1
|
Sun Y, Sun J, Gao X, Shi T, Wang M. Identification of Potential Biomarkers in Papillary Thyroid Carcinoma Based on Proteomics. Onco Targets Ther 2024; 17:905-923. [PMID: 39513013 PMCID: PMC11542476 DOI: 10.2147/ott.s465636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Background To identify biomarkers of papillary thyroid carcinoma (PTC) and explore the possible pathogenic mechanism. Methods This study included five patients with PTC. Protein expression of cancer tissues and adjacent normal thyroid tissues from each patient were analyzed by TMT proteomics technology. Differentially expressed proteins were identified, and functional annotation of differentially expressed proteins was performed by bioinformatics and pathway enrichment analysis. Results A total of 639 differentially expressed proteins were identified, including 278 upregulated and 361 downregulated proteins. Six upregulated proteins were identified as potential specific markers of PTC. Conclusion Differentially expressed proteins may represent new molecular markers of PTC. These differentially expressed proteins and the related pathways may provide new insights into the pathogenic mechanisms of PTC.
Collapse
Affiliation(s)
- Yu Sun
- Department of Thyroid Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, People’s Republic of China
| | - Jiaxuan Sun
- Department of Thyroid Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaona Gao
- Department of Thyroid Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, People’s Republic of China
| | - Tiefeng Shi
- Department of Thyroid Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, People’s Republic of China
| | - Maoqing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
2
|
Brock P, Sevigny M, Liyanarachchi S, Comiskey DF, Li W, Saarinen S, Yilmaz AS, Nieminen AI, Ringel MD, Peltomäki P, Ollila S, Nieminen TT. PDPR Gene Variants Predisposing to Papillary Thyroid Cancer. Thyroid 2024; 34:575-582. [PMID: 38062777 PMCID: PMC11238834 DOI: 10.1089/thy.2023.0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Background: Papillary thyroid cancer (PTC) is the predominant subtype of thyroid cancer (THCA), and it can cluster in families with an autosomal dominant (AD) inheritance pattern. The aim of this study was to identify novel genes and mechanisms underlying PTC susceptibility. Methods: Our previous investigation of 17 AD PTC families led us to conduct a deeper analysis on one family (Family Q) with whole-genome sequencing data from 3 PTC-affected individuals. In addition, 323 sporadic THCA cases from Avatar data and 12 familial adenomatous polyposis (FAP) individuals with secondary THCA were screened for pyruvate dehydrogenase phosphatase regulatory (PDPR) variants. CRISPR-Cas9 was used to create PDPR-deficient THCA (TPC1) and transformed normal thyroid cell lines (N-Thyori3-1) to study the metabolic consequences of PDPR loss. Results: We found truncating PDPR splice donor variants (NM_017990.4:c.361 + 1G>C) in all affected PTC Family Q members, and another PDPR splice donor variant (NM_017990.4:c.443 + 1G>C) in a sporadic PTC case. In addition, an ultra-rare missense variant was found in an FAP-PTC patient. The PDPR-deficient cells presented with elevated phosphorylation of pyruvate dehydrogenase and altered glucose metabolism, implying that PDPR plays an essential part in regulating glucose metabolism in thyroid cells. Conclusions: Our finding of novel truncating germline variants in PDPR in Family Q and additional cohorts suggests a role for PDPR loss in PTC predisposition. Also, somatic and RNA sequencing from the thyroid carcinoma (Firehouse Legacy) data showed that PDPR gene expression is much lower in THCA tumor tissue compared with matching normal tissue. Thus, PDPR appears to have a loss of function effect on THCA tumorigenesis.
Collapse
Affiliation(s)
- Pamela Brock
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Myriam Sevigny
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Sandya Liyanarachchi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Daniel F. Comiskey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Wei Li
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Saila Saarinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, The Ohio State University, James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Anni I. Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Taina T. Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Pires C, Marques IJ, Valério M, Saramago A, Santo PE, Santos S, Silva M, Moura MM, Matos J, Pereira T, Cabrera R, Lousa D, Leite V, Bandeiras TM, Vicente JB, Cavaco BM. CHEK2 germline variants identified in familial nonmedullary thyroid cancer lead to impaired protein structure and function. J Biol Chem 2024; 300:105767. [PMID: 38367672 PMCID: PMC10956065 DOI: 10.1016/j.jbc.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
Approximately 5 to 15% of nonmedullary thyroid cancers (NMTC) present in a familial form (familial nonmedullary thyroid cancers [FNMTC]). The genetic basis of FNMTC remains largely unknown, representing a limitation for diagnostic and clinical management. Recently, germline mutations in DNA repair-related genes have been described in cases with thyroid cancer (TC), suggesting a role in FNMTC etiology. Here, two FNMTC families were studied, each with two members affected with TC. Ninety-four hereditary cancer predisposition genes were analyzed through next-generation sequencing, revealing two germline CHEK2 missense variants (c.962A > C, p.E321A and c.470T > C, p.I157T), which segregated with TC in each FNMTC family. p.E321A, located in the CHK2 protein kinase domain, is a rare variant, previously unreported in the literature. Conversely, p.I157T, located in CHK2 forkhead-associated domain, has been extensively described, having conflicting interpretations of pathogenicity. CHK2 proteins (WT and variants) were characterized using biophysical methods, molecular dynamics simulations, and immunohistochemistry. Overall, biophysical characterization of these CHK2 variants showed that they have compromised structural and conformational stability and impaired kinase activity, compared to the WT protein. CHK2 appears to aggregate into amyloid-like fibrils in vitro, which opens future perspectives toward positioning CHK2 in cancer pathophysiology. CHK2 variants exhibited higher propensity for this conformational change, also displaying higher expression in thyroid tumors. The present findings support the utility of complementary biophysical and in silico approaches toward understanding the impact of genetic variants in protein structure and function, improving the current knowledge on CHEK2 variants' role in FNMTC genetic basis, with prospective clinical translation.
