1
|
Sae-fung A, Mutirangura A, Jitkaew S. Identification and validation of a novel ferroptosis-related gene signature for prognosis and potential therapeutic target prediction in cholangiocarcinoma. Front Immunol 2023; 13:1051273. [PMID: 36733386 PMCID: PMC9887182 DOI: 10.3389/fimmu.2022.1051273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly heterogeneous and aggressive malignancy of the bile ducts with a poor prognosis and high mortality rate. Effective targeted therapy and accurate prognostic biomarkers are still lacking. Ferroptosis is a form of regulated cell death implicated in cancer progression and has emerged as a potential therapeutic target in various cancers. However, a comprehensive analysis of ferroptosis-related genes (FRGs) for predicting CCA prognosis and therapeutic targets and determining the role of ferroptosis in CCA remain to be performed. Here, we developed a prognostic FRG signature using a least absolute shrinkage and selection operator Cox regression analysis in a training cohort. We then validated it using four independent public datasets. The six-FRG signature was developed to predict CCA patient survival, stratifying them into low-risk and high-risk groups based on survival time. Significantly, the high-risk CCA patients had shorter overall survival. A receiver operating characteristic curve analysis further confirmed the prognostic FRG signature's strong predictive ability, indicating that it was an independent prognostic indicator for CCA patients. Furthermore, the high-risk group was associated with fluke infection and high clinical stages. Cancer-associated fibroblast (CAF) score and CAF markers were significantly higher in the high-risk group than the low-risk group. Moreover, our FRG signature could predict immune checkpoint markers for immunotherapy and drug sensitivity. The mRNA expression levels of the six-FRG signature was validated in 10 CCA cell lines and dividing them into low-risk and high-risk groups using the FRG signature. We further showed that high-risk CCA cell lines were more resistant to ferroptosis inducers, including erastin and RSL3, than the low-risk CCA cell lines. Our study constructed a novel FRG signature model to predict CCA prognoses which might provide prognostic biomarkers and potential therapeutic targets for CCA patients. Ferroptosis sensitivity in high-risk and low-risk CCA cell lines suggests that ferroptosis resistance is associated with high-risk group CCA. Therefore, ferroptosis could be a promising therapeutic target for precision therapy in CCA patients.
Collapse
Affiliation(s)
- Apiwit Sae-fung
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Siriporn Jitkaew
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand,Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Siriporn Jitkaew,
| |
Collapse
|
2
|
Ruiz de Gauna M, Biancaniello F, González‐Romero F, Rodrigues PM, Lapitz A, Gómez‐Santos B, Olaizola P, Di Matteo S, Aurrekoetxea I, Labiano I, Nieva‐Zuluaga A, Benito‐Vicente A, Perugorria MJ, Apodaka‐Biguri M, Paiva NA, Sáenz de Urturi D, Buqué X, Delgado I, Martín C, Azkargorta M, Elortza F, Calvisi DF, Andersen JB, Alvaro D, Cardinale V, Bujanda L, Banales J, Aspichueta P. Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology 2022; 76:1617-1633. [PMID: 35030285 PMCID: PMC9790564 DOI: 10.1002/hep.32344] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.
Collapse
|
3
|
Lee J, Hong EM, Kim JH, Kim JH, Jung JH, Park SW, Koh DH, Jang HJ. Ursodeoxycholic acid shows antineoplastic effects in bile duct cancer cells via apoptosis induction; p53 activation; and EGFR-ERK, COX-2, and PI3K-AKT pathway inhibition. Mol Biol Rep 2021; 48:6231-6240. [PMID: 34392440 DOI: 10.1007/s11033-021-06331-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
Unlike in normal cells, ursodeoxycholic acid (UDCA) causes apoptosis rather than protection in cancer cells. Aim of this study was to demonstrate whether UDCA actually inhibits proliferation and induces apoptosis in bile duct cancer cells; the effect of UDCA on the expression of COX-2, PI3K/AKT, ERK, and EGFR; how UDCA affects cancer cell invasiveness and metastasis, since these effects are not established in bile duct cancer cells. SNU-245 cells (human extrahepatic bile duct cancer cells) were cultured. MTT assays were performed to evaluate the effect of UDCA on the cell proliferation. A cell death detection enzyme-linked immunosorbent assay and a caspase-3 activity assay were used to determine apoptosis. Western blot analysis measured expression levels of various proteins. The invasiveness of the cancer cells was evaluated by invasion assay. In cultured bile duct cancer cells, UDCA suppressed cell proliferation in bile duct cancer cells by inducing apoptosis and p53 activation, blocking deoxycholic acid (DCA)-induced activated EGFR-ERK signaling and COX-2, inhibiting DCA-induced activated PI3K-AKT signaling, and suppressing the invasiveness of bile duct cancer cells. In addition, a MEK inhibitor impaired UDCA-induced apoptosis in bile duct cancer cells. UDCA has antineoplastic and apoptotic effects in bile duct cancer cells. Thus, UDCA could be a chemopreventive agent in patients with a high risk of cancer, and/or a therapeutic option that enhances other chemotherapeutics.
Collapse
Affiliation(s)
- Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-Do, South Korea. .,Division of Gastroenterology, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-Gil, Hwasung, Gyeonggi-Do, 18450, South Korea.
