1
|
Li X, Dai S, Sun S, Zhao D, Li H, Zhang J, Ma J, Du B, Ding Y. Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress. J Proteome Res 2025; 24:210-223. [PMID: 39625841 DOI: 10.1021/acs.jproteome.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bacillus altitudinis is a well-known beneficial microorganism in plant rhizosphere, capable of enhancing plant growth and salt tolerance in saline soils. However, the mechanistic changes underlying salt tolerance in B. altitudinis at the level of post-translational modifications remain unclear. Here, diverse lysine modifications including acetylation, succinylation, crotonylation, and malonylation were determined in the B. altitudinis response to salt stress by immunodetection, and the acetylation level greatly increased under salt stress. The in-depth acetylome landscape showed that 1032 proteins in B. altitudinis were differentially acetylated under salt stress. These proteins were involved in many physiological aspects closely related to salt tolerance like energy generation and conversion, amino acid synthesis and transport, cell motility, signal transduction, secretion system, and repair system. Moreover, we also identified the differential acetylation of key enzymes involved in the major osmolyte biosynthesis and conversion and antioxidant defenses. Thiol peroxidase (TPX), a key protective antioxidant enzyme, had 3 upregulated acetylation sites (K7/139/157) under salt stress. Site-specific mutations demonstrated that K7/139/157 acetylation strongly regulated TPX function in scavenging intracellular ROS, thereby impacting bacterial growth under salt stress. To our knowledge, this is the first study showing that bacteria adaptation to salt stress occurs at the level of PTMs.
Collapse
Affiliation(s)
- Xujian Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Shanshan Dai
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Shanshan Sun
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Dongying Zhao
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Junyi Zhang
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Jie Ma
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
2
|
Wang Q, Peng W, Yang Y, Wu Y, Han R, Ding T, Zhang X, Liu J, Liu J, Yang J. Global analysis of lysine acetylation in the brain cortex of K18-hACE2 mice infected with SARS-CoV-2. Proteomics 2023; 23:e2300096. [PMID: 37309728 DOI: 10.1002/pmic.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected hundreds of millions of people all over the world and thus threatens human life. Clinical evidence shows that SARS-CoV-2 infection can cause several neurological consequences, but the existing antiviral drugs and vaccines have failed to stop its spread. Therefore, an understanding of the response to SARS-CoV-2 infection of hosts is vital to find a resultful therapy. Here, we employed a K18-hACE2 mouse infection model and LC-MS/MS to systematically evaluate the acetylomes of brain cortexes in the presence and absence of SARS-CoV-2 infection. Using a label-free strategy, 3829 lysine acetylation (Kac) sites in 1735 histone and nonhistone proteins were identified. Bioinformatics analyses indicated that SARS-CoV-2 infection might lead to neurological consequences via acetylation or deacetylation of important proteins. According to a previous study, we found 26 SARS-CoV-2 proteins interacted with 61 differentially expressed acetylated proteins with high confidence and identified one acetylated SARS-CoV-2 protein nucleocapsid phosphoprotein. We greatly expanded the known set of acetylated proteins and provide the first report of the brain cortex acetylome in this model and thus a theoretical basis for future research on the pathological mechanisms and therapies of neurological consequences after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qiaochu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wanjun Peng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yehong Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rong Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xutong Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Qu X, Han Y, Chen X, Lv Y, Zhang Y, Cao L, Zhang J, Jin Y. Inhibition of 26 S Proteasome Enhances AKAP3-mediated cAMP-PKA Signaling During Boar Sperm Capacitation. Anim Reprod Sci 2022; 247:107079. [DOI: 10.1016/j.anireprosci.2022.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/20/2022] [Accepted: 09/21/2022] [Indexed: 11/01/2022]
|
4
|
