1
|
Leiphrakpam PD, Chowdhury S, Zhang M, Bajaj V, Dhir M, Are C. Trends in the Global Incidence of Pancreatic Cancer and a Brief Review of its Histologic and Molecular Subtypes. J Gastrointest Cancer 2025; 56:71. [PMID: 39992560 DOI: 10.1007/s12029-025-01183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 02/25/2025]
Abstract
The global burden of pancreatic cancer has more than doubled in recent decades. It is now the sixth leading cause of cancer-related death worldwide, with an estimated 510,922 new cases and 467,409 deaths in 2022. The incidence of the disease continues to rise annually, with projections indicating a 95.4% increase in new cases by 2050, potentially reaching a total of 998,663 new cases globally. The overall five-year survival rate for pancreatic cancer is 10% worldwide, showing only a modest improvement compared to the past decade. The rising trends in the incidence rates are likely to continue as the global population ages and access to healthcare improves. The relatively low survival rate is primarily attributed to late-stage diagnoses and the lack of an effective screening method. Currently, population-based screening for asymptomatic individuals is not recommended, highlighting the importance of identifying and monitoring individuals at high risk for pancreatic cancer. Numerous studies have highlighted the differences in the molecular pathology of pancreatic cancer, underscoring the need for continued research to better understand these differences. The silent progression of the disease, poor prognosis, lack of screening options, and the necessity to improve our comprehension of its molecular characteristics emphasize the critical need for ongoing monitoring of disease trends at the population level. This review article analyses trends in the incidence of pancreatic cancer and its histological subtypes and provides an update on its molecular subtypes.
Collapse
Affiliation(s)
- Premila Devi Leiphrakpam
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chowdhury
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Zhang
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Varnica Bajaj
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mashaal Dhir
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chandrakanth Are
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
3
|
Haller SD, Essani K. Oncolytic Tanapoxvirus Variants Expressing mIL-2 and mCCL-2 Regress Human Pancreatic Cancer Xenografts in Nude Mice. Biomedicines 2024; 12:1834. [PMID: 39200298 PMCID: PMC11351728 DOI: 10.3390/biomedicines12081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer-related death and presents the lowest 5-year survival rate of any form of cancer in the US. Only 20% of PDAC patients are suitable for surgical resection and adjuvant chemotherapy, which remains the only curative treatment. Chemotherapeutic and gene therapy treatments are associated with adverse effects and lack specificity/efficacy. In this study, we assess the oncolytic potential of immuno-oncolytic tanapoxvirus (TPV) recombinants expressing mouse monocyte chemoattractant protein (mMCP-1 or mCCL2) and mouse interleukin (mIL)-2 in human pancreatic BxPc-3 cells using immunocompromised and CD-3+ T-cell-reconstituted mice. Intratumoral treatment with TPV/∆66R/mCCL2 and TPV/∆66R/mIL-2 resulted in a regression in BxPc-3 xenograft volume compared to control in immunocompromised mice; mCCL-2 expressing TPV OV resulted in a significant difference from control at p < 0.05. Histological analysis of immunocompromised mice treated with TPV/∆66R/mCCL2 or TPV/∆66R/mIL-2 demonstrated multiple biomarkers indicative of increased severity of chronic, active inflammation compared to controls. In conclusion, TPV recombinants expressing mCCL2 and mIL-2 demonstrated a therapeutic effect via regression in BxPc-3 tumor xenografts. Considering the enhanced oncolytic potency of TPV recombinants demonstrated against PDAC in this study, further investigation as an alternative or combination treatment option for human PDAC may be warranted.
Collapse
Affiliation(s)
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA;
| |
Collapse
|
4
|
Przybyszewski O, Mik M, Nowicki M, Kusiński M, Mikołajczyk-Solińska M, Śliwińska A. Using microRNAs Networks to Understand Pancreatic Cancer-A Literature Review. Biomedicines 2024; 12:1713. [PMID: 39200178 PMCID: PMC11351910 DOI: 10.3390/biomedicines12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a severe disease, challenging to diagnose and treat, and thereby characterized by a poor prognosis and a high mortality rate. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90% of pancreatic cancer cases, while other cases include neuroendocrine carcinoma. Despite the growing knowledge of the pathophysiology of this cancer, the mortality rate caused by it has not been effectively reduced. Recently, microRNAs have aroused great interest among scientists and clinicians, as they are negative regulators of gene expression, which participate in many processes, including those related to the development of pancreatic cancer. The aim of this review is to show how microRNAs (miRNAs) affect key signaling pathways and related cellular processes in pancreatic cancer development, progression, diagnosis and treatment. We included the results of in vitro studies, animal model of pancreatic cancer and those performed on blood, saliva and tumor tissue isolated from patients suffering from PDAC. Our investigation identified numerous dysregulated miRNAs involved in KRAS, JAK/STAT, PI3/AKT, Wnt/β-catenin and TGF-β signaling pathways participating in cell cycle control, proliferation, differentiation, apoptosis and metastasis. Moreover, some miRNAs (miRNA-23a, miRNA-24, miRNA-29c, miRNA-216a) seem to be engaged in a crosstalk between signaling pathways. Evidence concerning the utility of microRNAs in the diagnosis and therapy of this cancer is poor. Therefore, despite growing knowledge of the involvement of miRNAs in several processes associated with pancreatic cancer, we are beginning to recognize and understand their role and usefulness in clinical practice.
Collapse
Affiliation(s)
- Oskar Przybyszewski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Nowicki
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Kusiński
- Department of Endocrinological, General and Oncological Surgery, Medical University of Lodz, 62 Pabianicka St., 93-513 Lodz, Poland;
| | - Melania Mikołajczyk-Solińska
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
5
|
Elebo N, Abdel-Shafy EA, Cacciatore S, Nweke EE. Exploiting the molecular subtypes and genetic landscape in pancreatic cancer: the quest to find effective drugs. Front Genet 2023; 14:1170571. [PMID: 37790705 PMCID: PMC10544984 DOI: 10.3389/fgene.2023.1170571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a very lethal disease that typically presents at an advanced stage and is non-compliant with most treatments. Recent technologies have helped delineate associated molecular subtypes and genetic variations yielding important insights into the pathophysiology of this disease and having implications for the identification of new therapeutic targets. Drug repurposing has been evaluated as a new paradigm in oncology to accelerate the application of approved or failed target-specific molecules for the treatment of cancer patients. This review focuses on the impact of molecular subtypes on key genomic alterations in PDAC, and the progress made thus far. Importantly, these alterations are discussed in light of the potential role of drug repurposing in PDAC.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ebtesam A. Abdel-Shafy
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- National Research Centre, Cairo, Egypt
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
6
|
Zou X, Guan C, Gao J, Shi W, Cui Y, Zhong X. Tertiary lymphoid structures in pancreatic cancer: a new target for immunotherapy. Front Immunol 2023; 14:1222719. [PMID: 37529035 PMCID: PMC10388371 DOI: 10.3389/fimmu.2023.1222719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Pancreatic cancer (PC) is extremely malignant and shows limited response to available immunotherapies due to the hypoxic and immunosuppressive nature of its tumor microenvironment (TME). The aggregation of immune cells (B cells, T cells, dendritic cells, etc.), which is induced in various chronic inflammatory settings such as infection, inflammation, and tumors, is known as the tertiary lymphoid structure (TLS). Several studies have shown that TLSs can be found in both intra- and peritumor tissues of PC. The role of TLSs in peritumor tissues in tumors remains unclear, though intratumoral TLSs are known to play an active role in a variety of tumors, including PC. The formation of intratumoral TLSs in PC is associated with a good prognosis. In addition, TLSs can be used as an indicator to assess the effectiveness of treatment. Targeted induction of TLS formation may become a new avenue of immunotherapy for PC. This review summarizes the formation, characteristics, relevant clinical outcomes, and clinical applications of TLSs in the pancreatic TME. We aim to provide new ideas for future immunotherapy of PC.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Olajubutu O, Ogundipe OD, Adebayo A, Adesina SK. Drug Delivery Strategies for the Treatment of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15051318. [PMID: 37242560 DOI: 10.3390/pharmaceutics15051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic cancer is fast becoming a global menace and it is projected to be the second leading cause of cancer-related death by 2030. Pancreatic adenocarcinomas, which develop in the pancreas' exocrine region, are the predominant type of pancreatic cancer, representing about 95% of total pancreatic tumors. The malignancy progresses asymptomatically, making early diagnosis difficult. It is characterized by excessive production of fibrotic stroma known as desmoplasia, which aids tumor growth and metastatic spread by remodeling the extracellular matrix and releasing tumor growth factors. For decades, immense efforts have been harnessed toward developing more effective drug delivery systems for pancreatic cancer treatment leveraging nanotechnology, immunotherapy, drug conjugates, and combinations of these approaches. However, despite the reported preclinical success of these approaches, no substantial progress has been made clinically and the prognosis for pancreatic cancer is worsening. This review provides insights into challenges associated with the delivery of therapeutics for pancreatic cancer treatment and discusses drug delivery strategies to minimize adverse effects associated with current chemotherapy options and to improve the efficiency of drug treatment.