Collapse
Affiliation(s)
- Carolina Pires
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal; NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês J Marques
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal; NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mariana Valério
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Saramago
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Paulo E Santo
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Sandra Santos
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Margarida Silva
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Margarida M Moura
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - João Matos
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Teresa Pereira
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Rafael Cabrera
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Valeriano Leite
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal; Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | | | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal.
| |
Collapse
|
4
|
Ríos A, Rodríguez MA, Puñal JA, Moreno P, Mercader E, Ferrero E, Ruiz-Pardo J, Morlán MA, Martín J, Durán-Poveda M, Bravo JM, Casanova D, Egea MPS, Torregrosa NM, Exposito-Rodríguez A, Martínez-Fernández G, Carrión AM, Vidal O, Herrera F, Ruiz-Merino G, Rodríguez JM. Biological behavior of familial papillary thyroid microcarcinoma: Spanish multicenter study. Langenbecks Arch Surg 2022; 407:3631-3642. [PMID: 36251077 DOI: 10.1007/s00423-022-02704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
PURPOSE Familial papillary thyroid microcarcinoma (FPTMC) can present a more aggressive behavior than the sporadic microcarcinoma. However, few studies have analyzed this situation. The objective is to analyze the recurrence rate of FPTMC and the prognostic factors which determine that recurrence in Spain. METHODS Spanish multicenter longitudinal analytical observational study was conducted. Patients with FPTMC received treatment with curative intent and presented cure criteria 6 months after treatment. Recurrence rate and disease-free survival (DFS) were analyzed. Two groups were analyzed: group A (no tumor recurrence) vs. group B (tumor recurrence). RESULTS Ninety-four patients were analyzed. During a mean follow-up of 73.3 ± 59.3 months, 13 recurrences of FPTMC (13.83%) were detected and mean DFS was 207.9 ± 11.5 months. There were multifocality in 56%, bilateral thyroid involvement in 30%, and vascular invasion in 7.5%; that is to say, they are tumors with histological factors of poor prognosis in a high percentage of cases. The main risk factors for recurrence obtained in the multivariate analysis were the tumor size (OR: 2.574, 95% CI 1.210-5.473; p = 0.014) and the assessment of the risk of recurrence of the American Thyroid Association (ATA), both intermediate risk versus low risk (OR: 125, 95% CI 10.638-1000; p < 0.001) and high risk versus low risk (OR: 45.454, 95% CI 5.405-333.333; p < 0.001). CONCLUSION FPTMC has a recurrence rate higher than sporadic cases. Poor prognosis is mainly associated with the tumor size and the risk of recurrence of the ATA.
Collapse
Affiliation(s)
- A Ríos
- Unidad de Cirugía Endocrina, Servicio de Cirugía General Y de Aparato Digestivo, Instituto Murciano de Investigación Bio-Sanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de La Arrixaca, Servicio Murciano de Salud, Murcia, Spain. .,Departamento de Cirugía, Pediatría Obstetricia, Y Ginecología, Universidad de Murcia, Murcia, Spain.