Ji Y, Chen Z, Cen Z, Ye Y, Li S, Lu X, Shao Q, Wang D, Ji J, Ji Q. A comprehensive mouse brain acetylome-the cellular-specific distribution of acetylated brain proteins. Front Cell Neurosci 2022; 16:980815. [PMID: 36111245 PMCID: PMC9468461 DOI: 10.3389/fncel.2022.980815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Nε-lysine acetylation is a reversible posttranslational modification (PTM) involved in multiple physiological functions. Genetic and animal studies have documented the critical roles of protein acetylation in brain development, functions, and various neurological disorders. However, the underlying cellular and molecular mechanism are still partially understood. Here, we profiled and characterized the mouse brain acetylome and investigated the cellular distribution of acetylated brain proteins. We identified 1,818 acetylated proteins, including 5,196 acetylation modification sites, using a modified workflow comprising filter-aided sample preparation (FSAP), acetylated peptides enrichment, and MS analysis without pre- or post-fraction. Bioinformatics analysis indicated these acetylated mouse brain proteins were mainly located in the myelin sheath, mitochondrial inner membrane, and synapse, as well as their involvement in multiple neurological disorders. Manual annotation revealed that a set of brain-specific proteins were acetylation-modified. The acetylation of three brain-specific proteins was verified, including neurofilament light polypeptide (NEFL), 2’,3’-cyclic-nucleotide 3’-phosphodiesterase (CNP), and neuromodulin (GAP43). Further immunofluorescence staining illustrated that acetylated proteins were mainly distributed in the nuclei of cortex neurons and axons of hippocampal neurons, sparsely distributed in the nuclei of microglia and astrocytes, and the lack of distribution in both cytoplasm and nuclei of cerebrovascular endothelial cells. Together, this study provided a comprehensive mouse brain acetylome and illustrated the cellular-specific distribution of acetylated proteins in the mouse brain. These data will contribute to understanding and deciphering the molecular and cellular mechanisms of protein acetylation in brain development and neurological disorders. Besides, we proposed some problems that need to be solved in future brain acetylome research.
Collapse
Affiliation(s)
- Yuhua Ji
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zixin Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziqi Cen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuting Ye
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shuyuan Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoshuang Lu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qian Shao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Donghao Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Juling Ji
- Department of Pathology, College of Medicine, Nantong University, Nantong, China
- *Correspondence: Juling Ji,
| | - Qiuhong Ji
- Department of Pathology, College of Medicine, Nantong University, Nantong, China
- Qiuhong Ji,
| |
Collapse
|
5
|
Shen M, Chen Z, Ming M, Cheng Z, Sun J, Liang J, Shang T, Zhang Q, Zhou S, Ji Y, Ding F. The acetylome of adult mouse sciatic nerve. J Neurochem 2022; 162:262-275. [PMID: 35585794 DOI: 10.1111/jnc.15648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Lysine acetylation is a reversible post-translational modification (PTM) involved in multiple physiological functions. Recent studies have demonstrated the involvement of protein acetylation in modulating the biology of Schwann cells (SCs) and regeneration of the peripheral nervous system (PNS). However, the mechanisms underlying these processes remain partially understood. Here, we characterized the acetylome of the mouse sciatic nerve (SN) and investigated the cellular distribution of acetylated proteins. We identified 483 acetylated proteins containing 1,442 acetylation modification sites in the SN of adult C57BL/6 mice. Bioinformatics suggested that these acetylated SN proteins were mainly located in the myelin sheath, mitochondrial inner membrane, and cytoskeleton, and highlighted the significant differences between the mouse SN and brain acetylome. Manual annotation further indicated that most acetylated proteins (> 45%) were associated with mitochondria, energy metabolism, and cytoskeleton and cell adhesion. We verified three newly discovered acetylation-modified proteins, including neurofilament light polypeptide (NEFL), neurofilament medium/high polypeptide (NFM/H), and periaxin (PRX). Immunofluorescence illustrated that the acetylated proteins, including acetylated alpha-tubulin, were mainly co-localized with S100-positive SCs. Herein, we provided a comprehensive acetylome for the mouse SN and demonstrated that acetylated proteins in the SN were predominantly located in SCs. These results will extend our understanding and promote further study of the role and mechanism of protein acetylation in SC development and PNS regeneration.
