 2.5-fold acceleration in folding; that is, the effective folding rate from the unfolded to folded ensembles is 2.5 times as large as the rate constant for the fastest individual pathway. Since many G4 sequences can adopt many more than four isomers, folding accelerations of more than an order of magnitude are possible via this mechanism.
Collapse
Affiliation(s)
- Robert W Harkness
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main 60438, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main 60438, Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main 60438, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main 60438, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
22
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
23
|
Gratal PB, Quero JG, Pérez-Redondo A, Gándara Z, Gude L. PhenQE8, a Novel Ligand of the Human Telomeric Quadruplex. Int J Mol Sci 2021; 22:E749. [PMID: 33451070 PMCID: PMC7828518 DOI: 10.3390/ijms22020749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 01/02/2023] Open
Abstract
A novel quadruplex ligand based on 1,10-phenanthroline and incorporating two guanyl hydrazone functionalities, PhenQE8, is reported herein. Synthetic access was gained in a two-step procedure with an overall yield of 61%. X-ray diffraction studies revealed that PhenQE8 can adopt an extended conformation that may be optimal to favor recognition of quadruplex DNA. DNA interactions with polymorphic G-quadruplex telomeric structures were studied by different techniques, such as Fluorescence resonance energy transfer (FRET) DNA melting assays, circular dichroism and equilibrium dialysis. Our results reveal that the novel ligand PhenQE8 can efficiently recognize the hybrid quadruplex structures of the human telomeric DNA, with high binding affinity and quadruplex/duplex selectivity. Moreover, the compound shows significant cytotoxic activity against a selected panel of cultured tumor cells (PC-3, HeLa and MCF-7), whereas its cytotoxicity is considerably lower in healthy human cells (HFF-1 and RPWE-1).
Collapse
Affiliation(s)
| | | | | | - Zoila Gándara
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain; (P.B.G.); (J.G.Q.); (A.P.-R.)
| | - Lourdes Gude
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain; (P.B.G.); (J.G.Q.); (A.P.-R.)
| |
Collapse
|
24
|
Brázda V, Luo Y, Bartas M, Kaura P, Porubiaková O, Šťastný J, Pečinka P, Verga D, Da Cunha V, Takahashi TS, Forterre P, Myllykallio H, Fojta M, Mergny JL. G-Quadruplexes in the Archaea Domain. Biomolecules 2020; 10:biom10091349. [PMID: 32967357 PMCID: PMC7565180 DOI: 10.3390/biom10091349] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/26/2022] Open
Abstract
The importance of unusual DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, G-quadruplexes (G4s) have gained in popularity during the last decade, and their presence and functional relevance at the DNA and RNA level has been demonstrated in a number of viral, bacterial, and eukaryotic genomes, including humans. Here, we performed the first systematic search of G4-forming sequences in all archaeal genomes available in the NCBI database. In this article, we investigate the presence and locations of G-quadruplex forming sequences using the G4Hunter algorithm. G-quadruplex-prone sequences were identified in all archaeal species, with highly significant differences in frequency, from 0.037 to 15.31 potential quadruplex sequences per kb. While G4 forming sequences were extremely abundant in Hadesarchaea archeon (strikingly, more than 50% of the Hadesarchaea archaeon isolate WYZ-LMO6 genome is a potential part of a G4-motif), they were very rare in the Parvarchaeota phylum. The presence of G-quadruplex forming sequences does not follow a random distribution with an over-representation in non-coding RNA, suggesting possible roles for ncRNA regulation. These data illustrate the unique and non-random localization of G-quadruplexes in Archaea.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Yu Luo
- Institut Curie, CNRS UMR9187, INSERM U1196, Universite Paris Saclay, 91400 Orsay, France
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Patrik Kaura
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Otilia Porubiaková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Jiří Šťastný
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
- Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Daniela Verga
- Institut Curie, CNRS UMR9187, INSERM U1196, Universite Paris Saclay, 91400 Orsay, France
| | - Violette Da Cunha
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France
| | - Tomio S Takahashi
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