Collapse
Affiliation(s)
| | - Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Amusa Adebayo
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| |
Collapse
|
8
|
Wang X, Wu B, Sun G, He W, Gao J, Huang T, Liu J, Zhou Q, He X, Zhang S, Zhang Z, Zhu H. Selenium Biofortification Enhanced miR167a Expression in Broccoli Extracellular Vesicles Inducing Apoptosis in Human Pancreatic Cancer Cells by Targeting IRS1. Int J Nanomedicine 2023; 18:2431-2446. [PMID: 37192899 PMCID: PMC10182772 DOI: 10.2147/ijn.s394133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose Pancreatic adenocarcinoma (PAAD) presents an extremely high morbidity and mortality rate. Broccoli has excellent anti-cancer properties. However, the dosage and serious side effects still limit the application of broccoli and its derivatives for cancer therapy. Recently, extracellular vesicles (EVs) derived from plants are emerging as novel therapeutic agents. Thus, we conducted this study to determine the effectiveness of EVs isolated from Se-riched broccoli (Se-BDEVs) and conventional broccoli (cBDEVs) for the treatment of PAAD. Methods In this study, we first isolated Se-BDEVs and cBDEVs by a differential centrifugation method, and characterized them by using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Then, miRNA-seq was combined with target genes prediction, and functional enrichment analysis to reveal the potential function of Se-BDEVs and cBDEVs. Finally, the functional verification was conducted in PANC-1 cells. Results Se-BDEVs and cBDEVs exhibited similar characteristics in size and morphology. Subsequent miRNA-seq revealed the expression of miRNAs in Se-BDEVs and cBDEVs. Using a combination of miRNA target prediction and KEGG functional analysis, we found miRNAs in Se-BDEVs and cBDEVs may play an important role in treating pancreatic cancer. Indeed, our in vitro study showed that Se-BDEVs had greater anti-PAAD potency than cBDEVs due to increased bna-miR167a_R-2 (miR167a) expression. Transfection with miR167a mimics significantly induced apoptosis of PANC-1 cells. Mechanistically, further bioinformatics analysis showed that IRS1, which is involved in the PI3K-AKT pathway, is the key target gene of miR167a. Conclusion This study highlights the role of miR167a transported by Se-BDEVs which could be a new tool for counteracting tumorigenesis.
Collapse
Affiliation(s)
- Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Bo Wu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, People’s Republic of China
| | - Guogen Sun
- Hubei Selenium and Human Health Institute, Enshi, Hubei, People’s Republic of China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jing Liu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xiaoyu He
- Branch of National Clinical Research Center for Metabolic Diseases, Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zixiong Zhang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, People’s Republic of China
- Correspondence: Zixiong Zhang, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, No. 158, Muyang Avenue, Enshi, Hubei, People’s Republic of China, Email
| | - He Zhu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, People’s Republic of China
- He Zhu, The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, People’s Republic of China, Email
| |
Collapse
|
9
|
Oberle R, Kührer K, Österreicher T, Weber F, Steinbauer S, Udonta F, Wroblewski M, Ben-Batalla I, Hassl I, Körbelin J, Unseld M, Jauhiainen M, Plochberger B, Röhrl C, Hengstschläger M, Loges S, Stangl H. The HDL particle composition determines its antitumor activity in pancreatic cancer. Life Sci Alliance 2022; 5:e202101317. [PMID: 35577388 PMCID: PMC9112193 DOI: 10.26508/lsa.202101317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/03/2022] Open
Abstract
Despite enormous efforts to improve therapeutic options, pancreatic cancer remains a fatal disease and is expected to become the second leading cause of cancer-related deaths in the next decade. Previous research identified lipid metabolic pathways to be highly enriched in pancreatic ductal adenocarcinoma (PDAC) cells. Thereby, cholesterol uptake and synthesis promotes growth advantage to and chemotherapy resistance for PDAC tumor cells. Here, we demonstrate that high-density lipoprotein (HDL)-mediated efficient cholesterol removal from cancer cells results in PDAC cell growth reduction and induction of apoptosis in vitro. This effect is driven by an HDL particle composition-dependent interaction with SR-B1 and ABCA1 on cancer cells. AAV-mediated overexpression of APOA1 and rHDL injections decreased PDAC tumor development in vivo. Interestingly, plasma samples from pancreatic-cancer patients displayed a significantly reduced APOA1-to-SAA1 ratio and a reduced cholesterol efflux capacity compared with healthy donors. We conclude that efficient, HDL-mediated cholesterol depletion represents an interesting strategy to interfere with the aggressive growth characteristics of PDAC.
Collapse
Affiliation(s)
- Raimund Oberle
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Kristina Kührer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Tamina Österreicher
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Florian Weber
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Stefanie Steinbauer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Florian Udonta
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Wroblewski
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabel Ben-Batalla
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Hassl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Unseld
- Department of Medicine I, Division of Palliative Medicine, Medical University of Vienna, Vienna, Austria
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and Finnish Institute for Health and Welfare, Genomics and Biobank Unit, Biomedicum 2U, Helsinki, Finland
| | - Birgit Plochberger
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Clemens Röhrl
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Sonja Loges
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Vanek P, Urban O, Zoundjiekpon V, Falt P. Current Screening Strategies for Pancreatic Cancer. Biomedicines 2022; 10:biomedicines10092056. [PMID: 36140157 PMCID: PMC9495594 DOI: 10.3390/biomedicines10092056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dreaded malignancy with a dismal 5-year survival rate despite maximal efforts on optimizing treatment strategies. Radical surgery is the only potential curative procedure. Unfortunately, the majority of patients are diagnosed with locally advanced or metastatic disease, which renders them ineligible for curative resection. Early detection of PDAC is thus considered to be the most effective way to improve survival. In this regard, pancreatic screening has been proposed to improve results by detecting asymptomatic stages of PDAC and its precursors. There is now evidence of benefits of systematic surveillance in high-risk individuals, and the current guidelines emphasize the potential of screening to affect overall survival in individuals with genetic susceptibility syndromes or familial occurrence of PDAC. Here we aim to summarize the current knowledge about screening strategies for PDAC, including the latest epidemiological data, risk factors, associated hereditary syndromes, available screening modalities, benefits, limitations, as well as management implications.