| | - M A Rodríguez
- Departamento de Cirugía, Pediatría Obstetricia, Y Ginecología, Universidad de Murcia, Murcia, Spain
| | - J A Puñal
- Servicio de Cirugía General Y Aparato Digestivo, C.H.U, Santiago de Compostela, Spain
| | - P Moreno
- Cirugía Endocrina, Hospital Universitario de Bellvitge, L´Hospitalet de Llobregat, Barcelona, Spain
| | - E Mercader
- Sección de Cirugía Endocrino-Metabólica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - E Ferrero
- Servicio de Cirugía General, Aparato Digestivo Y Trasplante de Órganos Abdominales, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - J Ruiz-Pardo
- Servicio de Cirugía General Y del Aparato Digestivo, Hospital Universitario Torrecárdenas, Almeria, Spain
| | - M A Morlán
- Servicio de Cirugía General Y del Aparato Digestivo, Hospital Virgen de La Salud, Toledo, Spain
| | - J Martín
- Servicio de Cirugía General Y Aparato Digestivo, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - M Durán-Poveda
- Servicio de Cirugía General Y del Aparato Digestivo, Hospital Universitario Rey Juan Carlos. Móstoles, Madrid, Spain.,Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - J M Bravo
- Servicio de Cirugía General Y del Aparato Digestivo, Hospital de La Princesa, Madrid, Spain
| | - D Casanova
- Servicio de Cirugía General Y del Aparato Digestivo, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - M P Salvador Egea
- Servicio de Cirugía General Y Digestiva, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - N M Torregrosa
- Servicio de Cirugía General Y del Aparato Digestivo, Hospital de Santa Lucia, Cartagena, Murcia, Spain
| | - A Exposito-Rodríguez
- Servicio de Cirugía General Y del Aparato Digestivo, Hospital de Basurto, Bizkaia, Spain
| | - G Martínez-Fernández
- Unidad de Cirugía Endocrina, Servicio de Cirugía General (Hospital Universitario de Cruces), Barakaldo, Bizkaia, Spain
| | - A M Carrión
- Servicio de Cirugía, Hospital General Universitario de Alicante, Alicante, Spain
| | - O Vidal
- Cirugía General Y del Aparato Digestivo, Hospital Universitario de Burgos, Burgos, Spain
| | - F Herrera
- Servicio de Cirugía General, Hospital General Básico Santa Ana, Motril, Granada, Spain
| | - G Ruiz-Merino
- FFIS, Fundación Para La Formación E Investigación Sanitarias de La Región de Murcia, Murcia, Spain
| | - J M Rodríguez
- Unidad de Cirugía Endocrina, Servicio de Cirugía General Y de Aparato Digestivo, Instituto Murciano de Investigación Bio-Sanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de La Arrixaca, Servicio Murciano de Salud, Murcia, Spain.,Departamento de Cirugía, Pediatría Obstetricia, Y Ginecología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
5
|
Faldu KG, Shah JS. Alzheimer's disease: a scoping review of biomarker research and development for effective disease diagnosis. Expert Rev Mol Diagn 2022; 22:681-703. [PMID: 35855631 DOI: 10.1080/14737159.2022.2104639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is regarded as the foremost reason for neurodegeneration that prominently affects the geriatric population. Characterized by extracellular accumulation of amyloid-beta (Aβ), intracellular aggregation of hyperphosphorylated tau (p-tau), and neuronal degeneration that causes impairment of memory and cognition. Amyloid/tau/neurodegeneration (ATN) classification is utilized for research purposes and involves amyloid, tau, and neuronal injury staging through MRI, PET scanning, and CSF protein concentration estimations. CSF sampling is invasive, and MRI and PET scanning requires sophisticated radiological facilities which limit its widespread diagnostic use. ATN classification lacks effectiveness in preclinical AD. AREAS COVERED This publication intends to collate and review the existing biomarker profile and the current research and development of a new arsenal of biomarkers for AD pathology from different biological samples, microRNA (miRNA), proteomics, metabolomics, artificial intelligence, and machine learning for AD screening, diagnosis, prognosis, and monitoring of AD treatments. EXPERT OPINION It is an accepted observation that AD-related pathological changes occur over a long period of time before the first symptoms are observed providing ample opportunity for detection of biological alterations in various biological samples that can aid in early diagnosis and modify treatment outcomes.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
6
|
Diquigiovanni C, Bonora E. Genetics of Familial Non-Medullary Thyroid Carcinoma (FNMTC). Cancers (Basel) 2021; 13:2178. [PMID: 33946592 PMCID: PMC8125431 DOI: 10.3390/cancers13092178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Non-medullary thyroid carcinoma (NMTC) is the most frequent endocrine tumor and originates from the follicular epithelial cells of the thyroid. Familial NMTC (FNMTC) has been defined in pedigrees where two or more first-degree relatives of the patient present the disease in absence of other predisposing environmental factors. Compared to sporadic cases, FNMTCs are often multifocal, recurring more frequently and showing an early age at onset with a worse outcome. FNMTC cases show a high degree of genetic heterogeneity, thus impairing the identification of the underlying molecular causes. Over the last two decades, many efforts in identifying the susceptibility genes in large pedigrees were carried out using linkage-based approaches and genome-wide association studies, leading to the identification of susceptibility loci and variants associated with NMTC risk. The introduction of next-generation sequencing technologies has greatly contributed to the elucidation of FNMTC predisposition, leading to the identification of novel candidate variants, shortening the time and cost of gene tests. In this review we report the most significant genes identified for the FNMTC predisposition. Integrating these new molecular findings in the clinical data of patients is fundamental for an early detection and the development of tailored therapies, in order to optimize patient management.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | | |
Collapse
|
7
|
Zhou J, Singh P, Yin K, Wang J, Bao Y, Wu M, Pathak K, McKinley SK, Braun D, Lubitz CC, Hughes KS. Non-medullary Thyroid Cancer Susceptibility Genes: Evidence and Disease Spectrum. Ann Surg Oncol 2021; 28:6590-6600. [PMID: 33660127 DOI: 10.1245/s10434-021-09745-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/31/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The prevalence of non-medullary thyroid cancer (NMTC) is increasing worldwide. Although most NMTCs grow slowly, conventional therapies are less effective in advanced tumors. Approximately 5-15% of NMTCs have a significant germline genetic component. Awareness of the NMTC susceptibility genes may lead to earlier diagnosis and better cancer prevention. OBJECTIVE The aim of this study was to provide the current panorama of susceptibility genes associated with NMTC and the spectrum of diseases associated with these genes. METHODS Twenty-five candidate genes were identified by searching for relevant studies in PubMed. Each candidate gene was carefully checked using six authoritative genetic resources: ClinGen, National Comprehensive Cancer Network guidelines, Online Mendelian Inheritance in Man, Genetics Home Reference, GeneCards, and Gene-NCBI, and a validated natural language processing (NLP)-based literature review protocol was used to further assess gene-disease associations where there was ambiguity. RESULTS Among 25 candidate genes, 10 (APC, DICER1, FOXE1, HABP2, NKX2-1, PRKAR1A, PTEN, SDHB, SDHD, and SRGAP1) were verified among the six genetic resources. Two additional genes, CHEK2 and SEC23B, were verified using the NLP protocol. Seventy-nine diseases were found to be associated with these 12 NMTC susceptibility genes. The following diseases were associated with more than one NMTC susceptibility gene: colorectal cancer, breast cancer, gastric cancer, kidney cancer, gastrointestinal stromal tumor, paraganglioma, pheochromocytoma, and benign skin conditions. CONCLUSION Twelve genes predisposing to NMTC and their associated disease spectra were identified and verified. Clinicians should be aware that patients with certain pathogenic variants may require more aggressive surveillance beyond their thyroid cancer risk.