| | - Eun Mi Hong
- Division of Gastroenterology, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-Gil, Hwasung, Gyeonggi-Do, 18450, South Korea
| | - Jung Han Kim
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-Do, South Korea
| | - Jung Hee Kim
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-Do, South Korea.,Division of Gastroenterology, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-Gil, Hwasung, Gyeonggi-Do, 18450, South Korea
| | - Jang Han Jung
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-Do, South Korea.,Division of Gastroenterology, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-Gil, Hwasung, Gyeonggi-Do, 18450, South Korea
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-Do, South Korea.,Division of Gastroenterology, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-Gil, Hwasung, Gyeonggi-Do, 18450, South Korea
| | - Dong Hee Koh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-Do, South Korea.,Division of Gastroenterology, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-Gil, Hwasung, Gyeonggi-Do, 18450, South Korea
| | - Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-Do, South Korea.,Division of Gastroenterology, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-Gil, Hwasung, Gyeonggi-Do, 18450, South Korea
| |
Collapse
|
4
|
Shen X, Shen X. A potential role for aspirin in the prevention and treatment of cholangiocarcinoma. Int J Cancer 2020; 148:1323-1330. [PMID: 32997790 DOI: 10.1002/ijc.33323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma is the second most common primary hepatic cancer, with a rising incidence worldwide. Owing to late diagnosis and limited treatment options, the prognosis for cholangiocarcinoma remains dismal, compelling a search for new treatments. As aspirin exhibits a well-supported chemopreventive effect on common cancers, researchers have proposed using aspirin as a potential preventive and adjuvant agent for cholangiocarcinoma. In the present review of the literature, we provide a background on cholangiocarcinoma and potential mechanisms of action underlying the anticancer effect of aspirin. Although the exact mode of action remains unclear, multiple downstream effects of aspirin may interfere with cholangiocarcinogenesis, tumour growth and metastasis-including inhibiting the COX-2 pathway, preventing platelet aggregation and modulating certain proteins and signalling. This review also summarises evidence to support the chemopreventive effects of aspirin on common cancers, particularly colorectal cancer and discusses studies that report a positive outcome of aspirin in cholangiocarcinoma. Regular use of aspirin is associated with a reduced incidence of colorectal cancers as well as cholangiocarcinomas, and improved survival. Aspirin thus appears to play a role in the primary prevention and treatment of cholangiocarcinoma. However, further studies are needed to confirm these benefits and to establish a cause-and-effect relationship.
Collapse
Affiliation(s)
- Xizi Shen
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Xingping Shen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Multifaceted Aspects of Metabolic Plasticity in Human Cholangiocarcinoma: An Overview of Current Perspectives. Cells 2020; 9:cells9030596. [PMID: 32138158 PMCID: PMC7140515 DOI: 10.3390/cells9030596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly tumor without an effective therapy. Unique metabolic and bioenergetics features are important hallmarks of tumor cells. Metabolic plasticity allows cancer cells to survive in poor nutrient environments and maximize cell growth by sustaining survival, proliferation, and metastasis. In recent years, an increasing number of studies have shown that specific signaling networks contribute to malignant tumor onset by reprogramming metabolic traits. Several evidences demonstrate that numerous metabolic mediators represent key-players of CCA progression by regulating many signaling pathways. Besides the well-known Warburg effect, several other different pathways involving carbohydrates, proteins, lipids, and nucleic acids metabolism are altered in CCA. The goal of this review is to highlight the main metabolic processes involved in the cholangio-carcinogeneis that might be considered as potential novel druggable candidates for this disease.
Collapse
|
6
|
Wang M, Wang Y, Xie T, Zhan P, Zou J, Nie X, Shao J, Zhuang M, Tan C, Tan J, Dai Y, Sun J, Li J, Li Y, Shi Q, Leng J, Wang X, Yao Y. Prostaglandin E 2/EP 2 receptor signalling pathway promotes diabetic retinopathy in a rat model of diabetes. Diabetologia 2019; 62:335-348. [PMID: 30411254 DOI: 10.1007/s00125-018-4755-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is a common microvascular complication of diabetes mellitus and is initiated by inflammation and apoptosis-associated retinal endothelial cell damage. Prostaglandin E2 (PGE2) has emerged as a critical regulator of these biological processes. We hypothesised that modulating PGE2 and its E-prostanoid receptor (EP2R) would prevent diabetes mellitus-induced inflammation and microvascular dysfunction. METHODS In a streptozotocin (STZ)-induced rat model of diabetes, rats received intravitreal injection of PGE2, butaprost (a PGE2/EP2R agonist) or AH6809 (an EP2R antagonist). Retinal histology, optical coherence tomography, ultrastructure of the retinal vascular and biochemical markers were assessed. RESULTS Intravitreal injection of PGE2 and butaprost significantly accelerated retinal vascular leakage, leucostasis and endothelial cell apoptosis in STZ-induced diabetic rats. This response was ameliorated in diabetic rats pre-treated with AH6809. In addition, pre-treatment of human retinal microvascular endothelial cells with AH6809 attenuated PGE2- and butaprost-induced activation of caspase 1, activation of the complex containing nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment domain (ASC), and activation of the EP2R-coupled cAMP/protein kinase A/cAMP response element-binding protein signalling pathway. CONCLUSIONS/INTERPRETATION The PGE2/EP2R signalling pathway is involved in STZ-induced diabetic retinopathy and could be considered as a potential target for diabetic retinopathy prevention and treatment.
Collapse
Affiliation(s)
- Man Wang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Yangningzhi Wang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Pengfei Zhan
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jian Zou
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Xiaowei Nie
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
- Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Jun Shao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Miao Zhuang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jianxin Tan
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Youai Dai
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jie Sun
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jiantao Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Qian Shi
- Yixing Eye Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China.
- Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Sun C, Zhu J, Wu B, Chen J, Zhu Z, Cai P, Guo W, Gu Z, Wang J, Huang S. Diagnostic and prognostic value of microRNAs in cholangiocarcinoma: a systematic review and meta-analysis. Cancer Manag Res 2018; 10:2125-2139. [PMID: 30050323 PMCID: PMC6055881 DOI: 10.2147/cmar.s158155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background and aim Several dysregulated microRNAs (miRNAs) have been implicated in the pathogenesis of cholangiocarcinoma (CCA); however, small sample sizes and invariable research designs are limitations, hindering a thorough analysis of miRNAs as diagnostic and prognostic tools for CCA. This study aimed to systematically summarize the clinical value of miRNAs in human CCA both for all available miRNAs and single miRNA with multiple researches. Methods Pooled parameters included the area under the curve (AUC), sensitivity, specificity, and hazard ratios (HRs) to separately determine overall diagnostic and prognostic performance. Subgroup and sensitivity analyses were performed only in the event of heterogeneity. Thirty-four studies including 12 diagnostic studies and 22 prognostic studies were eligible for inclusion in this meta-analysis. Results We observed that miR-21, miR-26, miR-483, miR-106a, miR-150, miR-192, and miR-194 were employed for distinguishing patients with CCA from healthy controls. Pooled sensitivity, specificity, and AUC were 0.82 (95% confidence interval [CI] 0.77–0.86), 0.83 (95% CI 0.75–0.89), and 0.88 (95% CI 0.85–0.91), respectively. Abnormal expression of miR-21, miR-26a, miR-192, miR-200c, miR-221, miR-29a, miR-191, miR-181c, miR-34a, miR-106a, miR-203, and miR-373 in patients was confirmed to associate with poor survival rate. Pooled HRs and 95% CIs were calculated using STATA, resulting in the pooled HR of 1.47 (95% CI 0.91–2.37) for overall survival (OS), 0.67 (95% CI 0.16–2.81) for disease-free survival (DFS), 2.31 (95% CI 1.59–3.36) for progression-free survival (PFS), and 2.68 (95% CI 0.88–8.15) for relapse-free survival (RFS). Thus, CCA patients with dysregulated miRNA expression were confirmed to have shorter OS, DFS, PFS, and RFS. Data regarding the diagnostic and prognostic roles of miR-21 suggested pooled diagnostic results of miR-21 for sensitivity, specificity, and AUC were 0.85 (95% CI 0.76–0.91), 0.92 (95% CI 0.81–0.97), and 0.93 (95% CI 0.91–0.95), respectively, suggesting better diagnostic performance of miR-21 compared with other miRNAs. Meanwhile, pooled prognostic result of miR-21 for HR was 1.88 (95% CI 1.41–2.51), indicating miR-21 could more appropriately predict shorter OS in patients with CCA. Conclusion miRNAs may provide a new approach for clinical application, and miR-21 may be a promising biomarker for diagnosis and prognosis of CCA.
Collapse
Affiliation(s)
- Chao Sun
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jie Zhu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Bin Wu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jianlei Chen
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Zhenwei Zhu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Peng Cai
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Wanliang Guo
- Radiology Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Zhicheng Gu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jian Wang
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Shungen Huang
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| |
Collapse
|
8
|
Pellat A, Vaquero J, Fouassier L. Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology 2018; 67:762-773. [PMID: 28671339 DOI: 10.1002/hep.29350] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/18/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
The ErbB/HER family comprises four distinct tyrosine kinase receptors, EGFR/ErbB1/HER1, ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4, which trigger intracellular signals at the origin of essential cellular functions, including differentiation, proliferation, survival, and migration. Epithelial cells, named cholangiocytes, that line intrahepatic and extrahepatic bile ducts, contribute substantially to biliary secretory functions and bile transport. Although ErbB receptors have been widely studied in cholangiocarcinoma (CCA), a malignancy of the biliary tract, knowledge of these receptors in biliary epithelium physiology and in non-malignant cholangiopathies is far from complete. Current knowledge suggests a role for epidermal growth factor receptor (EGFR) in cholangiocyte specification and proliferation, and in hepatocyte transdifferentiation into cholangiocytes during liver regeneration to restore biliary epithelium integrity. High expression and activation of EGFR and/or ErbB2 were recently demonstrated in biliary lithiasis and primary sclerosing cholangitis, two cholangiopathies regarded as risk factors for CCA. In CCA, ErbB receptors are frequently overexpressed, leading to tumor progression and low prognosis. Anti-ErbB therapies were efficient only in preclinical trials and have suggested the existence of resistance mechanisms with the need to identify predictive factors of therapy response. This review aims to compile the current knowledge on the functions of ErbB receptors in physiology and physiopathology of the biliary epithelium. (Hepatology 2018;67:762-773).
Collapse
Affiliation(s)
- Anna Pellat
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Javier Vaquero
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,FONDATION ARC, Villejuif, France
| | - Laura Fouassier
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
9
|
Wei MY, Tang ZH, Quan ZW. Intrahepatic cholangiocarcinoma: Role of metabolism in pathogenesis, clinical diagnosis, and treatment. Shijie Huaren Xiaohua Zazhi 2017; 25:2929-2937. [DOI: 10.11569/wcjd.v25.i33.2929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies demonstrated that metabolism plays an important role in the pathogenesis, clinical diagnosis, and treatment of intrahepatic cholangiocarcinoma (ICC). The mechanisms of several metabolic enzymes associated with ICC, including pyruvate kinase M2 (PKM2), thymidine synthase (TS), thymidine phosphorylase (TP), dihydropyrimidine dehydrogenase (DPD), isocitric acid dehydrogenase 1/2 (IDH1/2), and cyclo-oxygenase-2 (COX-2), have been gradually clarified and hopefully transformed into clinical application in the future. Besides, ICC patients always have concomitant abnormal lipid metabolism, which has attracted the attention of clinicians and researchers. Metabolites in serum and bile have potential diagnostic utility, which has yet to be verified by prospective clinical research. 18F-FDG PET/CT based on metabolism presents application value in many aspects of ICC, such as diagnosis, staging, evaluation of therapeutic effect, and monitoring prognosis. In this article, we review the recent progress in the understanding of the role of metabolism in ICC from both basic and clinical perspectives, with an aim to highlight the further research directions and accelerate the clinical transformation.