25
|
Churcher ZR, Garaev D, Hunter HN, Johnson PE. Reduction in Dynamics of Base pair Opening upon Ligand Binding by the Cocaine-Binding Aptamer. Biophys J 2020; 119:1147-1156. [PMID: 32882188 DOI: 10.1016/j.bpj.2020.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
We have used magnetization transfer NMR experiments to measure the exchange rate constant (kex) of the imino protons in the unbound, cocaine-bound, and quinine-bound forms of the cocaine-binding DNA aptamer. Both long-stem 1 (MN4) and short-stem 1 (MN19) variants were analyzed, corresponding to structures with a prefolded secondary structure and ligand-induced-folding versions of this aptamer, respectively. The kex values were measured as a function of temperature from 5 to 45°C to determine the thermodynamics of the base pair opening for MN4. We find that the base pairs close to the ligand-binding site become stronger upon ligand binding, whereas those located away from the binding site do not strengthen. With the buffer conditions used in this study, we observe imino 1H signals in MN19 not previously seen, which leads us to conclude that in the free form, both stem 2 and parts of stem 3 are formed and that the base pairs in stem 1 become structured or more rigid upon binding. This is consistent with the kex values for MN19 decreasing in both stem 1 and at the ligand-binding site. Based on the temperature dependence of the kex values, we find that MN19 is more dynamic than MN4 in the free and both ligand-bound forms. For MN4, ligand-binding results in the reduction of dynamics that are localized to the binding site. These results demonstrate that an aptamer in which the base pairs are preformed also experiences a reduction in dynamics with ligand binding.
Collapse
Affiliation(s)
- Zachary R Churcher
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Devid Garaev
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Howard N Hunter
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Oh KI, Kim J, Park CJ, Lee JH. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. Int J Mol Sci 2020; 21:E2673. [PMID: 32290457 PMCID: PMC7216225 DOI: 10.3390/ijms21082673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
The non-canonical structures of nucleic acids are essential for their diverse functions during various biological processes. These non-canonical structures can undergo conformational exchange among multiple structural states. Data on their dynamics can illustrate conformational transitions that play important roles in folding, stability, and biological function. Here, we discuss several examples of the non-canonical structures of DNA focusing on their dynamic characterization by NMR spectroscopy: (1) G-quadruplex structures and their complexes with target proteins; (2) i-motif structures and their complexes with proteins; (3) triplex structures; (4) left-handed Z-DNAs and their complexes with various Z-DNA binding proteins. This review provides insight into how the dynamic features of non-canonical DNA structures contribute to essential biological processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| | - Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| |
Collapse
|
27
|
Grün JT, Hennecker C, Klötzner DP, Harkness RW, Bessi I, Heckel A, Mittermaier AK, Schwalbe H. Conformational Dynamics of Strand Register Shifts in DNA G-Quadruplexes. J Am Chem Soc 2019; 142:264-273. [PMID: 31815451 DOI: 10.1021/jacs.9b10367] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The complex folding energy landscape of DNA G-quadruplexes leads to numerous conformations for this functionally important class of noncanonical DNA structures. A new layer of conformational heterogeneity comes from sequences with different numbers of G-nucleotides in each of the DNA G-strands that form the four-stranded G-quartet core. The mechanisms by which G-quadruplexes transition from one folded conformation to another are currently unknown. To address this question, we studied two different G-quadruplexes, selecting a single conformation by blocking hydrogen bonding with photolabile protection groups. Upon irradiation, the block can be released and the kinetics of re-equilibration to the native conformational equilibrium can be determined by time-resolved NMR. We compared the NMR-derived refolding kinetics with data derived from thermal hysteresis folding kinetic experiments and found excellent agreement. The outlined methodological approach allows separation of K+-induced G-quadruplex formation and subsequent refolding and provides key insight into rate-limiting steps of G-quadruplex conformational dynamics.