Collapse
|
11
|
ID1 marks the tumorigenesis of pancreatic ductal adenocarcinoma in mouse and human. Sci Rep 2022; 12:13555. [PMID: 35941362 PMCID: PMC9359991 DOI: 10.1038/s41598-022-17827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly disease that has an increasing death rate but no effective treatment to now. Although biological and immunological hallmarks of PDAC have been frequently reported recently, early detection and the particularly aggressive biological features are the major challenges remaining unclear. In the current study, we retrieved multiple scRNA-seq datasets and illustrated the genetic programs of PDAC development in genetically modified mouse models. Notably, the transcription levels of Id1 were elevated specifically along with the PDAC development. Pseudotime trajectory analysis revealed that Id1 was closely correlated with the malignancy of PDAC. The gene expression patterns of human PDAC cells were determined by the comparative analysis of the scRNA-seq data on human PDAC and normal pancreas tissues. ID1 levels in human PDAC cancer cells were dramatically increased compared to normal epithelial cells. ID1 deficiency in vitro significantly blunt the invasive tumor-formation related phenotypes. IPA analysis on the differentially expressed genes suggested that EIF2 signaling was the core pathway regulating the development of PDAC. Blocking EFI2 signaling remarkably decreased the expression of ID1 and attenuated the tumor-formation related phenotypes. These observations confirmed that ID1 was regulated by EIF2 signaling and was the critical determinator of PDAC development and progression. This study suggests that ID1 is a potential malignant biomarker of PDAC in both mouse models and human and detecting and targeting ID1 may be a promising strategy to treat or even rescue PDAC.
Collapse
|
12
|
Liu SS, Ouyang YJ, Lu XZ. Potential roles of exosomal non-coding RNAs in chemoresistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2022; 30:303-309. [DOI: 10.11569/wcjd.v30.i7.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest digestive system tumors in the world, primarily attributed to difficulty in early diagnosis, early metastasis, and insen-sitivity to chemotherapy. The survival of advanced PC patients can be improved by chemotherapy, including gemcitabine, platinum drugs, and 5-fluorouracil, and targeted therapy such as PARP inhibitors. Nevertheless, primary or acquired drug resistance ultimately leads to treatment failure and poor prognosis in patients with PC. The mechanism underlying drug resistance in PC is complex and has not been fully elucidated. Recent studies have indicated that exsomes are the best natural carrier of non-coding RNAs (ncRNAs). They can regulate drug resistance by transporting ncRNAs. Accumulating evidence has demonstrated that exosomal ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play an crucial role in regulating resistance to chemotherapy drugs in PC. In this review, we systematically focus on the emerging role and regulatory mechanisms of exosomal ncRNAs in influencing chemotherapy resistance in PC. We believe that exosomal ncRNAs can be considered as potential biomarkers for the diagnosis and prognosis of PC as well as new therapeutic targets.
Collapse
Affiliation(s)
- Shi-Shi Liu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421200, Hunan province, China
| | - Yu-Juan Ouyang
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421200, Hunan province, China
| | - Xian-Zhou Lu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421200, Hunan province, China
| |
Collapse
|
13
|
Vanek P, Eid M, Psar R, Zoundjiekpon V, Urban O, Kunovský L. Current trends in the diagnosis of pancreatic cancer. VNITRNI LEKARSTVI 2022; 68:363-370. [PMID: 36316197 DOI: 10.36290/vnl.2022.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dreaded malignancy with a dismal 5-year survival rate despite maximal efforts on optimizing treatment strategies. Currently, early detection is considered to be the most effective way to improve survival as radical resection is the only potential cure. PDAC is often divided into four categories based on the extent of disease: resectable, borderline resectable, locally advanced, and metastatic. Unfortunately, the majority of patients are diagnosed with locally advanced or metastatic disease, which renders them ineligible for curative resection. This is mainly due to the lack of or vague symptoms while the disease is still localized, although appropriate utilization and prompt availability of adequate diagnostic tools is also critical given the aggressive nature of the disease. A cost-effective biomarker with high specificity and sensitivity allowing early detection of PDAC without the need for advanced or invasive methods is still not available. This leaves the diagnosis dependent on radiodiagnostic methods or endoscopic ultrasound. Here we summarize the latest epidemiological data, risk factors, clinical manifestation, and current diagnostic trends and implications of PDAC focusing on serum biomarkers and imaging modalities. Additionally, up-to-date management and therapeutic algorithms are outlined.
Collapse
|
14
|
Xu YF, Xu X, Bhandari K, Gin A, Rao CV, Morris KT, Hannafon BN, Ding WQ. Isolation of extra-cellular vesicles in the context of pancreatic adenocarcinomas: Addition of one stringent filtration step improves recovery of specific microRNAs. PLoS One 2021; 16:e0259563. [PMID: 34784377 PMCID: PMC8594802 DOI: 10.1371/journal.pone.0259563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
microRNAs (miRNA) in extracellular vesicles (EVs) have been investigated as potential biomarkers for pancreatic ductal adenocarcinoma (PDAC). However, a mixed population of EVs is often obtained using conventional exosome isolation methods for biomarker development. EVs are derived from different cellular processes and present in various sizes, therefore miRNA expression among them is undoubtedly different. We developed a simple protocol utilizing sequential filtration and ultracentrifugation to separate PDAC EVs into three groups, one with an average diameter of more than 220 nm, named operational 3 (OP3); one with average diameters between 100-220 nm, named operational 2 (OP2); and another with average diameters around 100 nm, named operational 1 (OP1)). EVs were isolated from conditioned cell culture media and plasma of human PDAC xenograft mice and early stage PDAC patients, and verified by nanoparticle tracking, western blot, and electronic microscopy. We demonstrate that exosome specific markers are only enriched in the OP1 group. qRT-PCR analysis of miRNA expression in EVs from PDAC cells revealed that expression of miR-196a and miR-1246, two previously identified miRNAs highly enriched in PDAC cell-derived exosomes, is significantly elevated in the OP1 group relative to the other EV groups. This was confirmed using plasma EVs from PDAC xenograft mice and patients with localized PDAC. Our results indicate that OP1 can be utilized for the identification of circulating EV miRNA signatures as potential biomarkers for PDAC.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Xiaohui Xu
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of General Surgery, First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| | - Kritisha Bhandari
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Amy Gin
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Chinthalapally V. Rao
- Department of Medicine, Hematologic Oncology Section, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Katherine T. Morris
- Department of Surgery, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Bethany N. Hannafon
- Department of Obstetrics and Gynecology, Gynecologic Oncology Section, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wei-Qun Ding
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
15
|
Wang Y, Zhao R, Jiao X, Wu L, Wei Y, Shi F, Zhong J, Xiong L. Small Extracellular Vesicles: Functions and Potential Clinical Applications as Cancer Biomarkers. Life (Basel) 2021; 11:life11101044. [PMID: 34685415 PMCID: PMC8541078 DOI: 10.3390/life11101044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer, as the second leading cause of death worldwide, is a major public health concern that imposes a heavy social and economic burden. Effective approaches for either diagnosis or therapy of most cancers are still lacking. Dynamic monitoring and personalized therapy are the main directions for cancer research. Cancer-derived extracellular vesicles (EVs) are potential disease biomarkers. Cancer EVs, including small EVs (sEVs), contain unique biomolecules (protein, nucleic acid, and lipids) at various stages of carcinogenesis. In this review, we discuss the biogenesis of sEVs, and their functions in cancer, revealing the potential applications of sEVs as cancer biomarkers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Ruichen Zhao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Xueqiao Jiao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Longyuan Wu
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Fuxiu Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
16
|
Evaluation of the In Vitro Cytotoxic Activity of Ursolic Acid PLGA Nanoparticles against Pancreatic Ductal Adenocarcinoma Cell Lines. MATERIALS 2021; 14:ma14174917. [PMID: 34501007 PMCID: PMC8434451 DOI: 10.3390/ma14174917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Among all the types of cancer, Pancreatic Ductal Adenocarcinoma remains one of the deadliest and hardest to fight and there is a critical unmet need for new drugs and therapies for its treatment. Naturally derived compounds, such as pentacyclic triterpenoids, have gathered attention because of their high cytotoxic potential towards pancreatic cancer cells, with a wide biological activity spectrum, with ursolic acid (UA) being one of the most interesting. However, due to its minimal water solubility, it is necessary to prepare a nanocarrier vehicle to aid in the delivery of this compound. Poly(lactic-co-glycolic acid) or PLGA polymeric nanocarriers are an essential tool for ursolic acid delivery and can overcome the lack in its biological activity observed after incorporating within liposomes. We prepared UA-PLGA nanoparticles with a PEG modification, to achieve a long circulation time, by using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay towards AsPC-1 and BxPC-3 cells, with TEM visualization of the nanoparticles and their cellular uptake. We established repeatable preparation procedures of the nanoparticles and achieved biologically active nanocarriers with an IC50 below 30 µM, with an appropriate size for intravenous dosage (around 140 nm), high sample homogeneity (below 0.2) and reasonable encapsulation efficiency (up to 50%). These results represent the first steps in the development of potentially effective PDAC therapies based on novel biologically active and promising triterpenoids.