Collapse
Affiliation(s)
- Jingan Zhou
- Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Preeti Singh
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Kanhua Yin
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jin Wang
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yujia Bao
- Computer Science and Artificial Intelligence, Massachusetts Institute of Technology, Boston, MA, USA
| | - Menghua Wu
- Computer Science and Artificial Intelligence, Massachusetts Institute of Technology, Boston, MA, USA
| | - Kush Pathak
- Department of Surgical Oncology, P. D Hinduja Hospital, Mumbai, India
| | - Sophia K McKinley
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle Braun
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carrie C Lubitz
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Institute for Technology Assessment, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin S Hughes
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Navas-Carrillo D, Rivera-Caravaca JM, Sampedro-Andrada A, Orenes-Piñero E. Novel biomarkers in Alzheimer's disease using high resolution proteomics and metabolomics: miRNAS, proteins and metabolites. Crit Rev Clin Lab Sci 2020; 58:167-179. [PMID: 33137264 DOI: 10.1080/10408363.2020.1833298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. It affects approximately 6% of people over the age of 65 years. It is a clinicopathological, degenerative, chronical and progressive disease that exhibits a deterioration of memory, orientation, speech and other functions. Factors contributing to the pathogenesis of the disease are the presence of extracellular amyloid deposits, called neuritic senile plaques, and fibrillary protein deposits inside neurons, known as neurofibrillary bundles, that appear mainly in the frontal and temporal lobes. AD has a long preclinical latency and is difficult to diagnose and prevent at early stages. Despite the advent of novel high-throughput technologies, it is a great challenge to identify precise biomarkers to understand the progression of the disease and the development of new treatments. In this sense, important knowledge is emerging regarding novel molecular and biological candidates with diagnostic potential, including microRNAs that have a key role in gene repression. On the other hand, proteomic approaches offer a platform for the comprehensive analysis of the whole proteome in a certain physiological time. Proteomic technology investigates protein expression directly and reveals post-translational modifications known to be determinant for many human diseases. Clinically, there is growing evidence for the role of proteomic and metabolomic technologies in AD biomarker discovery. This review discusses the role of several miRNAs identified using genomic technologies, and the importance of novel proteomic and metabolomic approaches to identify new proteins and metabolites that may be useful as biomarkers for monitoring the progression and treatment of AD.
Collapse
Affiliation(s)
| | | | | | - Esteban Orenes-Piñero
- Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
9
|
Ren N, Tian Z, Sun H, Lu X. Dynamin 2 Is Correlated with Recurrence and Poor Prognosis of Papillary Thyroid Cancer. Med Sci Monit 2020; 26:e924590. [PMID: 32827429 PMCID: PMC7461653 DOI: 10.12659/msm.924590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Papillary thyroid cancer (PTC) is the most common histological type of thyroid cancer. Most PTC patients have favorable outcomes, but 10% of patients still have distant metastases at presentation or during follow-up. Dynamin 2 (DNM2) is the only DNM ubiquitously expressed in human tissues, but its expression and clinical significance in PTC is still unknown. Material/Methods In our study, we investigated the expression of DNM2 in 112 cases of PTC and classified the patients into low and high expression of DNM2. The clinical significance of DNM2 was evaluated by assessing its correlation with the clinicopathological parameters with the chi-square method. The correlations between DNM2 expression and the disease-free survival rate or overall survival rate were assessed with the Kaplan-Meier method and the log-rank test. The independent prognostic factors of PTC were determined by the Cox-regression hazard model. Results Patients with low and high DNM2 expression accounted for 75% and 25% respectively in the 112 patients with PTC. High DNM2 expression was significantly associated with recurrence (P=0.014) and poor prognosis (P=0.004). In addition to tumor stage, DNM2 expression was an independent prognostic biomarker of PTC, indicating an unfavorable prognosis. Conclusions DNM2 was an independent PTC biomarker indicating more likely recurrence and poorer prognosis. Detecting DNM2 expression may help to select the high-risk patients for adjuvant therapy.