Collapse
Affiliation(s)
- J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany.,Center of Biomolecular Magnetic Resonance (BMRZ) , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany
| | | | - Dean-Paulos Klötzner
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany
| | - Robert W Harkness
- Department of Chemistry , McGill University , Montreal H3A 2K6 , Quebec , Canada
| | - Irene Bessi
- Institute of Organic Chemistry , Julius-Maximilians-University Würzburg , Würzburg 97074 , Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany
| | | | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany.,Center of Biomolecular Magnetic Resonance (BMRZ) , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany
| |
Collapse
|
28
|
Čutová M, Manta J, Porubiaková O, Kaura P, Šťastný J, Jagelská EB, Goswami P, Bartas M, Brázda V. Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae. Genomics 2019; 112:1897-1901. [PMID: 31706022 DOI: 10.1016/j.ygeno.2019.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
The importance of DNA structure in the regulation of basic cellular processes is an emerging field of research. Among local non-B DNA structures, inverted repeat (IR) sequences that form cruciforms and G-rich sequences that form G-quadruplexes (G4) are found in all prokaryotic and eukaryotic organisms and are targets for regulatory proteins. We analyzed IRs and G4 sequences in the genome of the most important biotechnology microorganism, S. cerevisiae. IR and G4-prone sequences are enriched in specific genomic locations and differ markedly between mitochondrial and nuclear DNA. While G4s are overrepresented in telomeres and regions surrounding tRNAs, IRs are most enriched in centromeres, rDNA, replication origins and surrounding tRNAs. Mitochondrial DNA is enriched in both IR and G4-prone sequences relative to the nuclear genome. This extensive analysis of local DNA structures adds to the emerging picture of their importance in genome maintenance, DNA replication and transcription of subsets of genes.
Collapse
Affiliation(s)
- Michaela Čutová
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jacinta Manta
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Otília Porubiaková
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Patrik Kaura
- Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jiří Šťastný
- Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896/2, 616 69 Brno, Czech Republic; Mendel University in Brno, Zemědělská 1665/1, 61300 Brno, Czech Republic
| | - Eva B Jagelská
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Pratik Goswami
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Václav Brázda
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
29
|
Stefos GC, Theodorou G, Politis I. DNA G-quadruplexes: functional significance in plant and farm animal science. Anim Biotechnol 2019; 32:262-271. [PMID: 31642375 DOI: 10.1080/10495398.2019.1679823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
G-quadruplexes (G4s) are non-canonical structures that can be formed in DNA and RNA sequences which carry four short runs of guanines. They are distributed in the whole genome but are enriched in gene promoter regions, gene UTRs and chromosome telomeres. The whole array of their functional roles is not fully explored yet but there is solid evidence supporting their implication in a number of processes like regulation of transcription, replication and telomere organization, among others. During the last decade, there is an increased research interest for G4s that has resulted in a better understanding of their role in several physiological and pathological conditions. On the other hand, these structures are poorly studied in plant species and animals of agricultural interest. Here, we summarize the current methods that are used for studying G4s, we review the studies concerning plants and farm animals and we discuss the advantages of a more thorough inclusion of G4s research in the agricultural sciences.
Collapse
Affiliation(s)
- Georgios C Stefos
- Independent researcher, Agricultural University of Athens, Athens, Greece
| | - Georgios Theodorou
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| | - Ioannis Politis
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
30
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
31
|
Wumaier M, Shi JJ, Yao TM, Hu XC, Gao RR, Shi S. G-quadruplex and duplex DNA binding studies of novel Ruthenium(II) complexes containing ascididemin ligands. J Inorg Biochem 2019; 196:110681. [DOI: 10.1016/j.jinorgbio.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
|
32
|
Conserved G-Quadruplexes Regulate the Immediate Early Promoters of Human Alphaherpesviruses. Molecules 2019; 24:molecules24132375. [PMID: 31252527 PMCID: PMC6651000 DOI: 10.3390/molecules24132375] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
Human Alphaherpesviruses comprise three members, herpes simplex virus (HSV) 1 and 2 and varicella zoster virus (VZV). These viruses are characterized by a lytic cycle in epithelial cells and latency in the nervous system, with lifelong infections that may periodically reactivate and lead to serious complications, especially in immunocompromised patients. The mechanisms that regulate viral transcription have not been fully elucidated, but the master role of the immediate early (IE) genes has been established. G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in many organisms including viruses and that represent attractive antiviral targets. In this work, we investigate the presence, conservation, folding and activity of G-quadruplexes in the IE promoters of the Alphaherpesviruses. Our analysis shows that all IE promoters in the genome of HSV-1, HSV-2 and VZV contain fully conserved G-quadruplex forming sequences. These comprise sequences with long loops and bulges, and thus deviating from the classic G-quadruplex motifs. Moreover, their location is both on the leading and lagging strand and in some instances they contain exuberant G-tracts. Biophysical and biological analysis proved that all sequences actually fold into G-quadruplex under physiological conditions and can be further stabilized by the G-quadruplex ligand BRACO-19, with subsequent impairment of viral IE gene transcription in cells. These results help shed light on the control of viral transcription and indicate new viral targets to design drugs that impair the early steps of Alphaherpesviruses. In addition, they validate the significance of G-quadruplexes in the general regulation of viral cycles.