Collapse
|
17
|
Tuerhong A, Xu J, Shi S, Tan Z, Meng Q, Hua J, Liu J, Zhang B, Wang W, Yu X, Liang C. Overcoming chemoresistance by targeting reprogrammed metabolism: the Achilles' heel of pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2021; 78:5505-5526. [PMID: 34131808 PMCID: PMC11072422 DOI: 10.1007/s00018-021-03866-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death due to its late diagnosis that removes the opportunity for surgery and metabolic plasticity that leads to resistance to chemotherapy. Metabolic reprogramming related to glucose, lipid, and amino acid metabolism in PDAC not only enables the cancer to thrive and survive under hypovascular, nutrient-poor and hypoxic microenvironments, but also confers chemoresistance, which contributes to the poor prognosis of PDAC. In this review, we systematically elucidate the mechanism of chemotherapy resistance and the relationship of metabolic programming features with resistance to anticancer drugs in PDAC. Targeting the critical enzymes and/or transporters involved in glucose, lipid, and amino acid metabolism may be a promising approach to overcome chemoresistance in PDAC. Consequently, regulating metabolism could be used as a strategy against PDAC and could improve the prognosis of PDAC.
Collapse
Affiliation(s)
- Abudureyimu Tuerhong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
18
|
Zhang L, Liu C, Gao H, Zhou C, Qin W, Wang J, Meng L, Wang H, Ren Q, Zhang Y. Study on the expression profile and role of decorin in the progression of pancreatic cancer. Aging (Albany NY) 2021; 13:14989-14998. [PMID: 34021540 PMCID: PMC8221302 DOI: 10.18632/aging.203060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023]
Abstract
Desmoplasia in the extracellular matrix (ECM) is one of the hallmarks of pancreatic cancer (PC), a virtually incurable disease. Decorin, a classical small leucine-rich proteoglycan found in the ECM, was upregulated in PC tissue samples according to the data of TCGA. However, decorin plays a protective role in the ECM. So it is necessary to study the roles of decorin in the progression of PC. A significantly upregulated expression of decorin was observed in the PC tissue samples compared with the normal tissues. However, there was no considerable difference in the level of expression of decorin during different pathological stages, which was supported by the immunoblot analysis. Western blot showed a higher expression of decorin A in the para-carcinoma tissue than in the cancerous tissue but the expression of decorin B, C, and D was elevated in the cancerous tissue. The results of the MTT and scratch wound healing assays revealed an elevated proliferation ability and migration rate in decorin B-overexpressing cells but were inhibited in the decorin A-overexpressing cells. Overexpression of decorin A significantly elevated the expression of the apoptosis-related genes and Decorin B-overexpression elevated proliferation-related genes. All the results showed that decorin B played important roles in the promoting of PC.
Collapse
Affiliation(s)
- Litao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Chao Liu
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Huijie Gao
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Caiju Zhou
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Jian Wang
- Department of Pancreatic Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Lingxin Meng
- Department of Oncology, People's Hospital of Rizhao, Shandong, China
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Yuntao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
19
|
Tone K, Ohno S, Honda M, Notsu A, Sasaki K, Sugino T. Application of enhancer of zeste homolog 2 immunocytochemistry to bile cytology. Cancer Cytopathol 2021; 129:612-621. [PMID: 33788988 DOI: 10.1002/cncy.22426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Bile cytology has low diagnostic sensitivity and requires ancillary techniques. This study assessed the utility of enhancer of zeste homolog 2 (EZH2) immunocytochemistry (ICC) in bile cytology. METHODS A total of 141 bile cytology specimens from 141 patients were evaluated retrospectively. Papanicolaou-stained slides were immunostained with an antibody to EZH2. After calculation of the EZH2 labeling index (LI), the cutoff value was determined via receiver operating characteristic curve analysis. Cytological performance with and without EZH2 ICC was evaluated with reference to the final diagnosis. RESULTS The area under the curve for the EZH2 LI was 0.955, and the cutoff value for identifying benign bile samples versus malignant ones was 24.0%. The sensitivity and specificity values for malignancy were 53.4% and 100% for routine cytology only, 89.0% and 95.7% for EZH2 ICC only, and 89.8% and 95.7% for a combination of routine cytology and EZH2 ICC. The sensitivities of EZH2 ICC only and a combination of routine cytology and EZH2 ICC were significantly improved in comparison with routine cytology only (P < .001). EZH2 ICC alone had a sensitivity of 68.0% and a specificity of 85.7% in bile samples with atypical cytology, a sensitivity of 87.0% in samples that were suspicious for malignancy, and a sensitivity of 85.7% and a specificity of 100% in samples that were negative for malignancy. CONCLUSIONS EZH2 ICC improved the diagnostic sensitivity for pancreatobiliary adenocarcinoma in bile cytology. This method is particularly meaningful in samples of indeterminate cytology and may be useful as an initial assessment to ensure that no cancer cells are missed.
Collapse
Affiliation(s)
- Kiyoshi Tone
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Sachiyo Ohno
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Masatake Honda
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Akifumi Notsu
- Clinical Research Center, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Keiko Sasaki
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Nagaizumi, Japan
| |
Collapse
|
20
|
Haller SD, Monaco ML, Essani K. The Present Status of Immuno-Oncolytic Viruses in the Treatment of Pancreatic Cancer. Viruses 2020; 12:v12111318. [PMID: 33213031 PMCID: PMC7698570 DOI: 10.3390/v12111318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer-related death in Western countries. The incidence of PDAC has increased over the last 40 years and is projected to be the second leading cause of cancer death by 2030. Despite aggressive treatment regimens, prognosis for patients diagnosed with PDAC is very poor; PDAC has the lowest 5-year survival rate for any form of cancer in the United States (US). PDAC is very rarely detected in early stages when surgical resection can be performed. Only 20% of cases are suitable for surgical resection; this remains the only curative treatment when combined with adjuvant chemotherapy. Treatment regimens excluding surgical intervention such as chemotherapeutic treatments are associated with adverse effects and genetherapy strategies also struggle with lack of specificity and/or efficacy. The lack of effective treatments for this disease highlights the necessity for innovation in treatment options for patients diagnosed with early- to late-phase PDAC and immuno-oncolytic viruses (OVs) have been of particular interest since 2006 when the first oncolytic virus was approved as a therapy for nasopharyngeal cancers in China. Interest resurged in 2015 when T-Vec, an oncolytic herpes simplex virus, was approved in the United States for treatment of advanced melanoma. While many vectors have been explored, few show promise as treatment for pancreatic cancer, and fewer still have progressed to clinical trial evaluation. This review outlines recent strategies in the development of OVs targeting treatment of PDAC, current state of preclinical and clinical investigation and application.