Collapse
Affiliation(s)
- Ning Ren
- Department of Otorhinolaryngology, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Zhenmin Tian
- Department of Clinical Laboratory, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Hongmei Sun
- Department of General Surgery, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Xiaofei Lu
- Department of Thyroid and Breast Surgery, The Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China (mainland)
| |
Collapse
|
10
|
Li D, Wu J, Liu Z, Qiu L, Zhang Y. Novel circulating protein biomarkers for thyroid cancer determined through data-independent acquisition mass spectrometry. PeerJ 2020; 8:e9507. [PMID: 32704452 PMCID: PMC7346861 DOI: 10.7717/peerj.9507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/17/2020] [Indexed: 12/02/2022] Open
Abstract
Background Distinguishing between different types of thyroid cancers (TC) remains challenging in clinical laboratories. As different tumor types require different clinical interventions, it is necessary to establish new methods for accurate diagnosis of TC. Methods Proteomic analysis of the human serum was performed through data-independent acquisition mass spectrometry for 29 patients with TC (stages I–IV): 13 cases of papillary TC (PTC), 10 cases of medullary TC (MTC), and six cases follicular TC (FTC). In addition, 15 patients with benign thyroid nodules (TNs) and 10 healthy controls (HCs) were included in this study. Subsequently, 17 differentially expressed proteins were identified in 291 patients with TC, including 247 with PTC, 38 with MTC, and six with FTC, and 69 patients with benign TNs and 176 with HC, using enzyme-linked immunosorbent assays. Results In total, 517 proteins were detected in the serum samples using an Orbitrap Q-Exactive-plus mass spectrometer. The amyloid beta A4 protein, apolipoprotein A-IV, gelsolin, contactin-1, gamma-glutamyl hydrolase, and complement factor H-related protein 1 (CFHR1) were selected for further analysis. The median serum CFHR1 levels were significantly higher in the MTC and FTC groups than in the PTC and control groups (P < 0.001). CFHR1 exhibited higher diagnostic performance in distinguishing patients with MTC from those with PTC (P < 0.001), with a sensitivity of 100.0%, specificity of 85.08%, area under the curve of 0.93, and detection cut-off of 0.92 ng/mL. Conclusion CFHR1 may serve as a novel biomarker to distinguish PTC from MTC with high sensitivity and specificity.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jie Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Zhongjuan Liu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yimin Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Zhang Y, Zhao W, Zhao Y, Mao Y, Su T, Zhong Y, Wang S, Zhai R, Cheng J, Fang X, Zhu J, Yang H. Comparative Glycoproteomic Profiling of Human Body Fluid between Healthy Controls and Patients with Papillary Thyroid Carcinoma. J Proteome Res 2019; 19:2539-2552. [PMID: 31800250 DOI: 10.1021/acs.jproteome.9b00672] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhao
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 102206, China
| | - Yonghong Mao
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Thoracic Surgery Research Labouratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shisheng Wang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 102206, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 102206, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Carr FE. THYROID CANCER. Cancer 2019. [DOI: 10.1002/9781119645214.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Li D, Zhou L, Ma C, Chen W, Zhang Y, Yu S, Wang D, Zou Y, Wu J, Qiu L. Comparative analysis of the serum proteome profiles of thyroid cancer: An initial focus on the lipid profile. Oncol Lett 2019; 18:3349-3357. [PMID: 31452814 DOI: 10.3892/ol.2019.10655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
The serum lipid profile and clinical outcomes of cancer patients are commonly correlated in a wide range of carcinomas. However, few studies have investigated the serum lipid profile of patients with thyroid cancer (TC). The present study therefore aimed to analyze the lipid profiles of patients with TC. The serum proteomes of 31 participants with stage I-IV TC were screened using Orbitrap Q Exactive Plus. Analytical data collected between November 1, 2013 and November 11, 2018 from the laboratory information system included the total cholesterol (CHO), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A1 (ApoA1), lipoprotein (a) and apolipoprotein B (ApoB) levels that were used to validate the screening results. A total of 3875 outpatients were enrolled in this study. A number of 17 differentially expressed proteins were identified. An Ingenuity pathway analysis identified activation of the liver X receptor/retinoid X receptor (LXR/RXR) activation, which is a crucial pathway involved in lipid metabolism. The results demonstrated that the total CHO levels were significantly different between patients with TC and control groups, both in men and women. In women, the levels of TG, HDL-C, Apo A1 and LDL-C/HDL-C were significantly different between patients with TC and control groups (all P<0.05). Higher concentrations of TG and LDL-C/HDL-C were observed in the cancer group compared with the control group. However, lower levels of Apo A1 and HDL-C were observed in women from the cancer group compared with the control group. The results from the present study revealed the presence of a disordered lipid profile in patients with TC. The molecular mechanism underlying the association between lipid metabolism and cancer requires further investigation and may be used to develop novel diagnostic biomarkers and therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Dandan Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Chaochao Ma
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Wenhu Chen
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Yimin Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Songlin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Danchen Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Yutong Zou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Jie Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Ling Qiu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
14
|
Wen SS, Zhang TT, Xue DX, Wu WL, Wang YL, Wang Y, Ji QH, Zhu YX, Qu N, Shi RL. Metabolic reprogramming and its clinical application in thyroid cancer. Oncol Lett 2019; 18:1579-1584. [PMID: 31423225 PMCID: PMC6607326 DOI: 10.3892/ol.2019.10485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Warburg found that tumor cells exhibit high-level glycolysis, even under aerobic condition, which is known as the ‘Warburg effect’. As systemic changes in the entire metabolic network are gradually revealed, it is recognized that metabolic reprogramming has gone far beyond the imagination of Warburg. Metabolic reprogramming involves an active change in cancer cells to adapt to their biological characteristics. Thyroid cancer is a common endocrine malignant tumor whose metabolic characteristics have been studied in recent years. Some drugs targeting tumor metabolism are under clinical trial. This article reviews the metabolic changes and mechanisms in thyroid cancer, aiming to find metabolic-related molecules that could be potential markers to predict prognosis and metabolic pathways, or could serve as therapeutic targets. Our review indicates that knowledge in metabolic alteration has potential contributions in the diagnosis, treatment and prognostic evaluation of thyroid cancer, but further studies are needed for verification as well.