Collapse
Affiliation(s)
- Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Zixin Chen
- Department of Immunology, College of Life science and Technology, Jinan University, Guangzhou, China
| | - Mengru Ming
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Zhenghui Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jingyun Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China.,Department of Immunology, College of Life science and Technology, Jinan University, Guangzhou, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
6
|
Barrachina F, Battistone MA, Castillo J, Mallofré C, Jodar M, Breton S, Oliva R. Sperm acquire epididymis-derived proteins through epididymosomes. Hum Reprod 2022; 37:651-668. [PMID: 35137089 PMCID: PMC8971652 DOI: 10.1093/humrep/deac015] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION Are epididymosomes implicated in protein transfer from the epididymis to spermatozoa? SUMMARY ANSWER We characterized the contribution of epididymal secretions to the sperm proteome and demonstrated that sperm acquire epididymal proteins through epididymosomes. WHAT IS KNOWN ALREADY Testicular sperm are immature cells unable to fertilize an oocyte. After leaving the testis, sperm transit along the epididymis to acquire motility and fertilizing abilities. It is well known that marked changes in the sperm proteome profile occur during epididymal maturation. Since the sperm is a transcriptional and translational inert cell, previous studies have shown that sperm incorporate proteins, RNA and lipids from extracellular vesicles (EVs), released by epithelial cells lining the male reproductive tract. STUDY DESIGN, SIZE, DURATION We examined the contribution of the epididymis to the post-testicular maturation of spermatozoa, via the production of EVs named epididymosomes, released by epididymal epithelial cells. An integrative analysis using both human and mouse data was performed to identify sperm proteins with a potential epididymis-derived origin. Testes and epididymides from adult humans (n = 9) and adult mice (n = 3) were used to experimentally validate the tissue localization of four selected proteins using high-resolution confocal microscopy. Mouse epididymal sperm were co-incubated with carboxyfluorescein succinimidyl ester (CFSE)-labeled epididymosomes (n = 4 mice), and visualized using high-resolution confocal microscopy. PARTICIPANTS/MATERIALS, SETTING, METHODS Adult (12-week-old) C57BL/CBAF1 wild-type male mice and adult humans were used for validation purposes. Testes and epididymides from both mice and humans were obtained and processed for immunofluorescence. Mouse epididymal sperm and mouse epididymosomes were obtained from the epididymal cauda segment. Fluorescent epididymosomes were obtained after labeling the epididymal vesicles with CFSE dye followed by epididymosome isolation using a density cushion. Immunofluorescence was performed following co-incubation of sperm with epididymosomes in vitro. High-resolution confocal microscopy and 3D image reconstruction were used to visualize protein localization and sperm-epididymosomes interactions. MAIN RESULTS AND THE ROLE OF CHANCE Through in silico analysis, we first identified 25 sperm proteins with a putative epididymal origin that were conserved in both human and mouse spermatozoa. From those, the epididymal origin of four sperm proteins (SLC27A2, EDDM3B, KRT19 and WFDC8) was validated by high-resolution confocal microscopy. SLC27A2, EDDM3B, KRT19 and WFDC8 were all detected in epithelial cells lining the human and mouse epididymis, and absent from human and mouse seminiferous tubules. We found region-specific expression patterns of these proteins throughout the mouse epididymides. In addition, while EDDM3B, KRT19 and WFDC8 were detected in both epididymal principal and clear cells (CCs), SLC27A2 was exclusively expressed in CCs. Finally, we showed that CFSE-fluorescently labeled epididymosomes interact with sperm in vitro and about 12-36% of the epididymosomes contain the targeted sperm proteins with an epididymal origin. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The human and mouse sample size was limited and our results were descriptive. The analyses of epididymal sperm and epididymosomes were solely performed in the mouse model due to the difficulties in obtaining epididymal luminal fluid human samples. Alternatively, human ejaculated sperm and seminal EVs could not be used because ejaculated sperm have already contacted with the fluids secreted by the male accessory sex glands, and seminal EVs contain other EVs in addition to epididymosomes, such as the abundant prostate-derived EVs. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that epididymosomes are capable of providing spermatozoa with a new set of epididymis-derived proteins that could modulate the sperm proteome and, subsequently, participate in the post-testicular maturation of sperm cells. Additionally, our data provide further evidence of the novel role of epididymal CCs in epididymosome production. Identifying mechanisms by which sperm mature to acquire their fertilization potential would, ultimately, lead to a better understanding of male reproductive health and may help to identify potential therapeutic strategies to improve male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economía y Competividad; fondos FEDER 'una manera de hacer Europa' PI13/00699 and PI16/00346 to R.O.; and Sara Borrell Postdoctoral Fellowship, Acción Estratégica en Salud, CD17/00109 to J.C.), by National Institutes of Health (grants HD040793 and HD069623 to S.B., grant HD104672-01 to M.A.B.), by the Spanish Ministry of