Collapse
Affiliation(s)
| | | | - Karim Essani
- Correspondence: ; Tel.: +1-(269)-387-2661; Fax: +1-(269)-387-5609
| |
Collapse
|
21
|
Zhong A, Cheng CS, Kai J, Lu R, Guo L. Clinical Significance of Glucose to Lymphocyte Ratio (GLR) as a Prognostic Marker for Patients With Pancreatic Cancer. Front Oncol 2020; 10:520330. [PMID: 33117673 PMCID: PMC7561421 DOI: 10.3389/fonc.2020.520330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 09/03/2020] [Indexed: 12/25/2022] Open
Abstract
Glucose metabolism and systemic inflammation have been associated with cancer aggressiveness and patient prognosis in various malignancies. This study aimed to evaluate the prognostic significance of pretreatment GLR(glucose to lymphocyte ratio) and systemic immune inflammation in patients with pancreatic cancer. We studied 360 patients with pathologically diagnosed pancreatic adenocarcinoma that was clinically unresectable. Baseline clinicopathological characteristics and laboratory investigations including fasting blood glucose, platelet count, lymphocyte count, neutrophil count, carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), and follow-up data were collected for further analysis. The patients were randomly divided into a training cohort (n = 238) and a validation cohort (n = 122). Univariate and multivariate Cox proportional hazard regression analyses were performed to identify the prognostic value of GLR, systemic immune-inflammation markers, and tumor biomarkers. A nomogram model was developed based on the identified prognostic factors, and we used the C-index to evaluate the accuracy of the Cox regression model prediction. Multivariate analysis revealed that GLR [hazard ratio (HR): 2.597; 95% confidence interval (CI): 1.728-3.904)] and CA199 (HR: 2.484; 95% CI: 1.295-4.765) are independent predictors of poor overall survival in the training cohort and were incorporated into the nomogram for OS as independent factors. Moreover, the C-index analyses demonstrated that the C-indexes in the training cohort and the validation cohort were 0.674 and 0.671, respectively. The nomogram model predicts overall survival relatively accurately. We found that the baseline GLR is an independent prognostic factor for patients with pancreatic cancer, and the proposed nomogram can be used as an effective tool for predicting the outcomes of prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ailing Zhong
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Chien-Shan Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jinyan Kai
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Waissi W, Paix A, Nicol A, Noël G, Burckel H. Targeting DNA repair in combination with radiotherapy in pancreatic cancer: A systematic review of preclinical studies. Crit Rev Oncol Hematol 2020; 153:103060. [PMID: 32707435 DOI: 10.1016/j.critrevonc.2020.103060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Current research that combines radiation with targeted therapy may dramatically improve prognosis of pancreatic ductal adenocarcinoma (PDAC). We investigated preclinical outcomes of DNA repair inhibitor targeted therapy associated with radiotherapy. METHODS We searched Pubmed database to identify publications assessing DNA damage targeted therapies in preclinical models of PDACin vitro and in vivo. Standard enhancement ratio, median survival and growth delay were extracted. RESULTS We identified fourteen publications using DNA repair targeted therapies in preclinical models of PDAC. Ten publications comprising twenty-eight experiments evaluated radiosensitization with different DNA repair inhibitors in vitro and displayed cell killing by a factor of 1.35 ± 0.047. Moreover, 86 % (24/28) of in vitro experiments showed radiosensitization with DNA damage response inhibitor. However, only 60 % (9/15) of the in vivo experiments presented radiosensitization effects. CONCLUSION DNA repair targeted therapies use promising radiosensitizers for PDAC and could successfully be translated into clinical trials.
Collapse
Affiliation(s)
- Waisse Waissi
- Institut de Cancérologie Strasbourg Europe, Radiobiology Laboratory, Université de Strasbourg, Centre Paul Strauss, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France; Institut de Cancérologie Strasbourg Europe, Department de Radiation Oncology, 17 rue Albert Calmette, 67200, Strasbourg, France
| | - Adrien Paix
- Institut de Radiothérapie des Hautes Energies, rue Lautréamont, 93000 Bobigny, France
| | - Anaïs Nicol
- Institut de Cancérologie Strasbourg Europe, Radiobiology Laboratory, Université de Strasbourg, Centre Paul Strauss, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe, Radiobiology Laboratory, Université de Strasbourg, Centre Paul Strauss, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France; Institut de Cancérologie Strasbourg Europe, Department de Radiation Oncology, 17 rue Albert Calmette, 67200, Strasbourg, France; Université de Strasbourg,CNRS, IPHC UMR 7178, 23 rue du Loess, 67200 Strasbourg, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe, Radiobiology Laboratory, Université de Strasbourg, Centre Paul Strauss, 3 rue de la porte de l'Hôpital, 67000, Strasbourg, France.
| |
Collapse
|
23
|
Wang Y, Liu Z, Liu Q, Han Y, Zang Y, Zhang H, Du X, Qin T, Wu Y. Honokiol Suppressed Pancreatic Cancer Progression via miR-101/Mcl-1 Axis. Cancer Manag Res 2020; 12:5243-5254. [PMID: 32669873 PMCID: PMC7335890 DOI: 10.2147/cmar.s237323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background Pancreatic cancer is one of the most aggressive malignancies. The present study aimed to examine the anti-tumor effects of honokiol in pancreatic cancer and to explore the underlying molecular mechanisms. Materials and Methods In vitro functional assays determined pancreatic cancer cell proliferation, apoptosis and invasion. Xenograft nude mice model determined the in vivo anti-cancer effects of honokiol. Luciferase reporter assay determined the interaction between miR101 and myeloid cell leukemia-1 (Mcl-1). Results Honokiol concentration-dependently suppressed pancreatic cancer cell viability. In addition, honokiol increased the caspase-3 activity and cell apoptotic rates, induced cell cycle arrest at G0/G1 phase, and inhibited cell invasion in pancreatic cancer. Interestingly, honokiol treatment induced up-regulation of miR-101 in pancreatic cancer cells. Knockdown of miR-101 attenuated the honokiol-induced cell apoptosis and inhibition in cell invasion of pancreatic cancer cells. On the other hand, miR-101 overexpression induced cell apoptosis and inhibited cell viability and invasion in pancreatic cancer. Further mechanistic study verified that Mcl-1 was negatively regulated by miR-101, and Mcl-1 overexpression counteracted the tumor-suppressive effects of honokiol on the pancreatic cancer cells. In vivo studies showed that honokiol dose-dependently suppressed tumor growth of pancreatic cancer in the nude mice and up-regulated miR-101 expression but down-regulated Mcl-1 expression in tumor tissues. Conclusion Our data showed that honokiol suppressed pancreatic cancer progression via miR-101-Mcl-1 axis. Honokiol could be a promising candidate for cancer prevention and/or therapeutic treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Yishuo Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Zhongyong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Qinrong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Yongguang Han
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Yuncai Zang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Huichao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Xuzhao Du
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Tao Qin
- Department of Rheumatology, Xinmi Hospital of Traditional Chinese Medicine, Xinmi, People's Republic of China
| | - Yuquan Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| |
Collapse
|
24
|
Lane JS, Von Hoff D, Cridebring D, Goel A. Extracellular Vesicles in Diagnosis and Treatment of Pancreatic Cancer: Current State and Future Perspectives. Cancers (Basel) 2020; 12:1530. [PMID: 32532129 PMCID: PMC7352217 DOI: 10.3390/cancers12061530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest diagnoses a patient can receive. One of the reasons for this lethality is that this malignancy is often detected very late due to a lack of symptoms during the early stages. In addition to the lack of symptoms, we currently do not have a reliable biomarker for screening. Carbohydrate antigen (CA) 19-9 has a sensitivity between 79% and 84% and a specificity of 82-90%, making it unreliable for early detection. Recently, there have been numerous studies on the use of extracellular vesicles (EVs) to detect pancreas cancer. This field has been rapidly expanding, with new methods and biomarkers being introduced regularly. This review provides a systematic update on the commonly used and promising methods used in the detection of EVs, biomarkers associated with EVs for early detection and prognosis, as well as studies looking at using EVs as therapeutics. The review ends with remarks about areas to focus on using EVs going forward.