Collapse
Affiliation(s)
- Shi-Shuai Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ting-Ting Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Di-Xin Xue
- Department of General Surgery, Τhe Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Wei-Li Wu
- Department of General Surgery, Τhe Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yong-Xue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Rong-Liang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
15
|
Xu W, Wang L, An Y, Ye J. Expression of WD Repeat Domain 5 (WDR5) is Associated with Progression and Reduced Prognosis in Papillary Thyroid Carcinoma. Med Sci Monit 2019; 25:3762-3770. [PMID: 31107859 PMCID: PMC6540649 DOI: 10.12659/msm.915847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The WD repeat domain 5 (WDR5) is an essential component of methyltransferase complexes. The expression of WDR5 has been reported in several types of malignancy. This study aimed to investigate the expression of the WDR5 gene and protein in a human papillary carcinoma cell line in vitro, including the use WDR5 gene silencing, and the expression of the WDR5 protein in papillary thyroid carcinoma tissue, and clinicopathological characteristics including overall survival (OS). Material/Methods The role of WDR5 in proliferation and migration of the human papillary thyroid carcinoma cell line, KTC-1, was investigated using the cell counting kit-8 (CCK-8) assay and transwell assay after silencing WDR5 expression. Expression levels of WDR5 in 84 patients with papillary thyroid carcinoma were detected using immunohistochemistry. The correlation between WDR5 expression and clinicopathological features was analyzed using the chi-squared test. The prognostic role of WDR5 was evaluated by univariate analysis with the log-rank test, and by multivariate analysis with the Cox regression model. Results WDR5 expression promoted the proliferation and migration of the KTC-1 cells. In tumor tissue from patients with papillary thyroid carcinoma, low expression and high expression levels of WDR5 were found in 72.6% and 27.4%, respectively. Increased expression of WDR5 was significantly associated with lymphatic invasion and reduced survival rates. WDR5 expression was an independent negative prognostic biomarker. Conclusions Expression of WDR5 promoted cell proliferation and migration in vitro and was associated with reduced prognosis in patients with papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Endocrinology, Yidu Central Hospital of Weifang City, Weifang, Shandong, China (mainland)
| | - Lingling Wang
- Department of Endocrinology, Yidu Central Hospital of Weifang City, Weifang, Shandong, China (mainland)
| | - Ying An
- Department of Endocrinology, Yidu Central Hospital of Weifang City, Weifang, Shandong, China (mainland)
| | - Jing Ye
- Department of Oncology, Tong De Hospital of Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
16
|
Diquigiovanni C, Bergamini C, Evangelisti C, Isidori F, Vettori A, Tiso N, Argenton F, Costanzini A, Iommarini L, Anbunathan H, Pagotto U, Repaci A, Babbi G, Casadio R, Lenaz G, Rhoden KJ, Porcelli AM, Fato R, Bowcock A, Seri M, Romeo G, Bonora E. Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer. Int J Cancer 2018; 143:1706-1719. [PMID: 29672841 DOI: 10.1002/ijc.31548] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022]
Abstract
Familial aggregation is a significant risk factor for the development of thyroid cancer and familial non-medullary thyroid cancer (FNMTC) accounts for 5-7% of all NMTC. Whole exome sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G > A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein, we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase in both intracellular and extracellular reactive oxygen species, compared to cells expressing the wild-type (wt) protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage-independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wt one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Bologna, Italy
| | - Federica Isidori
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Vettori
- Department of Biology, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | | | - Anna Costanzini
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Hima Anbunathan
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Repaci
- Endocrinology Unit, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Bologna, Italy
| | - Kerry J Rhoden
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Anne Bowcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Marco Seri
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Navas-Carrillo D, Rodriguez JM, Montoro-García S, Orenes-Piñero E. High-resolution proteomics and metabolomics in thyroid cancer: Deciphering novel biomarkers. Crit Rev Clin Lab Sci 2017; 54:446-457. [DOI: 10.1080/10408363.2017.1394266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diana Navas-Carrillo
- Department of Surgery, Hospital de la Vega Lorenzo Guirao, University of Murcia, Murcia, Spain
| | - José Manuel Rodriguez