Collapse
Affiliation(s)
- Miao-Yan Wei
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhao-Hui Tang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhi-Wei Quan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
10
|
Loilome W, Kadsanit S, Muisook K, Yongvanit P, Namwat N, Techasen A, Puapairoj A, Khuntikeo N, Phonjit P. Imbalanced adaptive responses associated with microsatellite instability in cholangiocarcinoma. Oncol Lett 2016; 13:639-646. [PMID: 28356940 PMCID: PMC5351183 DOI: 10.3892/ol.2016.5477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
The adaptive response of the genome protection mechanism occurs in cells when exposed to genotoxic stress due to the overproduction of free radicals via inflammation and infection. In such circumstances, cells attempt to maintain health via several genome protection mechanisms. However, evidence is increasing that this adaptive response may have deleterious effect; a reduction of antioxidant enzymes and/or imbalance in the DNA repair system generates microsatellite instability (MSI), which has procarcinogenic implications. Therefore, the present study hypothesized that MSI caused by imbalanced responses of antioxidant enzymes and/or DNA repair enzymes as a result of oxidative/nitrative stress arising from the inflammatory response is involved in liver fluke-associated cholangiocarcinogenesis. The present study investigated this hypothesis by identifying the expression patterns of antioxidant enzymes, including superoxide dismutase 2 (SOD2) and catalase (CAT), and DNA repair enzymes, including alkyladenine DNA glycosylase (AAG), apurinic endonuclease (APE) and DNA polymerase β (DNA pol β). In addition, the activities of the antioxidant enzymes, SOD2 and CAT, were examined in human cholangiocarcinoma (CCA) tissues using immunohistochemical staining. MSI was also analyzed in human CCA tissues. The resulting data demonstrated that the expression levels of the SOD2 and CAT enzymes decreased. The activities of SOD2 and CAT decreased significantly in the CCA tissues, compared with the hepatic tissue of cadaveric donors. In the DNA repairing enzymes, it was found that the expression levels of AAG and DNA pol β enzymes increased, whereas the expression of APE decreased. In addition, it was found that MSI-high was present in 69% of patients, whereas MSI-low was present in 31% of patients, with no patients classified as having microsatellite stability. In the patients, a MSI-high was correlated with poor prognosis, indicated by a shorter survival rate. These results indicated that the reduction of antioxidant enzymes and adaptive imbalance of base excision repair enzymes in human CCA caused MSI, and may be associated with the progression of cancer.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sasithorn Kadsanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanha Muisook
- Department of Forensics Science, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Medical Technology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pichai Phonjit
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Yao L, Chen W, Han C, Wu T. Microsomal prostaglandin E synthase-1 protects against Fas-induced liver injury. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1071-80. [PMID: 27102561 PMCID: PMC4935489 DOI: 10.1152/ajpgi.00327.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/17/2016] [Indexed: 01/31/2023]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme for the synthesis of prostaglandin E2 (PGE2), a proproliferative and antiapoptotic lipid molecule important for tissue regeneration and injury repair. In this study, we developed transgenic (Tg) mice with targeted expression of mPGES-1 in the liver to assess Fas-induced hepatocyte apoptosis and acute liver injury. Compared with wild-type (WT) mice, the mPGES-1 Tg mice showed less liver hemorrhage, lower serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, less hepatic necrosis/apoptosis, and lower level of caspase cascade activation after intraperitoneal injection of the anti-Fas antibody Jo2. Western blotting analysis revealed increased expression and activation of the serine/threonine kinase Akt and associated antiapoptotic molecules in the liver tissues of Jo2-treated mPGES-1 Tg mice. Pretreatment with the mPGES-1 inhibitor (MF63) or the Akt inhibitor (Akt inhibitor V) restored the susceptibility of the mPGES-1 Tg mice to Fas-induced liver injury. Our findings provide novel evidence that mPGES-1 prevents Fas-induced liver injury through activation of Akt and related signaling and suggest that induction of mPGES-1 or treatment with PGE2 may represent important therapeutic strategy for the prevention and treatment of Fas-associated liver injuries.
Collapse
Affiliation(s)
| | | | | | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
12
|
Liu R, Li X, Qiang X, Luo L, Hylemon PB, Jiang Z, Zhang L, Zhou H. Taurocholate Induces Cyclooxygenase-2 Expression via the Sphingosine 1-phosphate Receptor 2 in a Human Cholangiocarcinoma Cell Line. J Biol Chem 2015; 290:30988-1002. [PMID: 26518876 DOI: 10.1074/jbc.m115.668277] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare, but highly malignant primary hepatobiliary cancer with a very poor prognosis and limited treatment options. Our recent studies reported that conjugated bile acids (CBAs) promote the invasive growth of CCA via activation of sphingosine 1-phosphate receptor 2 (S1PR2). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is the most abundant prostaglandin in various human malignancies including CCA. Previous studies have indicated that COX-2 was highly expressed in CCA tissues, and the survival rate of CCA patients was negatively associated with high COX-2 expression levels. It has also been reported that CBAs induce COX-2 expression, whereas free bile acids inhibit COX-2 expression in CCA mouse models. However, the underlying cellular mechanisms and connection between S1PR2 and COX-2 expression in CCA cells have still not been fully elucidated. In the current study, we examined the role of S1PR2 in conjugated bile acid (taurocholate, (TCA))-induced COX-2 expression in a human HuCCT1 CCA cell line and further identified the potential underlying cellular mechanisms. The results indicated that TCA-induced invasive growth of human CCA cells was correlated with S1PR2-medated up-regulation of COX-2 expression and PGE2 production. Inhibition of S1PR2 activation with chemical antagonist (JTE-013) or down-regulation of S1PR2 expression with gene-specific shRNA not only reduced COX-2 expression, but also inhibited TCA-induced activation of EGFR and the ERK1/2/Akt-NF-κB signaling cascade. In conclusion, S1PR2 plays a critical role in TCA-induced COX-2 expression and CCA growth and may represent a novel therapeutic target for CCA.