Education, Culture and Sports (Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario, FPU15/02306 to F.B.), by a Lalor Foundation Fellowship (to F.B. and M.A.B.), by the Government of Catalonia (Generalitat de Catalunya, pla estratègic de recerca i innovació en salut, PERIS 2016-2020, SLT002/16/00337 to M.J.), by Fundació Universitària Agustí Pedro i Pons (to F.B.), and by the American Society for Biochemistry and Molecular Biology (PROLAB Award from ASBMB/IUBMB/PABMB to F.B.). Confocal microscopy and transmission electron microscopy was performed in the Microscopy Core facility of the Massachusetts General Hospital (MGH) Center for Systems Biology/Program in Membrane Biology which receives support from Boston Area Diabetes and Endocrinology Research Center (BADERC) award DK57521 and Center for the Study of Inflammatory Bowel Disease grant DK43351. The Zeiss LSM800 microscope was acquired using an NIH Shared Instrumentation Grant S10-OD-021577-01. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- F Barrachina
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - M A Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - J Castillo
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - C Mallofré
- Department of Pathology, Universitat de Barcelona, Hospital Clínic, Barcelona, Spain
| | - M Jodar
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - S Breton
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - R Oliva
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
7
|
Shangguan Y, Wang Y, Shi W, Guo R, Zeng Z, Hu W, Cai W, Yan Q, Xu Y, Tang D, Dai Y. Systematic proteomics analysis of lysine acetylation reveals critical features of placental proteins in pregnant women with preeclampsia. J Cell Mol Med 2021; 25:10614-10626. [PMID: 34697885 PMCID: PMC8581308 DOI: 10.1111/jcmm.16997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a dangerous hypertensive disorder that occurs during pregnancy. The specific aetiology and pathogenesis of PE have yet to be clarified. To better reveal the specific pathogenesis of PE, we characterized the proteome and acetyl proteome (acetylome) profile of placental tissue from PE and normal-term pregnancy by label-free quantification proteomics technology and PRM analysis. In this research, 373 differentially expressed proteins (DEPs) were identified by proteome analysis. Functional enrichment analysis revealed significant enrichment of DEPs related to angiogenesis and the immune system. COL12A1, C4BPA and F13A1 may be potential biomarkers for PE diagnosis and new therapeutic targets. Additionally, 700 Kac sites were identified on 585 differentially acetylated proteins (DAPs) by acetylome analyses. These DAPs may participate in the occurrence and development of PE by affecting the complement and coagulation cascades pathway, which may have important implications for better understand the pathogenesis of PE. In conclusion, this study systematically analysed the reveals critical features of placental proteins in pregnant women with PE, providing a resource for exploring the contribution of lysine acetylation modification to PE.
Collapse
Affiliation(s)
- Yu Shangguan
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
- College of Life ScienceGuangxi Normal UniversityGuilinChina
| | - Yinglan Wang
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wei Shi
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Ruonan Guo
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Zhipeng Zeng
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wenlong Hu
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wanxia Cai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
- College of Life ScienceGuangxi Normal UniversityGuilinChina
| | - Yong Xu
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Donge Tang
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Yong Dai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
| |
Collapse
|
8
|
Lan R, Wang Q. Deciphering structure, function and mechanism of lysine acetyltransferase HBO1 in protein acetylation, transcription regulation, DNA replication and its oncogenic properties in cancer. Cell Mol Life Sci 2020; 77:637-649. [PMID: 31535175 PMCID: PMC11104888 DOI: 10.1007/s00018-019-03296-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
HBO1 complexes are major acetyltransferase responsible for histone H4 acetylation in vivo, which belongs to the MYST family. As the core catalytic subunit, HBO1 consists of an N-terminal domain and a C-terminal MYST domain that are in charge of acetyl-CoA binding and acetylation reaction. HBO1 complexes are multimeric and normally consist of two native subunits MEAF6, ING4 or ING5 and two kinds of cofactors as chromatin reader: Jade-1/2/3 and BRPF1/2/3. The choices of subunits to form the HBO1 complexes provide a regulatory switch to potentiate its activity between histone H4 and H3 tails. Thus, HBO1 complexes present multiple functions in histone acetylation, gene transcription, DNA replication, protein ubiquitination, and immune regulation, etc. HBO1 is a co-activator for CDT1 to facilitate chromatin loading of MCM complexes and promotes DNA replication licensing. This process is regulated by mitotic kinases such as CDK1 and PLK1 by phosphorylating HBO1 and modulating its acetyltransferase activity, therefore, connecting histone acetylation to regulations of cell cycle and DNA replication. In addition, both gene amplification and protein overexpression of HBO1 confirmed its oncogenic role in cancers. In this paper, we review the recent advances and discuss our understanding of the multiple functions, activity regulation, and disease relationship of HBO1.