- Department of Surgery, Hospital Universitario Virgen de la Arrixaca, University of Murcia, Murcia, Spain
| | | | - Esteban Orenes-Piñero
- Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
18
|
Farrokhi Yekta R, Rezaie Tavirani M, Arefi Oskouie A, Mohajeri-Tehrani MR, Soroush AR. The metabolomics and lipidomics window into thyroid cancer research. Biomarkers 2016; 22:595-603. [DOI: 10.1080/1354750x.2016.1256429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. Farrokhi Yekta
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Rezaie Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A. Arefi Oskouie
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. R. Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - A. R. Soroush
- Department of Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Weeks AL, Wilson SG, Ward L, Goldblatt J, Hui J, Walsh JP. HABP2 germline variants are uncommon in familial nonmedullary thyroid cancer. BMC MEDICAL GENETICS 2016; 17:60. [PMID: 27530615 PMCID: PMC4988026 DOI: 10.1186/s12881-016-0323-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/23/2016] [Indexed: 11/23/2022]
Abstract
Background The genetic basis of nonsyndromic familial nonmedullary thyroid cancer (FNMTC) is poorly understood. A recent study identified HABP2 as a tumor suppressor gene and identified a germline variant (G534E) in an extended FNMTC kindred. The relevance of this to other FNMTC kindreds is uncertain. Methods Sanger sequencing was performed on peripheral blood DNA from probands from 37 Australian FNMTC kindreds to detect the G534E variant. Whole exome data from 59 participants from 20 kindreds were examined for mutations in HABP2 and the thyroid cancer susceptibility genes SRGAP1, NKX2-1, SRRM2 and FOXE1. The population prevalence of the G534E variant in HABP2 was examined in two independent cohorts. Results Heterozygosity for the G534E variant in HABP2 was found in 1 of 37 probands (2.7 %), but did not cosegregate with disease in this kindred, being absent in the proband’s affected sister. From whole exome data, pathogenic mutations were not identified in HABP2, SRGAP1, NKX2-1, SRRM2 or FOXE1. Heterozygosity for the G534E variant in HABP2 was present in 7.6 % of Busselton Health Study participants (N = 4634, unknown disease status) and 9.3 % of TwinsUK participants (N = 1195, no history of thyroid cancer). Conclusions The G534E variant in HABP2 does not account for the familial nature of NMTC in Australian kindreds, and is common in the general population. Further research is required to elucidate the genetic basis of nonsyndromic FNMTC.
Collapse
Affiliation(s)
- Alexia L Weeks
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.,School of Medicine & Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.,School of Medicine & Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Lynley Ward
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Jack Goldblatt
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jennie Hui
- Pathwest Laboratory Medicine WA, Nedlands, WA, 6009, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, 6009, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia. .,School of Medicine & Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
20
|
Accordi ED, Xekouki P, Azevedo B, de Alexandre RB, Frasson C, Gantzel SM, Papadakis GZ, Angelousi A, Stratakis CA, Sotomaior VS, Faucz FR. Familiar Papillary Thyroid Carcinoma in a Large Brazilian Family Is Not Associated with Succinate Dehydrogenase Defects. Eur Thyroid J 2016; 5:94-9. [PMID: 27493882 PMCID: PMC4949364 DOI: 10.1159/000444522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Thyroid cancer is the most common endocrine gland malignancy. Advances in understanding the genetic basis for thyroid cancer revealed the potential involvement of several genes in the formation of thyroid tumors. Mutations in the gene coding for succinate dehydrogenase subtype B (SDHB) have been implicated in papillary thyroid cancer (PTC). Succinate dehydrogenase (SDH) is a heterotetrameric protein composed of four subunits, SDHA, SDHB, SDHC, and SDHD, and participates in both the electron transport chain and the tricarboxylic acid cycle. The aim of the study was to evaluate the association between variants in the SDHA, SDHB, SDHC, and SDHD genes and familiar PTC in a large Brazilian family. METHOD Four patients with PTC, 1 patient with PTC and gastrointestinal stromal tumor (GIST), 1 patient with GIST, and their relatives - several of them with different thyroid problems - from a large Brazilian family were screened for genetic variations of SDHx genes with the use of polymerase chain reaction-single-stranded conformational polymorphism and direct sequencing. RESULTS Only one rare variation in SDHA was found in some of the family members, but not segregating with the disease. No other genetic variants of these genes were detected in the family members that presented with PTC and/or GIST. CONCLUSION Familiar PTC and a GIST were not associated with SDHx mutations; additional genetic defects, yet unknown, may be responsible for the development of tumor.