Collapse
Affiliation(s)
- Runping Liu
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China, the Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xiaojiaoyang Li
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiaoyan Qiang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China, the Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lan Luo
- the Jiangsu Center for Pharmacodynamics Research and Evaluation, Nanjing, Jiangsu 210009, China, and
| | - Phillip B Hylemon
- the Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, the McGuire Veterans Affairs Medical Center, Richmond, Virginia 23298
| | - Zhenzhou Jiang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China, the Jiangsu Center for Pharmacodynamics Research and Evaluation, Nanjing, Jiangsu 210009, China, and
| | - Luyong Zhang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China, the Jiangsu Center for Pharmacodynamics Research and Evaluation, Nanjing, Jiangsu 210009, China, and
| | - Huiping Zhou
- the Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, the McGuire Veterans Affairs Medical Center, Richmond, Virginia 23298
| |
Collapse
|
13
|
Yao L, Han C, Song K, Zhang J, Lim K, Wu T. Omega-3 Polyunsaturated Fatty Acids Upregulate 15-PGDH Expression in Cholangiocarcinoma Cells by Inhibiting miR-26a/b Expression. Cancer Res 2015; 75:1388-98. [PMID: 25691459 DOI: 10.1158/0008-5472.can-14-2561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/26/2015] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is a proinflammatory lipid mediator that promotes cancer growth. The 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes oxidation of the 15(S)-hydroxyl group of PGE2, leading to its inactivation. Therefore, 15-PGDH induction may offer a strategy to treat cancers that are driven by PGE2, such as human cholangiocarcinoma. Here, we report that omega-3 polyunsaturated fatty acids (ω-3 PUFA) upregulate 15-PGDH expression by inhibiting miR-26a and miR-26b, thereby contributing to ω-3 PUFA-induced inhibition of human cholangiocarcinoma cell growth. Treatment of human cholangiocarcinoma cells (CCLP1 and TFK-1) with ω-3 PUFA (DHA) or transfection of these cells with the Fat-1 gene (encoding Caenorhabditis elegans desaturase, which converts ω-6 PUFA to ω-3 PUFA) significantly increased 15-PGDH enzymes levels, but with little effect on the activity of the 15-PGDH gene promoter. Mechanistic investigations revealed that this increase in 15-PGDH levels in cells was mediated by a reduction in the expression of miR-26a and miR-26b, which target 15-PGDH mRNA and inhibit 15-PGDH translation. These findings were extended by the demonstration that overexpressing miR-26a or miR-26b decreased 15-PGDH protein levels, reversed ω-3 PUFA-induced accumulation of 15-PGDH protein, and prevented ω-3 PUFA-induced inhibition of cholangiocarcinoma cell growth. We further observed that ω-3 PUFA suppressed miR-26a and miR-26b by inhibiting c-myc, a transcription factor that regulates miR-26a/b. Accordingly, c-myc overexpression enhanced expression of miR-26a/b and ablated the ability of ω-3 PUFA to inhibit cell growth. Taken together, our results reveal a novel mechanism for ω-3 PUFA-induced expression of 15-PGDH in human cholangiocarcinoma and provide a preclinical rationale for the evaluation of ω-3 PUFA in treatment of this malignancy.
Collapse
Affiliation(s)
- Lu Yao
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Cancer Research Institute and Infection Signaling, Network Research Center, Chungnam National University, Daejeon, Korea
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
14
|
Liu R, Zhao R, Zhou X, Liang X, Campbell DJW, Zhang X, Zhang L, Shi R, Wang G, Pandak WM, Sirica AE, Hylemon PB, Zhou H. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology 2014; 60:908-918. [PMID: 24700501 PMCID: PMC4141906 DOI: 10.1002/hep.27085] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/19/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Cholangiocarcinoma (CCA) is an often fatal primary malignancy of the intra- and extrahepatic biliary tract that is commonly associated with chronic cholestasis and significantly elevated levels of primary and conjugated bile acids (CBAs), which are correlated with bile duct obstruction (BDO). BDO has also recently been shown to promote CCA progression. However, whereas there is increasing evidence linking chronic cholestasis and abnormal bile acid profiles to CCA development and progression, the specific mechanisms by which bile acids may be acting to promote cholangiocarcinogenesis and invasive biliary tumor growth have not been fully established. Recent studies have shown that CBAs, but not free bile acids, stimulate CCA cell growth, and that an imbalance in the ratio of free to CBAs may play an important role in the tumorigenesis of CCA. Also, CBAs are able to activate extracellular signal-regulated kinase (ERK)1/2- and phosphatidylinositol-3-kinase/protein kinase B (AKT)-signaling pathways through sphingosine 1-phosphate receptor 2 (S1PR2) in rodent hepatocytes. In the current study, we demonstrate S1PR2 to be highly expressed in rat and human CCA cells, as well as in human CCA tissues. We further show that CBAs activate the ERK1/2- and AKT-signaling pathways and significantly stimulate CCA cell growth and invasion in vitro. Taurocholate (TCA)-mediated CCA cell proliferation, migration, and invasion were significantly inhibited by JTE-013, a chemical antagonist of S1PR2, or by lentiviral short hairpin RNA silencing of S1PR2. In a novel organotypic rat CCA coculture model, TCA was further found to significantly increase the growth of CCA cell spheroidal/"duct-like" structures, which was blocked by treatment with JTE-013. CONCLUSION Our collective data support the hypothesis that CBAs promote CCA cell-invasive growth through S1PR2.
Collapse
Affiliation(s)
- Runping Liu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA; Key Laboratory of New Drug Screen and Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lu L, Byrnes K, Han C, Wang Y, Wu T. miR-21 targets 15-PGDH and promotes cholangiocarcinoma growth. Mol Cancer Res 2014; 12:890-900. [PMID: 24699315 DOI: 10.1158/1541-7786.mcr-13-0419] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED miRNAs are a group of small, noncoding RNAs that modulate the translation of genes by binding to specific target sites in the target mRNA. This study investigated the biologic function and molecular mechanism of miR-21 in human cholangiocarcinoma. In situ hybridization analysis of human cholangiocarcinoma specimens showed increased miR-21 in cholangiocarcinoma tissue compared with the noncancerous biliary epithelium. Lentiviral transduction of miR-21 enhanced human cholangiocarcinoma cell growth and clonogenic efficiency in vitro, whereas inhibition of miR-21 decreased these parameters. Overexpression of miR-21 also promoted cholangiocarcinoma growth using an in vivo xenograft model system. The NAD(+)-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH/HPGD), a key enzyme that converts the protumorigenic prostaglandin E2 (PGE2) to its biologically inactive metabolite, was identified as a direct target of miR-21 in cholangiocarcinoma cells. In parallel, cyclooxygenase-2 (COX2) overexpression and PGE2 treatment increased miR-21 levels and enhanced miR-21 promoter activity in human cholangiocarcinoma cells. IMPLICATIONS Cholangiocarcinogenesis and tumor progression are regulated by a novel interplay between COX-2/PGE2 and miR-21 signaling, which converges at 15-PGDH.