Collapse
Affiliation(s)
- J. Spencer Lane
- Internal Medicine-Pediatrics, University of Texas Houston, Houston, TX 77030, USA;
| | - Daniel Von Hoff
- Translational Genomics Research Institute, (TGen), Phoenix, AZ 85004, USA;
| | - Derek Cridebring
- Translational Genomics Research Institute, (TGen), Phoenix, AZ 85004, USA;
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope, CA 91010, USA;
| |
Collapse
|
25
|
Monitoring Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells via Investigation of Mitochondrial Dysfunction. Methods Protoc 2020. [PMID: 32349411 DOI: 10.3390/mps3020032.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this protocol, we introduced a method of measuring mitochondrial dysfunction to confirm the epithelial-mesenchymal transition (EMT) in pancreatic cancer cells under a hypoxic environment. There are many expertized and complicated methods to verify EMT. However, our methods have indicated that EMT can be identified by examining changes in reactive oxygen species (ROS) generation and membrane potential in mitochondria. To demonstrate whether the changes in the indicators of mitochondrial dysfunction are correlative to EMT, cell morphology, and expression of E-cadherin and N-cadherin were additionally observed. The results verified that a decrease in membrane potential and an increase in ROS in mitochondria were associated with EMT of pancreatic cancer cells. This protocol would be useful as a basis for providing an additional indicator for changes in the tumor microenvironment of pancreatic cancer cells relating to EMT under a hypoxic environment.
Collapse
|
26
|
Sim JJ, Jeong KY. Monitoring Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells via Investigation of Mitochondrial Dysfunction. Methods Protoc 2020; 3:32. [PMID: 32349411 PMCID: PMC7359699 DOI: 10.3390/mps3020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022] Open
Abstract
In this protocol, we introduced a method of measuring mitochondrial dysfunction to confirm the epithelial-mesenchymal transition (EMT) in pancreatic cancer cells under a hypoxic environment. There are many expertized and complicated methods to verify EMT. However, our methods have indicated that EMT can be identified by examining changes in reactive oxygen species (ROS) generation and membrane potential in mitochondria. To demonstrate whether the changes in the indicators of mitochondrial dysfunction are correlative to EMT, cell morphology, and expression of E-cadherin and N-cadherin were additionally observed. The results verified that a decrease in membrane potential and an increase in ROS in mitochondria were associated with EMT of pancreatic cancer cells. This protocol would be useful as a basis for providing an additional indicator for changes in the tumor microenvironment of pancreatic cancer cells relating to EMT under a hypoxic environment.
Collapse
Affiliation(s)
| | - Keun-Yeong Jeong
- MetiMedi Pharmaceuticals Co., Research Center, Incheon 22006, Korea;
| |
Collapse
|
27
|
Chen P, Shen Z, Fang X, Wang G, Wang X, Wang J, Xi S. Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells. Oncol Lett 2020; 19:3531-3541. [PMID: 32269627 PMCID: PMC7114934 DOI: 10.3892/ol.2020.11469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 01/05/2023] Open
Abstract
Keratin 17 (KRT17) has been demonstrated to be a potential biological marker for the prediction of prognosis in particular types of cancer. The aim of the present study was to investigate the molecular mechanisms underlying the function of KRT17 in the pancreatic cancer (PAC) cell line PANC-1 and the potential of KRT17 as a therapeutic target for PAC. KRT17 expression levels were analyzed using quantitative PCR and compared with histological data using bioinformatics tools in PAC samples and three human PAC cell lines. Cell proliferation was determined using an MTT assay, in addition to cell cycle distribution and apoptosis analysis using flow cytometry, colony formation assay using Giemsa staining and cell motility analysis using a Transwell migration assay. Tumor growth was evaluated in vivo in nude mice. The expression levels of a number of signaling molecules were measured to establish the potential mechanism by which silencing KRT17 expression affected PAC PANC-1 cells. Increased levels of KRT17 expression were observed in human PAC compared with normal tissues, as well as in three human PAC cell lines (MIA PaCa-2, PANC-1 and KP-3 cells) compared with the H6c7 human immortal pancreatic duct epithelial cell line. High expression levels of KRT17 in PAC samples were associated with poor overall survival (P=0.036) and disease-free survival (P=0.017). Lentivirus-mediated KRT17 silencing inhibited cell proliferation, colony formation and migration, but promoted apoptosis and resulted in cell cycle arrest in the G0/G1 phase in PANC-1 cells. In addition, KRT17 knockdown inhibited in vivo tumor growth. KRT17 knockdown induced dysregulation of ERK1/2 and upregulation of the pro-apoptotic Bcl-2 protein Bad. In conclusion, the present study demonstrated that elevated KRT17 levels are positively associated with pancreatic cancer progression; KRT17 knockdown suppressed cell growth, colony formation, migration and tumor growth, and induced apoptosis and cell cycle arrest, affecting ERK1/2/Bad signaling. Therefore, the results of the present study suggested that KRT17 may be a potential target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhengchao Shen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaosan Fang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Guannan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Jun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Shihang Xi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
28
|
Mehta S, Tan GI, Nahm CB, Chua TC, Pearson A, Gill AJ, Samra JS, Mittal A. Pancreatic resection in patients with synchronous extra-pancreatic malignancy: outcomes and complications. ANZ J Surg 2020; 90:290-294. [PMID: 31943690 DOI: 10.1111/ans.15651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients may present with a resectable pancreatic tumour in the context of a concurrent primary extra-pancreatic malignancy. These patients pose a dilemma regarding their suitability for surgery. We evaluated our experience with such patients who underwent pancreatic resection with curative intent and detailed their outcomes and rationale for surgical decision-making. METHODS A retrospective review of patients with pancreatic concurrent extra-pancreatic primary malignancy who underwent pancreatic resection at our institution over a 12-year period (2005-2016) was performed. Clinical, histopathological and perioperative outcomes were reviewed. RESULTS Ten patients with a median age of 74 years (40-85 years) were identified. Secondary primary tumours included thyroid (n = 2), gastrointestinal (n = 4), small bowel neuroendocrine (n = 1), renal (n = 1) and haematological malignancies (n = 2). Pancreatic tumours included pancreatic ductal adenocarcinomas (n = 6), solid pseudopapillary neoplasms (n = 2) and ampullary carcinomas (n = 2). After a median follow up of 41.3 months (31.3-164 months), 8 of 10 patients were still alive. Two patients died due to metastatic disease from the secondary malignancy (small bowel neuroendocrine tumour and sigmoid colon adenocarcinoma). The post-operative complication rate was 30% with no perioperative 90-day mortality. CONCLUSION Selected patients with a pancreatic and concurrent primary extra-pancreatic malignancy may undergo curative pancreatic resection with favourable outcomes.