Collapse
|
33
|
Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019; 11:nu11061251. [PMID: 31159371 PMCID: PMC6628342 DOI: 10.3390/nu11061251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process.
Collapse
Affiliation(s)
- Agnieszka Gadecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
34
|
Bartas M, Čutová M, Brázda V, Kaura P, Šťastný J, Kolomazník J, Coufal J, Goswami P, Červeň J, Pečinka P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules 2019; 24:molecules24091711. [PMID: 31052562 PMCID: PMC6539912 DOI: 10.3390/molecules24091711] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/09/2023] Open
Abstract
The role of local DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, the significance of G-quadruplexes was demonstrated in the last decade, and their presence and functional relevance has been demonstrated in many genomes, including humans. In this study, we analyzed the presence and locations of G-quadruplex-forming sequences by G4Hunter in all complete bacterial genomes available in the NCBI database. G-quadruplex-forming sequences were identified in all species, however the frequency differed significantly across evolutionary groups. The highest frequency of G-quadruplex forming sequences was detected in the subgroup Deinococcus-Thermus, and the lowest frequency in Thermotogae. G-quadruplex forming sequences are non-randomly distributed and are favored in various evolutionary groups. G-quadruplex-forming sequences are enriched in ncRNA segments followed by mRNAs. Analyses of surrounding sequences showed G-quadruplex-forming sequences around tRNA and regulatory sequences. These data point to the unique and non-random localization of G-quadruplex-forming sequences in bacterial genomes.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Michaela Čutová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Václav Brázda
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Patrik Kaura
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic.
| | - Jiří Šťastný
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic.
- Department of Informatics, Mendel University in Brno, Zemedelska 1665/1, 61300 Brno, Czech Republic.
| | - Jan Kolomazník
- Department of Informatics, Mendel University in Brno, Zemedelska 1665/1, 61300 Brno, Czech Republic.
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Pratik Goswami
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jiří Červeň
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Petr Pečinka
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
35
|
Bian WX, Xie Y, Wang XN, Xu GH, Fu BS, Li S, Long G, Zhou X, Zhang XL. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res 2019; 47:56-68. [PMID: 30462330 PMCID: PMC6326805 DOI: 10.1093/nar/gky1177] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of human chronic liver disease and hepatocellular carcinoma. G-quadruplex (G4) is an important four-stranded secondary structure of nucleic acids. Recently, we discovered that the core gene of HCV contains a G4 RNA structure; however, the interaction between the HCV core RNA G4 and host cellular proteins, and the roles of the HCV core RNA G4 in HCV infection and pathogenesis remain elusive. Here, we identified a cellular protein, nucleolin (NCL), which bound and stabilized the HCV core RNA G4 structure. We demonstrated the direct interaction and colocalization between NCL and wild-type core RNA G4 at both in vitro and in cell physiological conditions of the alive virus; however no significant interaction was found between NCL and G4-modified core RNA. NCL is also associated with HCV particles. HCV infection induced NCL mRNA and protein expression, while NCL suppressed wild-type viral replication and expression, but not G4-modified virus. Silencing of NCL greatly enhanced viral RNA replication. Our findings provide new insights that NCL may act as a host factor for anti-viral innate immunity, and binding of cellular NCL with the viral core RNA G4 structure is involved in suppressing HCV replication.