Collapse
Affiliation(s)
- Lu Lu
- Authors' Affiliation: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kathleen Byrnes
- Authors' Affiliation: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chang Han
- Authors' Affiliation: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ying Wang
- Authors' Affiliation: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Authors' Affiliation: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
16
|
Zhang J, Han C, Zhu H, Song K, Wu T. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). THE AMERICAN JOURNAL OF PATHOLOGY 2014; 182:1629-39. [PMID: 23608225 DOI: 10.1016/j.ajpath.2013.01.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/10/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
Abstract
Recent evidence has suggested an important role of miRNAs in liver biology and diseases, although the implication of miRNAs in cholangiocarcinoma remains to be defined further. This study was designed to examine the biological function and molecular mechanism of miR-101 in cholangiocarcinogenesis and tumor progression. In situ hybridization and quantitative RT-PCR were performed to determine the expression of miR-101 in human cholangiocarcinoma tissues and cell lines. Compared with noncancerous biliary epithelial cells, the expression of miR-101 is decreased in 43.5% of human cholangiocarcinoma specimens and in all three cholangiocarcinoma cell lines used in this study. Forced overexpression of miR-101 significantly inhibited cholangiocarcinoma growth in severe combined immunodeficiency mice. miR-101-overexpressed xenograft tumor tissues showed decreased capillary densities and decreased levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The VEGF and COX-2 mRNAs were identified as the bona fide targets of miR-101 in cholangiocarcinoma cells by both computational analysis and experimental assays. miR-101 inhibits cholangiocarcinoma angiogenesis by direct targeting of VEGF mRNA 3'untranslated region and by repression of VEGF gene transcription through inhibition of COX-2. This study established a novel tumor-suppressor role of miR-101 in cholangiocarcinoma and it suggests the possibility of targeting miR-101 and related signaling pathways for future therapy.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
17
|
Zou Z, Bellenger S, Massey KA, Nicolaou A, Geissler A, Bidu C, Bonnotte B, Pierre AS, Minville-Walz M, Rialland M, Seubert J, Kang JX, Lagrost L, Narce M, Bellenger J. Inhibition of the HER2 pathway by n-3 polyunsaturated fatty acids prevents breast cancer in fat-1 transgenic mice. J Lipid Res 2013; 54:3453-63. [PMID: 24052576 DOI: 10.1194/jlr.m042754] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Overexpression of the tyrosine kinase receptor, ErbB2/HER2/Neu, occurs in 25-30% of invasive breast cancer (BC) with poor patient prognosis. Due to confounding factors, inconsistencies still remain regarding the protective effects of n-3 polyunsaturated fatty acids (PUFAs) on BC. We therefore evaluated whether fat-1 transgenic mice, endogenously synthesizing n-3 PUFAs from n-6 PUFAs, were protected against BC development, and we then aimed to study in vivo a mechanism potentially involved in such protection. E0771 BC cells were implanted into fat-1 and wild-type (WT) mice. After tumorigenesis examination, we analyzed the expression of proteins involved in the HER2 signaling pathway and lipidomic analyses were performed in tumor tissues and plasma. Our results showed that tumors totally disappeared by day 15 in fat-1 mice but continued to grow in WT mice. This prevention can be related in part to significant repression of the HER2/β-catenin signaling pathway and formation of significant levels of n-3 PUFA-derived bioactive mediators (particularly 15-hydroxyeicosapentaenoic acid, 17-hydroxydocosahexaenoic acid, and prostaglandin E3) in the tumors of fat-1 mice compared with WT mice. All together these data demonstrate an anti-BC effect of n-3 PUFAs through, at least in part, HER2 signaling pathway downregulation, and highlight the importance of gene-diet interactions in BC.
Collapse
Affiliation(s)
- Zuquan Zou
- Université de Bourgogne, UFR Sciences de la Vie, de la Terre et de l'Environnement, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Iachininoto MG, Nuzzolo ER, Bonanno G, Mariotti A, Procoli A, Locatelli F, Cristofaro RD, Rutella S. Cyclooxygenase-2 (COX-2) inhibition constrains indoleamine 2,3-dioxygenase 1 (IDO1) activity in acute myeloid leukaemia cells. Molecules 2013; 18:10132-45. [PMID: 23973990 PMCID: PMC6270179 DOI: 10.3390/molecules180910132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/01/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) metabolizes L-tryptophan to kynurenines (KYN), inducing T-cell suppression either directly or by altering antigen-presenting-cell function. Cyclooxygenase (COX)-2, the rate-limiting enzyme in the synthesis of prostaglandins, is over-expressed by several tumours. We aimed at determining whether COX-2 inhibitors down-regulate the IFN-g-induced expression of IDO1 in acute myeloid leukaemia (AML) cells. IFN-γ at 100 ng/mL up-regulated COX-2 and IDO1 in HL-60 AML cells, both at mRNA and protein level. The increased COX-2 and IDO1 expression correlated with heightened production of prostaglandin (PG)E₂ and kynurenines, respectively. Nimesulide, a preferential COX-2 inhibitor, down-regulated IDO1 mRNA/protein and attenuated kynurenine synthesis, suggesting that overall IDO inhibition resulted both from reduced IDO1 gene transcription and from inhibited IDO1 catalytic activity. From a functional standpoint, IFN-g-challenged HL-60 cells promoted the in vitro conversion of allogeneic CD4⁺CD25⁻ T cells into bona fide CD4⁺CD25⁺FoxP3⁺ regulatory T cells, an effect that was significantly reduced by treatment of IFN-γ-activated HL-60 cells with nimesulide. Overall, these data point to COX-2 inhibition as a potential strategy to be pursued with the aim at circumventing leukaemia-induced, IDO-mediated immune dysfunction.
Collapse
Affiliation(s)
- Maria Grazia Iachininoto
- Department of Haematology, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (M.G.I.); (E.R.N.)
| | - Eugenia Rosa Nuzzolo
- Department of Haematology, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (M.G.I.); (E.R.N.)
| | - Giuseppina Bonanno
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Andrea Mariotti
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Annabella Procoli
- Department of Gynaecology and Obstetrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mails: (G.B.); (A.M.); (A.P.)
| | - Franco Locatelli
- Department of Pediatric Haematology/Oncology and Transfusion Medicine, IRCCS Bambino Gesù Children’s Hospital, Piazza Sant’Onofrio 4, 00165 Rome, Italy; E-Mail: (F.L.)