Collapse
Affiliation(s)
- Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Qianqian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| |
Collapse
|
9
|
Lv ZM, Ling MY, Chen C. Comparative proteomics reveals protective effect of resveratrol on a high-fat diet-induced damage to mice testis. Syst Biol Reprod Med 2020; 66:37-49. [PMID: 31955635 DOI: 10.1080/19396368.2019.1701138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, resveratrol has been shown to protect against metabolic damage, including obesity-associated subfertility/infertility. In the present study, proteomic alterations in testicular tissues were investigated by tandem mass tag (TMT) in mice fed with a high-fat diet (HFD) without or with resveratrol supplementation (HFD+RSV). Serum testosterone levels, spermatozoa parameters and testicular histological morphology were assessed. Resveratrol treatment was shown to significantly reduce serum cholesterol, prevent the HFD-induced reductions in serum testosterone and spermatozoa parameters, and decrease the ultrastructural degeneration of testicular tissues. The comparative proteomics analysis revealed 58 differentially expressed proteins between the HFD and control groups and 38 differentially expressed proteins between the HFD and HFD+RSV groups. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the most highly enriched differential proteins were correlated to spermatozoa function and cholesterol metabolism. The real-time RT-PCR and western blotting results confirmed the differential expression of the corresponding proteins related to spermatozoa function that were identified by proteomics. The present study provides new insight into the mechanisms of the beneficial effects of resveratrol, and may present it as a potential therapeutic strategy for obesity-associated male subfertility/infertility.Abbreviations:TMT: Tandem mass tag; HFD: High-fat diet; RSV: Resveratrol; GO: Gene ontology; Protein-proteinKEGG: Kyoto Encyclopedia of Genes and Genomes; RT-PCR: Reverse transcription-polymerase chain reaction; SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; PVDF: Polyvinylidene fluoride; ECL: Enhanced chemiluminescence; RIPA: Radio-immunoprecipitation assay; CTRL: Control; PPI: interaction; RIA: Radioimmunoassay; T: Testosterone; TG: Triglycerides; TC: Total cholesterol; LDL-c: Low-density lipoprotein cholesterol; HDL-c: High-density lipoprotein cholesterol; Crisp1: Cysteine-rich secretory protein 1; SIRT1: Sirtuin 1; GPx5: Glutathione peroxidase 5; Svs4: Seminal vesicle secretory protein 4; Tssk3: Testis-specific serine kinase 3; Pate4: Prostate and testis expressed 4; Sva: Seminal vesicle antigen; Lcn5: Lipocalin 5; Spinkl: Serine protease inhibitor, Kazal type-like.
Collapse
Affiliation(s)
- Zheng-Mei Lv
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Meng-Yu Ling
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Chao Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Xu D, Wang X. Lysine Acetylation is an Important Post-Translational Modification that Modulates Heat Shock Response in the Sea Cucumber Apostichopus japonicus. Int J Mol Sci 2019; 20:ijms20184423. [PMID: 31505730 PMCID: PMC6770049 DOI: 10.3390/ijms20184423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
Heat stress (HS) is an important factor for the survival of the marine organism Apostichopus japonicus. Lysine acetylation is a pivotal post-translational modification that modulates diverse physiological processes including heat shock response (HSR). In this study, 4028 lysine acetylation sites in 1439 proteins were identified in A. japonicus by acetylproteome sequencing. A total of 13 motifs were characterized around the acetylated lysine sites. Gene Ontology analysis showed that major acetylated protein groups were involved in “oxidation–reduction process”, “ribosome”, and “protein binding” terms. Compared to the control group, the acetylation quantitation of 25 and 41 lysine sites changed after 6 and 48 h HS. Notably, lysine acetyltransferase CREB-binding protein (CBP) was identified to have differential acetylation quantitation at multiple lysine sites under HS. Various chaperones, such as caseinolytic peptidase B protein homolog (CLBP), T-complex protein 1 (TCP1), and cyclophilin A (CYP1), showed differential acetylation quantitation after 48 h HS. Additionally, many translation-associated proteins, such as ribosomal proteins, translation initiation factor (IF), and elongation factors (EFs), had differential acetylation quantitation under HS. These proteins represented specific interaction networks. Collectively, our results offer novel insight into the complex HSR in A. japonicus and provide a resource for further mechanistic studies examining the regulation of protein function by lysine acetylation.