Collapse
Affiliation(s)
- Shreya Mehta
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Grace I Tan
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Christopher B Nahm
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Terence C Chua
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Department of Surgery, Logan Hospital, Metro South Health, Logan City, Queensland, Australia
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew Pearson
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Anthony J Gill
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Jaswinder S Samra
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Macquarie University Hospital, Macquarie University, Sydney, New South Wales, Australia
| | - Anubhav Mittal
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discov Today 2020; 25:107-125. [DOI: 10.1016/j.drudis.2019.09.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
|
30
|
Yu L, Teoh ST, Ensink E, Ogrodzinski MP, Yang C, Vazquez AI, Lunt SY. Cysteine catabolism and the serine biosynthesis pathway support pyruvate production during pyruvate kinase knockdown in pancreatic cancer cells. Cancer Metab 2019; 7:13. [PMID: 31893043 PMCID: PMC6937848 DOI: 10.1186/s40170-019-0205-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with limited treatment options. Pyruvate kinase, especially the M2 isoform (PKM2), is highly expressed in PDAC cells, but its role in pancreatic cancer remains controversial. To investigate the role of pyruvate kinase in pancreatic cancer, we knocked down PKM2 individually as well as both PKM1 and PKM2 concurrently (PKM1/2) in cell lines derived from a KrasG12D/-; p53-/- pancreatic mouse model. Methods We used liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine metabolic profiles of wildtype and PKM1/2 knockdown PDAC cells. We further used stable isotope-labeled metabolic precursors and LC-MS/MS to determine metabolic pathways upregulated in PKM1/2 knockdown cells. We then targeted metabolic pathways upregulated in PKM1/2 knockdown cells using CRISPR/Cas9 gene editing technology. Results PDAC cells are able to proliferate and continue to produce pyruvate despite PKM1/2 knockdown. The serine biosynthesis pathway partially contributed to pyruvate production during PKM1/2 knockdown: knockout of phosphoglycerate dehydrogenase in this pathway decreased pyruvate production from glucose. In addition, cysteine catabolism generated ~ 20% of intracellular pyruvate in PDAC cells. Other potential sources of pyruvate include the sialic acid pathway and catabolism of glutamine, serine, tryptophan, and threonine. However, these sources did not provide significant levels of pyruvate in PKM1/2 knockdown cells. Conclusion PKM1/2 knockdown does not impact the proliferation of pancreatic cancer cells. The serine biosynthesis pathway supports conversion of glucose to pyruvate during pyruvate kinase knockdown. However, direct conversion of serine to pyruvate was not observed during PKM1/2 knockdown. Investigating several alternative sources of pyruvate identified cysteine catabolism for pyruvate production during PKM1/2 knockdown. Surprisingly, we find that a large percentage of intracellular pyruvate comes from cysteine. Our results highlight the ability of PDAC cells to adaptively rewire their metabolic pathways during knockdown of a key metabolic enzyme.
Collapse
Affiliation(s)
- Lei Yu
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Shao Thing Teoh
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Elliot Ensink
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Martin P Ogrodzinski
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA.,2Department of Physiology, Michigan State University, East Lansing, MI USA
| | - Che Yang
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Ana I Vazquez
- 3Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI USA.,4The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI USA
| | - Sophia Y Lunt
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA.,5Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI USA
| |
Collapse
|
31
|
Kim JH, Youn Y, Kim KT, Jang G, Hwang JH. Non-SMC condensin I complex subunit H mediates mature chromosome condensation and DNA damage in pancreatic cancer cells. Sci Rep 2019; 9:17889. [PMID: 31784646 PMCID: PMC6884527 DOI: 10.1038/s41598-019-54478-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Non-SMC condensin I complex subunit H (NCAPH) is a vital gene associated with chromosome stability and is required for proper chromosome condensation and segregation. However, the mechanisms through which NCAPH affects pancreatic cancer (PC) and its molecular function remain unclear. In this study, we examined the role of NCAPH in PC cells. Our results showed that NCAPH was overexpressed in clinical PC specimens (GEPIA) and cell lines. In addition, in NCAPH-knockdown cells, colony formation and proliferation were inhibited, and the cell cycle was arrested at the S and G2/M phases owing to failure of mature chromosome condensation (MCC) in poorly condensed chromosomes. Increased cell death in NCAPH-knockdown cells was found to help initiate apoptosis through the activation of caspase-3 and PARP cleavage. Furthermore, NCAPH-knockdown cells showed an increase in chromosomal aberrations and DNA damage via activation of the DNA damage response (Chk1/Chk2) signaling pathways. These data demonstrated that NCAPH played an important role in cell cycle progression and DNA damage by maintaining chromosomal stability through progression of MCC from poorly condensed chromosomes. Ultimately, NCAPH knockdown induced apoptotic cell death, which was partially mediated by caspase-dependent pathways. These findings highlight the potential role of NCAPH as a therapeutic target for PC.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Kyung-Tae Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Gyubeom Jang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
32
|
Rawat M, Kadian K, Gupta Y, Kumar A, Chain PSG, Kovbasnjuk O, Kumar S, Parasher G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes (Basel) 2019; 10:752. [PMID: 31557962 PMCID: PMC6827136 DOI: 10.3390/genes10100752] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA's in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Kavita Kadian
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001, India.
| | - Yash Gupta
- Department of Internal Medicine, Loyola University Medical Center, Chicago, IL 60153, USA.
| | - Anand Kumar
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Olga Kovbasnjuk
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Gulshan Parasher
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
33
|
Adamska A, Domenichini A, Capone E, Damiani V, Akkaya BG, Linton KJ, Di Sebastiano P, Chen X, Keeton AB, Ramirez-Alcantara V, Maxuitenko Y, Piazza GA, De Laurenzi V, Sala G, Falasca M. Pharmacological inhibition of ABCC3 slows tumour progression in animal models of pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:312. [PMID: 31378204 PMCID: PMC6681491 DOI: 10.1186/s13046-019-1308-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
Abstract
Background Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive and lethal disease, lacking effective therapeutic approaches. Available therapies only marginally prolong patient survival and are frequently coupled with severe adverse events. It is therefore pivotal to investigate novel and safe pharmacological approaches. We have recently identified the ABC transporter, ABCC3, whose expression is dependent on mutation of TP53, as a novel target in PDAC. ABCC3-mediated regulation of PDAC cell proliferation and tumour growth in vivo was demonstrated and was shown to be conferred by upregulation of STAT3 signalling and regulation of apoptosis. Methods To verify the potential of ABCC3 as a pharmacological target, a small molecule inhibitor of ABCC3, referred to here as MCI-715, was designed. In vitro assays were performed to assess the effects of ABCC3 inhibition on anchorage-dependent and anchorage-independent PDAC cell growth. The impact of ABCC3 inhibition on specific signalling pathways was verified by Western blotting. The potential of targeting ABCC3 with MCI-715 to counteract PDAC progression was additionally tested in several animal models of PDAC, including xenograft mouse models and transgenic mouse model of PDAC. Results Using both mouse models and human cell lines of PDAC, we show that the pharmacological inhibition of ABCC3 significantly decreased PDAC cell proliferation and clonal expansion in vitro and in vivo, remarkably slowing tumour growth in mice xenografts and patient-derived xenografts and increasing the survival rate in a transgenic mouse model. Furthermore, we show that stromal cells in pancreatic tumours, which actively participate in PDAC progression, are enriched for ABCC3, and that its inhibition may contribute to stroma reprogramming. Conclusions Our results indicate that ABCC3 inhibition with MCI-715 demonstrated strong antitumor activity and is well tolerated, which leads us to conclude that ABCC3 inhibition is a novel and promising therapeutic strategy for a considerable cohort of patients with pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1308-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Alice Domenichini
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Verena Damiani
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Begum Gokcen Akkaya
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, Newark Street, London, E1 2AT, UK
| | - Kenneth J Linton
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, Newark Street, London, E1 2AT, UK
| | - Pierluigi Di Sebastiano
- Department of Surgery, Unit of Surgical Oncology, SS. Annunziata Hospital, G. D'Annunzio University, I-66100, Chieti, Italy
| | - Xi Chen
- Drug Discovery Research Center, USA Health Mitchell Cancer Institute, Mobile, AL, USA
| | - Adam B Keeton
- Drug Discovery Research Center, USA Health Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Yulia Maxuitenko
- Drug Discovery Research Center, USA Health Mitchell Cancer Institute, Mobile, AL, USA
| | - Gary A Piazza
- Drug Discovery Research Center, USA Health Mitchell Cancer Institute, Mobile, AL, USA
| | - Vincenzo De Laurenzi
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia. .,Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, Newark Street, London, E1 2AT, UK.