Collapse
Affiliation(s)
- Elen Dias Accordi
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Paraskevi Xekouki
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics (PDEGEN) and Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Md., USA
| | - Bruna Azevedo
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Rodrigo Bertollo de Alexandre
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Carla Frasson
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
- Álvaro Center for Analysis and Clinical Research - Diagnósticos da América (DASA), Cascavel, Brazil
| | - Siliane Marie Gantzel
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Georgios Z. Papadakis
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, Md., USA
| | - Anna Angelousi
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics (PDEGEN) and Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Md., USA
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics (PDEGEN) and Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Md., USA
| | - Vanessa Santos Sotomaior
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Fabio R. Faucz
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics (PDEGEN) and Pediatric Endocrinology Inter-Institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Md., USA
- *Fabio R. Faucz, PhD, Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, NICHD, National Institutes of Health, 10 Center Drive, CRC, Room 1-3216, MSC1103, Bethesda, MD 20892 (USA), E-Mail
| |
Collapse
|
21
|
Orenes-Piñero E, Marín F, Lip GYH. miRNA-197 and miRNA-223 and cardiovascular death in coronary artery disease patients. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:200. [PMID: 27294096 DOI: 10.21037/atm.2016.05.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Esteban Orenes-Piñero
- 1 Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain ; 2 Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain ; 3 University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Francisco Marín
- 1 Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain ; 2 Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain ; 3 University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Gregory Y H Lip
- 1 Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain ; 2 Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain ; 3 University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| |
Collapse
|
22
|
Bible KC, Ryder M. Evolving molecularly targeted therapies for advanced-stage thyroid cancers. Nat Rev Clin Oncol 2016; 13:403-16. [PMID: 26925962 DOI: 10.1038/nrclinonc.2016.19] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered - and might further refine - patient care, and identify open questions for future research.
Collapse
Affiliation(s)
- Keith C Bible
- Division of Medical Oncology, Department of Oncology, and Endocrine Malignancies Disease Oriented Group, Mayo Clinic Cancer Center, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Mabel Ryder
- Division of Medical Oncology, Department of Oncology, and Endocrine Malignancies Disease Oriented Group, Mayo Clinic Cancer Center, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA.,Division of Endocrinology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| |
Collapse
|
23
|
Abstract
Thyroid cancers are largely divided into medullary (MTC) and non-medullary (NMTC) cancers , depending on the cell type of origin. Familial non-medullary thyroid cancer (FNMTC) comprises about 5-15% of NMTC and is a heterogeneous group of diseases, including both non-syndromic and syndromic forms. Non-syndromic FNMTC tends to manifest papillary thyroid carcinoma , usually multifocal and bilateral . Several high-penetrance genes for FNMTC have been identified, but they are often confined to a few or single families, and other susceptibility loci appear to play a small part, conferring only small increments in risk. Familial susceptibility is likely to be due to a combination of genetic and environmental influences. The current focus of research in FNMTC is to characterise the susceptibility genes and their role in carcinogenesis. FNMTC can also occur as a part of multitumour genetic syndromes such as familial adenomatous polyposis , Cowden's disease , Werner's syndrome and Carney complex . These tend to present at an early age and are multicentric and bilateral with distinct pathology. The clinical evaluation of these patients is similar to that for most patients with a thyroid nodule. Medullary thyroid cancer (MTC) arises from the parafollicular cells of the thyroid which release calcitonin. The familial form of MTC accounts for 20-25% of cases and presents as a part of the multiple endocrine neoplasia type 2 (MEN 2) syndromes or as a pure familial MTC (FMTC). They are caused by germline point mutations in the RET oncogene on chromosome 10q11.2. There is a clear genotype-phenotype correlation, and the aggressiveness of FMTC depends on the specific genetic mutation, which should determine the timing of surgery.
Collapse
Affiliation(s)
- Gul Bano
- Department of Endocrinology and Diabetes, Thomas Addison Unit, St George's Healthcare NHS Trust, Blackshaw Road, Tooting, London, UK.
| | | |
Collapse
|
24
|
FAP Associated Papillary Thyroid Carcinoma: A Peculiar Subtype of Familial Nonmedullary Thyroid Cancer. PATHOLOGY RESEARCH INTERNATIONAL 2015; 2015:309348. [PMID: 26697262 PMCID: PMC4678079 DOI: 10.1155/2015/309348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/08/2015] [Indexed: 12/26/2022]
Abstract
Familial Nonmedullary Thyroid Carcinoma (FNMTC) makes up to 5–10% of all thyroid cancers, also including those FNMTC occurring as a minor component of familial cancer syndromes, such as Familial Adenomatous Polyposis (FAP). We give evidence that this extracolonic manifestation of FAP is determined by the same germline mutation of the APC gene responsible for colonic polyps and cancer but also shows some unusual features (F : M ratio = 80 : 1, absence of LOH for APC in the thyroid tumoral tissue, and indolent biological behaviour, despite frequent multicentricity and lymph nodal involvement), suggesting that the APC gene confers only a generic susceptibility to thyroid cancer, but perhaps other factors, namely, modifier genes, sex-related factors, or environmental factors, are also required for its phenotypic expression. This great variability is against the possibility of classifying all FNMTC as a single entity, not only with a unique or prevalent causative genetic factor, but also with a unique or common biological behavior and a commonly dismal prognosis. A new paradigm is also suggested that could be useful (1) for a proper classification of FAP associated PTC within the larger group of FNMTC and (2) for making inferences to sporadic carcinogenesis, based on the lesson from FAP.
Collapse
|