- Department of Pediatrics, University of Pavia, Strada Nuova 65, 27100 Pavia, Italy
| | - Raimondo De Cristofaro
- Department of Medicine and Geriatrics, Catholic University Medical School, Largo A. Gemelli 8, 00168 Rome, Italy; E-Mail:
| | - Sergio Rutella
- Department of Pediatric Haematology/Oncology and Transfusion Medicine, IRCCS Bambino Gesù Children’s Hospital, Piazza Sant’Onofrio 4, 00165 Rome, Italy; E-Mail: (F.L.)
| |
Collapse
|
19
|
Lu D, Han C, Wu T. 15-hydroxyprostaglandin dehydrogenase-derived 15-keto-prostaglandin E2 inhibits cholangiocarcinoma cell growth through interaction with peroxisome proliferator-activated receptor-γ, SMAD2/3, and TAP63 proteins. J Biol Chem 2013; 288:19484-502. [PMID: 23687300 DOI: 10.1074/jbc.m113.453886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a potent lipid mediator that plays a key role in inflammation and carcinogenesis. NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of PGE2, which leads to PGE2 biotransformation. In this study, we showed that the 15-PGDH-derived 15-keto-PGE2 is an endogenous peroxisome proliferator-activated receptor-γ (PPAR-γ) ligand that causes PPAR-γ dissociation from Smad2/3, allowing Smad2/3 association with the TGF-β receptor I and Smad anchor for receptor activation and subsequent Smad2/3 phosphorylation and transcription activation in human cholangiocarcinoma cells. The 15-PGDH/15-keto-PGE2-induced Smad2/3 phosphorylation resulted in the formation of the pSmad2/3-TAP63-p53 ternary complex and their binding to the TAP63 promoter, inducing TAP63 autotranscription. The role of TAP63 in 15-PGDH/15-keto-PGE2-induced inhibition of tumor growth was further supported by the observation that knockdown of TAP63 prevented 15-PGDH-induced inhibition of tumor cell proliferation, colony formation, and migration. These findings disclose a novel 15-PGDH-mediated 15-keto-PGE2 signaling cascade that interacts with PPAR-γ, Smad2/3, and TAP63.
Collapse
Affiliation(s)
- Dongdong Lu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
20
|
Richardsen E, Uglehus RD, Johnsen SH, Busund LT. Immunohistochemical expression of epithelial and stromal immunomodulatory signalling molecules is a prognostic indicator in breast cancer. BMC Res Notes 2012; 5:110. [PMID: 22353218 PMCID: PMC3312825 DOI: 10.1186/1756-0500-5-110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/21/2012] [Indexed: 01/18/2023] Open
Abstract
Background The immune system has paradoxical roles during cancer development and the prognostic significance of immune modulating factors is controversial. The aim of this study was to determine the expression of cyclooxygenase 2 (COX-2), transforming growth factor-beta (TGF- beta), interleukin-10 (IL-10) and their prognostic significance in breast cancers. Ki67 was included as a measure of growth fraction of tumor cells. Methods On immunohistochemical stained slides from 38 breast cancer patients, we performed digital video analysis of tumor cell areas and adjacent tumor stromal areas from the primary tumors and their corresponding lymph node metastases. COX-2 was recorded as graded staining intensity. Results The expression of TGF-beta, IL-10 and Ki67 were recorded in tumor cell areas and adjacent tumor stromal areas. In both primary tumors and metastases, the expression of COX-2 was higher in the tumor stromal areas than in the tumor cell areas (both P < 0.001). High stromal staining intensity in the primary tumors was associated with a 3.9 (95% CI 1.1-14.2) times higher risk of death compared to the low staining group (P = 0.036). The expression of TGF-beta was highest in the tumor cell areas of both primary tumors and metastases (both P < 0.001). High stromal expression of TGF-beta was associated with increased mortality. For IL-10, the stromal expression was highest in the primary tumors (P < 0.001), whereas in the metastases the expression was highest in tumor cell areas (P < 0.001). High IL-10 expression in tumor- and stromal cell areas of primary tumors predicted mortality. Ki67 was higher expressed in tumor stromal areas of the metastases, and in tumor cell areas of the primary tumors (P < 0.001). Ki67 expression in tumor cell areas and stromal areas of the metastases was independently associated with breast cancer mortality. Conclusions Stromal expression of COX-2, TGF-beta and Ki67 may facilitate tumor progression in breast cancer.
Collapse
Affiliation(s)
- Elin Richardsen
- Department of Clinical Pathology, University Hospital of Northern Norway, Tromsø, Norway.
| | | | | | | |
Collapse
|
21
|
Immunodetection of cyclooxygenase-2 (COX-2) is restricted to tissue macrophages in normal rat liver and to recruited mononuclear phagocytes in liver injury and cholangiocarcinoma. Histochem Cell Biol 2011; 137:217-33. [PMID: 22131058 PMCID: PMC3262142 DOI: 10.1007/s00418-011-0889-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2011] [Indexed: 12/11/2022]
Abstract
It has been suggested that cyclooxygenase-2 (COX-2)-mediated prostaglandin synthesis is associated with liver inflammation and carcinogenesis. The aim of this study is to identify the cellular source of COX-2 expression in different stages, from acute liver injury through liver fibrosis to cholangiocarcinoma (CC). We induced in rats acute and "chronic" liver injury (thioacetamide (TAA) or carbon tetrachloride (CCl(4))) and CC development (TAA) and assessed COX-2 gene expression in normal and damaged liver tissue by RT-PCR of total RNA. The cellular localization of COX-2 protein in liver tissue was analyzed by immunohistochemistry as well as in isolated rat liver cells by Western blotting. The findings were compared with those obtained in human cirrhotic liver tissue. The specificity of the antibodies was tested by 2-DE Western blot and mass spectrometric identification of the positive protein spots. RT-PCR analysis of total RNA revealed an increase of hepatic COX-2 gene expression in acutely as well as "chronically" damaged liver. COX-2-protein was detected in those ED1(+)/ED2(+) cells located in the non-damaged tissue (resident tissue macrophages). In addition COX-2 positivity in inflammatory mononuclear phagocytes (ED1(+)/ED2(-)), which were also present within the tumoral tissue was detected. COX-2 protein was clearly detectable in isolated Kupffer cells as well as (at lower level) in isolated "inflammatory" macrophages. Similar results were obtained in human cirrhotic liver. COX-2 protein is constitutively detectable in liver tissue macrophages. Inflammatory mononuclear phagocytes contribute to the increase of COX-2 gene expression in acute and chronic liver damage induced by different toxins and in the CC microenvironment.