Collapse
Affiliation(s)
- Wen-Xiu Bian
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Yan Xie
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Xiao-Ning Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Hua Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan 430072, China
| | - Shu Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan 430072, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| |
Collapse
|
36
|
Falabella M, Fernandez RJ, Johnson FB, Kaufman BA. Potential Roles for G-Quadruplexes in Mitochondria. Curr Med Chem 2019; 26:2918-2932. [PMID: 29493440 PMCID: PMC6113130 DOI: 10.2174/0929867325666180228165527] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Some DNA or RNA sequences rich in guanine (G) nucleotides can adopt noncanonical conformations known as G-quadruplexes (G4). In the nuclear genome, G4 motifs have been associated with genome instability and gene expression defects, but they are increasingly recognized to be regulatory structures. Recent studies have revealed that G4 structures can form in the mitochondrial genome (mtDNA) and potential G4 forming sequences are associated with the origin of mtDNA deletions. However, little is known about the regulatory role of G4 structures in mitochondria. In this short review, we will explore the potential for G4 structures to regulate mitochondrial function, based on evidence from the nucleus.
Collapse
Affiliation(s)
- Micol Falabella
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Verga D, N'Guyen CH, Dakir M, Coll JL, Teulade-Fichou MP, Molla A. Polyheteroaryl Oxazole/Pyridine-Based Compounds Selected in Vitro as G-Quadruplex Ligands Inhibit Rock Kinase and Exhibit Antiproliferative Activity. J Med Chem 2018; 61:10502-10518. [PMID: 30457335 DOI: 10.1021/acs.jmedchem.8b01023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heptaheteroaryl compounds comprised of oxazole and pyridine units (TOxaPy) are quadruplex DNA (G4)-interactive compounds. Herein, we report on the synthesis of parent compounds bearing either amino side chains (TOxaPy-1-5) or featuring an isomeric oxazole-pyridine central connectivity (iso-TOxapy, iso-TOxapy 1-3) or a bipyridine core (iso-TOxabiPy). The new isomeric series showed significant G4-binding activity in vitro, and remarkably, three compounds (iso-TOxaPy, iso-TOxaPy-1, and iso-TOxabiPy) exhibited high antiproliferative activity toward a tumor panel of cancer cell lines. However, these compounds do not behave as typical G-quadruplex (G4) binders, and the kinase profiling assay revealed that the best antiproliferative molecule iso-TOxaPy selectively inhibited Rock-2. The targeting of Rock kinase was confirmed in cells by the dephosphorylation of Rock-2 substrates, the decrease of stress fibers, and peripheral focal adhesions, as well as the induction of long neurite-like extensions. Remarkably, two of these molecules were able to inhibit the growth of cells organized as spheroids.
Collapse
Affiliation(s)
- Daniela Verga
- "Chemistry, Modelling and Imaging for Biology", CNRS UMR9187-INSERM U1196, Institut Curie, Research Center Orsay, Bât 110, University Paris-Sud , 91405 Orsay , France
| | - Chi-Hung N'Guyen
- "Chemistry, Modelling and Imaging for Biology", CNRS UMR9187-INSERM U1196, Institut Curie, Research Center Orsay, Bât 110, University Paris-Sud , 91405 Orsay , France
| | - Malika Dakir
- University of Grenoble Alpes, CNRS UMR 5309, Inserm 1209, CHU Grenoble Alpes, IAB , 38400 Grenoble , France
| | - Jean-Luc Coll
- University of Grenoble Alpes, CNRS UMR 5309, Inserm 1209, CHU Grenoble Alpes, IAB , 38400 Grenoble , France
| | - Marie-Paule Teulade-Fichou
- "Chemistry, Modelling and Imaging for Biology", CNRS UMR9187-INSERM U1196, Institut Curie, Research Center Orsay, Bât 110, University Paris-Sud , 91405 Orsay , France
| | - Annie Molla
- University of Grenoble Alpes, CNRS UMR 5309, Inserm 1209, CHU Grenoble Alpes, IAB , 38400 Grenoble , France
| |
Collapse
|
38
|
Belleperche M, DeRosa MC. pH-Control in Aptamer-Based Diagnostics, Therapeutics, and Analytical Applications. Pharmaceuticals (Basel) 2018; 11:ph11030080. [PMID: 30149664 PMCID: PMC6161035 DOI: 10.3390/ph11030080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamer binding has been used effectively for diagnostics, in-vivo targeting of therapeutics, and the construction and control of nanomachines. Nanostructures that respond to pH by releasing or changing affinity to a target have also been used for in vivo delivery, and in the construction of sensors and re-usable nanomachines. There are many applications that use aptamers together with pH-responsive materials, notably the targeted delivery of chemotherapeutics. However, the number of reported applications that directly use pH to control aptamer binding is small. In this review, we first discuss the use of aptamers with pH-responsive nanostructures for chemotherapeutic and other applications. We then discuss applications that use pH to denature or otherwise disrupt the binding of aptamers. Finally, we discuss motifs using non-canonical nucleic acid base pairing that can shift conformation in response to pH, followed by an overview of engineered pH-controlled aptamers designed using those motifs.
