1
|
Gao Y, Chen H, Yang W, Wang S, Gong D, Zhang X, Huang Y, Kumar V, Huang Q, Kandegama WMWW, Hao G. New avenues of combating antibiotic resistance by targeting cryptic pockets. Pharmacol Res 2024; 210:107495. [PMID: 39491636 DOI: 10.1016/j.phrs.2024.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Antibiotic resistance is a global health concern that is rapidly spreading among human and animal pathogens. Developing novel antibiotics is one of the most significant approaches to surmount antibiotic resistance. Given the difficult in identifying novel targets, cryptic binding sites provide new pockets for compounds design to combat antibiotic resistance. However, there exists a lack of comprehensive analysis and discussion on the successful utilization of cryptic pockets in overcoming antibiotic resistance. Here, we systematically analyze the crucial role of cryptic pockets in neutralizing antibiotic resistance. First, antibiotic resistance development and associated resistance mechanisms are summarized. Then, the advantages and mechanisms of cryptic pockets for overcoming antibiotic resistance were discussed. Specific cryptic pockets in resistant proteins and successful case studies of designed inhibitors are exemplified. This review provides insight into the discovery of cryptic pockets for drug design as an approach to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Huimin Chen
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China
| | - Weicheng Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Daohong Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Xiao Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Yuanqin Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Vinit Kumar
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Qiuqian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - W M W W Kandegama
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170 Sri Lanka
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Al-Harbi AI, Ullah A, Almanaa TN, Gul F, Khan S, Waheed Y, Ul Haq M, Muhammad R, Khurram M, Ullah A, Ahmad S. A chemoinformatic-biophysics based approach to identify novel anti-virulent compounds against Pseudomonas aeruginosa disulfide-bond protein A1. J Biomol Struct Dyn 2023:1-10. [PMID: 37551016 DOI: 10.1080/07391102.2023.2245470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/11/2023] [Indexed: 08/09/2023]
Abstract
The conventional course of drug discovery is a lengthy, expensive and complex process and often experiences a high failure rate. This in-silico based study screened novel drug molecules against Pseudomonas aeruginosa disulfide-bond protein A1 (PaDsbA1; PDB ID of 4ZL7) using a variety of chemoinformatic and biophysics approaches. The structure-based virtual screening identified three antipseudomonal compounds (BDC_30129064, BDC_20699588 and BDC_25329008) that targeted PaDsbA1 enzyme with a binding energy score of -7.8 kcal/mol, -7.7 kcal/mol and -7.7 kcal/mol, respectively. The compounds revealed deep binding at the enzyme active pocket with close distance hydrogen bond interactions with Thr46, Pro55, Val58, Arg62, His88, and Asp180. The co-crystalized hexaethylene glycol revealed a binding energy of -6.02 kcal/mol. The docked compounds were further subjected to molecular dynamics simulation analysis in order to check the dynamic movements of docked complexes. The complexes reported no drastic changes during simulation time. In the simulation, stable compounds binding and docked conformation were accomplished. The docking and simulation results were validated using free binding energies calculation through molecular mechanics with generalized born surface area solvation and molecular mechanics Poisson Boltzmann surface area (MMGBSA/MMPBSA) approaches. The net binding energy estimated by MMGBSA for BDC_30129064, BDC_20699588 and BDC_25329008 was -75.07 kcal/mol, -77.87 kcal/mol and -59.1 kcal/mol, respectively while that of MMPBSA for the compounds was -72.47 kcal/mol, -78.99 kcal/mol and -60.991 kcal/mol, respectively. The physiochemical properties of the selected compounds indicated them to be physiochemically stable with good absorption, distribution, metabolism and elimination properties. From the above observations and predictions, the compounds can be recommended for further experimental validation in order to decipher their anti-virulence capacity in blocking disulfide bond formation in P. aeruginosa.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farah Gul
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Mahboob Ul Haq
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Riaz Muhammad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | | | - Ameen Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Science, Virginia Tech, United States
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
3
|
Chen K, Yu X, Zhang X, Li X, Liu Y, Si M, Su T. Involvement of a mycothiol-dependent reductase NCgl0018 in oxidative stress response of Corynebacterium glutamicum. J GEN APPL MICROBIOL 2021; 67:225-239. [PMID: 34483223 DOI: 10.2323/jgam.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Corynebacterium glutamicum is an important industrial strain for amino acids and a key model organism for human pathogens. The study of C. glutamicum oxidoreductases, such as mycoredoxin 1 (Mrx1), dithiol-disulfide isomerase DsbA, and DsbA-like Mrx1, is helpful for understanding the survival, pathogenic infection, and stress resistance of its homologous species. However, the action mode and enzymatic function of C. glutamicum NCgl0018 preserving the Cys-Pro-Phe-Cys motif, annotated as a putative DsbA, have remained enigmatic. Here, we report that the NCgl0018-deleted strain increased sensitivity to various oxidative stresses. The ncgl0018 expression was induced in the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH- and organic peroxide- and antibiotic-sensing regulator (OasR)-dependent manner by stress. NCgl0018 reduced S-mycothiolated mixed disulfides and intramolecular disulfides via a monothiol-disulfide mechanism preferentially linking the mycothiol/mycothione reductase/NADPH electron pathway. Site-directed mutagenesis confirmed Cys107 was the resolving Cys residue, while Cys104 was the nucleophilic cysteine that was oxidized to a sulfenic acid and then could form an intramolecular disulfide bond with Cys107 or a mixed disulfide with mycothiol under stress. Biochemical analyses indicated that NCgl0018 lacked oxidase properties like the classical DsbA. Further, enzymatic rates and substrate preferences of NCgl0018 were highly similar to those of DsbA-like Mrx1. Collectively, our study presented the first evidence that NCgl0018 protected against stresses by functioning as a novel DsbA-like Mrx1 but not DsbA and Mrx1.