Collapse
|
22
|
Itatsu K, Sasaki M, Yamaguchi J, Ohira S, Ishikawa A, Ikeda H, Sato Y, Harada K, Zen Y, Sato H, Ohta T, Nagino M, Nimura Y, Nakanuma Y. Cyclooxygenase-2 is involved in the up-regulation of matrix metalloproteinase-9 in cholangiocarcinoma induced by tumor necrosis factor-alpha. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:829-41. [PMID: 19218340 DOI: 10.2353/ajpath.2009.080012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is an important enzyme in tumor invasion and metastasis in malignant tumors, including cholangiocarcinoma (CC). Tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, was recently reported to induce the up-regulation of MMP-9 in cultured CC cells. We examined whether cyclooxygenase-2 (COX-2) and prostaglandin-E2 (PGE2), another endogenous tumor promoter, are involved in the up-regulation of MMP-9 in CC using CC tissue specimens and a CC cell line, HuCCT-1. MMP-9 and COX-2 were immunohistochemically expressed in 58% and 89% of 110 CC cases, respectively; the expression of MMP-9 and COX-2 was correlated (r = 0.32, P = 0.00072). Using zymography, latent MMP-9 was detectable in all cases and active MMP-9 was detected in 24% of cases of the CC specimens. The TNF-alpha/TNF-receptor 1 (TNF-R1) interaction induced MMP-9 production and activation, as well as COX-2 overexpression and PGE2 production, and increased the migration of CC cells. MMP-9 up-regulation was inhibited by COX inhibitors, antagonists of EP2/4 (receptors of PGE2), and COX-1 and COX-2 siRNAs. Inhibitors of both MMP-9 and MMP-9 siRNA treatment abrogated the increase in the migration of CC cells induced by TNF-alpha. In conclusion, we propose a novel signaling pathway of MMP-9 up-regulation in CC cells such that TNF-alpha induces the activation of COX-2 and PGE2 via TNF-R1 followed by the up-regulation of MMP-9 via the PGE2 (EP2/4) receptor.
Collapse
Affiliation(s)
- Keita Itatsu
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sirica AE. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma. World J Gastroenterol 2008; 14:7033-58. [PMID: 19084911 PMCID: PMC2776834 DOI: 10.3748/wjg.14.7033] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression and signaling of epidermal growth factor receptor (ErbB) family receptor tyrosine kinases, most notably that of ErbB2 and ErbB1, have been implicated in the molecular pathogenesis of intrahepatic cholangiocarcinoma. Constitutive overexpression of ErbB2 and/or ErbB1 in malignant cholangiocytes has raised interest in the possibility that agents which selectively target these receptors could potentially be effective in cholangiocarcinoma therapy. However, current experience with such ErbB-directed therapies have at best produced only modest responses in patients with biliary tract cancers. This review provides a comprehensive and critical analysis of both preclinical and clinical studies aimed at assessing the role of altered ErbB2 and/or ErbB1 expression, genetic modifications, and dysregulated signaling on cholangiocarcinoma development and progression. Specific limitations in experimental approaches that have been used to assess human cholangiocarcinoma specimens for ErbB2 and/or ErbB1 overexpression and gene amplification are discussed. In addition, current rodent models of intrahepatic cholangiocarcinogenesis associated with constitutive ErbB2 overexpression are reviewed. Select interactive relationships between ErbB2 or ErbB1 with other relevant molecular signaling pathways associated with intrahepatic cholangiocarcinoma development and progression are also detailed, including those linking ErbB receptors to bile acid, cyclooxygenase-2, interleukin-6/gp130, transmembrane mucins, hepatocyte growth factor/Met, and vascular endothelial growth factor signaling. Lastly, various factors that can limit therapeutic efficacy of ErbB-targeted agents against cholangiocarcinoma are considered.
Collapse
|
24
|
Lim K, Han C, Xu L, Isse K, Demetris AJ, Wu T. Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. Cancer Res 2008; 68:553-60. [PMID: 18199552 DOI: 10.1158/0008-5472.can-07-2295] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cholangiocarcinoma is a highly malignant neoplasm of the biliary tree. It has a high rate of mortality, and currently, there is no effective chemoprevention and treatment. This study was designed to investigate the potential effect of omega 3 polyunsaturated fatty acids (omega 3-PUFA) on human cholangiocarcinoma cell growth and to determine their mechanisms of actions. Treatment of three human cholangiocarcinoma cells (CCLP1, HuCCT1, SG231) with two omega 3-PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for 12 to 72 h resulted in a dose- and time-dependent inhibition of cell growth; in contrast, arachidonic acid, a omega 6-PUFA, had no significant effect. The omega 3-PUFA effect is due to the induction of apoptosis, given that DHA induced the cleaved form of PARP, caspase-3, and caspase-9. DHA and EPA treatment caused dephosphorylation (and hence, the activation) of glycogen synthase kinase-3beta (GSK-3beta) with a decline of beta-catenin protein. Accordingly, DHA treatment also decreased the beta-catenin-mediated T cell factor/lymphoid enhancer factor (TCF/LEF) reporter activity, and inhibited the expression of c-Met, a beta-catenin-controlled downstream gene implicated in cholangiocarcinogenesis. The GSK-3beta inhibitor, SB216763, partially prevented DHA-induced reduction of beta-catenin protein and TCF/LEF reporter activity, and restored cell growth, suggesting the involvement of GSK-3beta dephosphorylation in omega 3-PUFA-induced beta-catenin degradation. In parallel, DHA treatment also induced the formation of the beta-catenin/Axin/GSK-3beta binding complex, further leading to beta-catenin degradation. Moreover, DHA inhibited the expression of cyclooxygenase-2 (COX-2) and enhanced the expression of 15-hydroxyprostaglandin dehydrogenase, a physiologic COX-2 antagonist, in human cholangiocarcinoma cells. These findings suggest that omega 3-PUFAs block cholangiocarcinoma cell growth at least in part through inhibition of Wnt/beta-catenin and COX-2 signaling pathways. Thus, utilization of omega 3-PUFAs may represent an effective and safe therapeutic approach for the chemoprevention and treatment of human cholangiocarcinoma.
Collapse
Affiliation(s)
- Kyu Lim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|