Collapse
Affiliation(s)
- Micaela Belleperche
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| | - Maria C DeRosa
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| |
Collapse
|
39
|
Myoblast Myogenic Differentiation but Not Fusion Process Is Inhibited via MyoD Tetraplex Interaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7640272. [PMID: 29854094 PMCID: PMC5964432 DOI: 10.1155/2018/7640272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 03/17/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
The presence of tetraplex structures in the promoter region of the myogenic differentiation 1 gene (MyoD1) was investigated with a specific tetraplex-binding porphyrin (TMPyP4), to test its influence on the expression of MyoD1 itself and downstream-regulated genes during myogenic differentiation. TMPyP4-exposed C2C12 myoblasts, blocking MyoD1 transcription, proliferated reaching confluence and fused forming elongated structures, resembling myotubes, devoid of myosin heavy chain 3 (MHC) expression. Besides lack of MHC, upon MyoD1 inhibition, other myogenic gene expressions were also affected in treated cells, while untreated control cell culture showed normal myotube formation expressing MyoD1, Myog, MRF4, Myf5, and MHC. Unexpectedly, the myomaker (Mymk) gene expression was not affected upon TMPyP4 exposure during C2C12 myogenic differentiation. At the genomic level, the bioinformatic comparison of putative tetraplex sites found that three tetraplexes in MyoD1 and Myog are highly conserved in mammals, while Mymk and MHC did not show any conserved tetraplexes in the analysed regions. Thus, here, we report for the first time that the inhibition of the MyoD1 promoter function, stabilizing the tetraplex region, affects downstream myogenic genes by blocking their expression, while leaving the expression of Mymk unaltered. These results reveal the existence of two distinct pathways: one leading to cell fusion and one guaranteeing correct myotube differentiation.
Collapse
|
40
|
Guo S, Lu H. Conjunction of potential G-quadruplex and adjacent cis-elements in the 5' UTR of hepatocyte nuclear factor 4-alpha strongly inhibit protein expression. Sci Rep 2017; 7:17444. [PMID: 29234104 PMCID: PMC5727235 DOI: 10.1038/s41598-017-17629-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) is a well established master regulator of liver development and function. We identified the in vitro presence of a stable secondary structure, G-quadruplex (G4) in the 5' UTR of P1-HNF4A, the predominant HNF4α isoform(s) in adult liver. Our data suggest that the cooperation of G4 and the adjacent putative protein-binding sites within the 5' UTR was necessary and sufficient to mediate a strong translational repression. This was supported by analysis of deleted/mutated 5'UTRs and two native regulatory single-nucleotide polymorphisms in the 5'UTR. Additional results indicated that G4 motifs in the 5' UTRs of other liver-enriched transcription factors also inhibited protein expression. Moreover, pyridostatin, a G4 ligand, specifically potentiated the translational suppressing effect of P1-HNF4A-5' UTR. In summary, the present study provides the first evidence of the presence of G4 in human P1-HNF4A-5' UTR in vitro, and establishes a novel working model of strong inhibition of protein translation via interactions of G4 with potential RNA-binding proteins (RBPs). The protein expression of the tumor suppressor HNF4α may be inhibited by interactions of RBPs with the G4 motif in the 5' UTR to promote cell proliferation during liver development and carcinogenesis.
Collapse
Affiliation(s)
- Shangdong Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, United States.
| |
Collapse
|