Collapse
Affiliation(s)
- Dongxue Xu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Jiang S, Liu Y, Shen Z, Zhou B, Shen QW. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. J Proteomics 2019; 205:103412. [PMID: 31176012 DOI: 10.1016/j.jprot.2019.103412] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Protein lysine acetylation is an post-translational modification that regulates gene expression, metabolism, cell signaling, and diseases, but its implication in the postmortem (PM) meat quality development is basically unclear. In the present study, a quantitative proteomic analysis was conducted to profile acetylome in porcine muscle within 24 h PM. In total 595 acetylation sites assigned to 163 proteins were identified in porcine muscle, of which 460 sites distributing to 110 proteins significantly changed in acetylation levels in the conversion of muscle to meat. The dynamic acetylation/deacetylaion of muscle proteins was closely associated with critical chemical-biophysical changes in PM muscle. Bioinformatic analysis revealed that protein lysine acetylation likely regulated postmortem meat quality development by regulating glycolysis and muscle pH, cell stress reponse and apoptosis, muscle contraction and rigor mortis, calcium signaling and proteolysis, IMP synthesis and meat flavor development, and even the stability of pigment proteins and meat color. This study provided the first overview of protein lysine acetylation in PM muscle and revealed its significance in the conversion of muscle to meat. Future exploration of the exact role of protein lysine acetylation at specific sites will further our understanding regarding the underlying mechanisms and be helpful for meat quality control. SIGNIFICANCE: This is the first analysis of acetylome in farm animal and postmortem muscle. Our data showed that the dynamic acetylation/deacetylation of muscle proteins was closely related to the postmortem changes of muscle that affect the final quality of raw meat. Proteins related to glucose metabolism and muscle contraction were the two largest clusters of acetylproteins identified in postmortem porcine muscle. Networks of acetylproteins involved in apoptosis, calcium signaling and IMP synthesis were identified in postmortem porcine muscle at the same time. Our results revealed that protein lysine acetylation regulated the conversion of muscle to meat. It likely regulated meat quality development by regulating postmortem glycolysis, mitochondrion initiated cell apoptosis, calcium signaling, rigor mortis, meat flavor compound sysnthesis and meat tenderization. Our study broadened our understanding of the biochemistry regulating the postmortem conversion of muscle to meat and final meat quality development, which may be helpful for future meat quality control.
Collapse
Affiliation(s)
- Shengwang Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yisong Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | | | - Bing Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu W Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
12
|
Pinto SM, Subbannayya Y, Prasad TSK. Functional Proteomic Analysis to Characterize Signaling Crosstalk. Methods Mol Biol 2019; 1871:197-224. [PMID: 30276742 DOI: 10.1007/978-1-4939-8814-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The biological activities of a cell are determined by its response to external stimuli. The signals are transduced from either intracellular or extracellular milieu through networks of multi-protein complexes and post-translational modifications of proteins (PTMs). Most PTMs including phosphorylation, acetylation, ubiquitination, and SUMOylation, among others, modulate activities of proteins and regulate biological processes such as proliferation, differentiation, as well as host pathogen interaction. Conventionally, reverse genetics analysis and single molecule-based studies were employed to identify and characterize the function of PTMs and enzyme-substrate networks regulated by them. With the advent of high-throughput technologies, it is now possible to identify and quantify thousands of PTM sites in a single experiment. Here, we discuss recent advances in enrichment strategies of various PTMs. We also describe a method for the identification and relative quantitation of proteins using a tandem mass tag labeling approach combined with serial enrichment of phosphorylation, acetylation and succinylation using antibody enrichment strategy.
Collapse
Affiliation(s)
- Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.
| |
Collapse
|