Collapse
Affiliation(s)
- Keyan Chen
- College of Life Sciences, Qufu Normal University
| | - Xiaoyang Yu
- College of Life Sciences, Qufu Normal University
| | - Xinyu Zhang
- College of Life Sciences, Qufu Normal University
| | - Xiaona Li
- College of Life Sciences, Qufu Normal University
| | - Yang Liu
- College of Life Sciences, Qufu Normal University
| | - Meiru Si
- College of Life Sciences, Qufu Normal University
| | - Tao Su
- College of Life Sciences, Qufu Normal University
| |
Collapse
|
4
|
Xu X, Chiu J, Chen S, Fang C. Pathophysiological roles of cell surface and extracellular protein disulfide isomerase and their molecular mechanisms. Br J Pharmacol 2021; 178:2911-2930. [PMID: 33837960 DOI: 10.1111/bph.15493] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerase (PDI) is the prototypic member of the thiol isomerase family that catalyses disulfide bond rearrangement. Initially identified in the endoplasmic reticulum as folding catalysts, PDI and other members in its family have also been widely reported to reside on the cell surface and in the extracellular matrix. Although how PDI is exported and retained on the cell surface remains a subject of debate, this unique pool of PDI is developing into an important mechanism underlying the redox regulation of protein sulfhydryls that are critical for the cellular activities under various disease conditions. This review aims to provide an overview of the pathophysiological roles of surface and extracellular PDI and their underlying molecular mechanisms. Understanding the involvement of extracellular PDI in these diseases will advance our knowledge in the molecular aetiology to facilitate the development of novel pharmacological strategies by specifically targeting PDI in extracellular compartments.
Collapse
Affiliation(s)
- Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Joyce Chiu
- The Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
5
|
Tanaka LY, Oliveira PVS, Laurindo FRM. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling. Antioxid Redox Signal 2020; 33:280-307. [PMID: 31910038 DOI: 10.1089/ars.2019.8012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Significance: Supracellular redox networks regulating cell-extracellular matrix (ECM) and organ system architecture merge with structural and functional (catalytic or allosteric) properties of disulfide bonds. This review addresses emerging evidence that exported thiol oxidoreductases (TORs), such as thioredoxin, protein disulfide isomerases (PDIs), quiescin sulfhydryl oxidases (QSOX)1, and peroxiredoxins, composing a peri/epicellular (pec)TOR pool, mediate relevant signaling. pecTOR functions depend mainly on kinetic and spatial regulation of thiol-disulfide exchange reactions governed by redox potentials, which are modulated by exported intracellular low-molecular-weight thiols, together conferring signal specificity. Recent Advances: pecTOR redox-modulates several targets including integrins, ECM proteins, surface molecules, and plasma components, although clear-cut documentation of direct effects is lacking in many cases. TOR catalytic pathways, displaying common patterns, culminate in substrate thiol reduction, oxidation, or isomerization. Peroxiredoxins act as redox/peroxide sensors, contrary to PDIs, which are likely substrate-targeted redox modulators. Emerging evidence suggests important pecTOR roles in patho(physio)logical processes, including blood coagulation, vascular remodeling, mechanosensing, endothelial function, immune responses, and inflammation. Critical Issues: Effects of pecPDIs supporting thrombosis/platelet activation have been well documented and reached the clinical arena. Roles of pecPDIA1 in vascular remodeling/mechanosensing are also emerging. Extracellular thioredoxin and pecPDIs redox-regulate immunoinflammation. Routes of TOR externalization remain elusive and appear to involve Golgi-independent routes. pecTORs are particularly accessible drug targets. Future Directions: Further understanding mechanisms of thiol redox reactions and developing assays for assessing pecTOR redox activities remain important research avenues. Also, addressing pecTORs as disease markers and achieving more efficient/specific drugs for pecTOR modulation are major perspectives for diagnostic/therapeutic improvements.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Percillia V S Oliveira
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|