| |
Collapse
|
34
|
Qin RF, Zhang J, Huo HR, Yuan ZJ, Xue JD. MiR-205 mediated APC regulation contributes to pancreatic cancer cell proliferation. World J Gastroenterol 2019; 25:3775-3786. [PMID: 31391772 PMCID: PMC6676546 DOI: 10.3748/wjg.v25.i28.3775] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/07/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a deadly malignancy with aggressive properties. MicroRNAs (miRNAs) participate in the pathogenesis of a variety of diseases and molecular processes by targeting functional mRNAs. Nevertheless, the regulatory role of miRNAs in signaling pathways involved in pancreatic cancer remains largely unknown.
AIM To explore the molecular regulation involved in pancreatic cancer and potential mechanisms of miR-205.
METHODS Microarray analysis was performed to investigate the expression profile of miRNAs in pancreatic cancer. Expression of miR-205 was validated by qRT-PCR. Target prediction and functional enrichment analysis were employed to seek potential target genes of miR-205 and potential functions of these genes. The target binding of miR-205 and adenomatous polyposis coli (APC) was validated by luciferase reporter assay. APC protein expression in pancreatic cancer was validated by qRT-PCR and Western blot. Proliferation was evaluated by MTT and colony formation assays.
RESULTS A large number of miRNAs with altered expression were identified in pancreatic cancer. MiR-205 was significantly up-regulated. APC was found to be a validated target of miR-205 and down-regulated in pancreatic cancer. Proliferation experiments showed that miR-205 could promote cell proliferation in pancreatic cancer by targeting APC.
CONCLUSION The above findings suggested that miR-205 mediated APC regulation contributes to pancreatic cancer development, which could be considered as a novel prognostic biomarker for clinical care.
Collapse
Affiliation(s)
- Rui-Feng Qin
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Jia Zhang
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Hao-Ran Huo
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Zeng-Jiang Yuan
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Jia-Dong Xue
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| |
Collapse
|
35
|
Snail-Overexpression Induces Epithelial-mesenchymal Transition and Metabolic Reprogramming in Human Pancreatic Ductal Adenocarcinoma and Non-tumorigenic Ductal Cells. J Clin Med 2019; 8:jcm8060822. [PMID: 31181802 PMCID: PMC6617272 DOI: 10.3390/jcm8060822] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
The zinc finger transcription factor Snail is a known effector of epithelial-to-mesenchymal transition (EMT), a process that underlies the enhanced invasiveness and chemoresistance of common to cancerous cells. Induction of Snail-driven EMT has also been shown to drive a range of pro-survival metabolic adaptations in different cancers. In the present study, we sought to determine the specific role that Snail has in driving EMT and adaptive metabolic programming in pancreatic ductal adenocarcinoma (PDAC) by overexpressing Snail in a PDAC cell line, Panc1, and in immortalized, non-tumorigenic human pancreatic ductal epithelial (HPDE) cells. Snail overexpression was able to induce EMT in both pancreatic cell lines through suppression of epithelial markers and upregulation of mesenchymal markers alongside changes in cell morphology and enhanced migratory capacity. Snail-overexpressed pancreatic cells additionally displayed increased glucose uptake and lactate production with concomitant reduction in oxidative metabolism measurements. Snail overexpression reduced maximal respiration in both Panc1 and HPDE cells, with further reductions seen in ATP production, spare respiratory capacity and non-mitochondrial respiration in Snail overexpressing Panc1 cells. Accordingly, lower expression of mitochondrial electron transport chain proteins was observed with Snail overexpression, particularly within Panc1 cells. Modelling of 13C metabolite flux within both cell lines revealed decreased carbon flux from glucose in the TCA cycle in snai1-overexpressing Panc1 cells only. This work further highlights the role that Snail plays in EMT and demonstrates its specific effects on metabolic reprogramming of glucose metabolism in PDAC.
Collapse
|
36
|
Tahkola K, Leppänen J, Ahtiainen M, Väyrynen J, Haapasaari KM, Karttunen T, Kellokumpu I, Helminen O, Böhm J. Immune cell score in pancreatic cancer-comparison of hotspot and whole-section techniques. Virchows Arch 2019; 474:691-699. [PMID: 30843106 PMCID: PMC6581934 DOI: 10.1007/s00428-019-02549-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/04/2023]
Abstract
An immune cell score (ICS) was introduced for predicting survival in pancreatic ductal adenocarcinoma (PDAC). Few studies have compared different methods of evaluating immune infiltrate. This study compared ICSs determined in whole sections or tissue microarray-like hotspots for predicting survival after PDAC surgery. We included in 79 consecutive patients from a single geographical area that underwent surgery for PDAC (R0/R1, stages I-III). We performed digital image analyses to evaluate CD3 and CD8 staining. ICSs were classified as low, moderate, or high, based on the numbers of immune cells in the tumour core and invasive margin. We compared ICS groups determined with the hotspot and whole-section techniques. Associations between ICS and survival were analysed with Cox regression models, adjusted for sex, age, tumour stage, differentiation grade, perineural invasion, and resection radicality. In hotspot ICS analysis, 5-year overall survival rates for low, moderate, and high groups were 12.1%, 26.3%, and 26.8%, respectively (p = 0.193). In whole-section analyses, overall survival rates were 5.3%, 26.4%, and 43.8%, respectively (p = 0.030). In the adjusted Cox model, whole-section ICS groups were inversely associated with the overall mortality hazard ratio (HR): low, moderate, and high ICS groups had HRs of 1.00, 0.42 (95% CI 0.20-0.88), and 0.27 (95% CI 0.11-0.67), respectively. The number of immune cells per square millimetre in the tumour core and the invasive margin were significantly higher and had a wider range in hotspots than in whole-tissue sections. Accordingly, ICS could predict survival in patients with PDAC after surgery. Whole tissue section ICSs exhibited better prognostic value than hotspot ICSs.
Collapse
Affiliation(s)
- Kyösti Tahkola
- Department of Surgery, Central Finland Central Hospital, Jyvaskyla, Finland.
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland.
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland.
| | - Joni Leppänen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Maarit Ahtiainen
- Department of Education and Research, Central Finland Central Hospital and University of Eastern Finland, Jyvaskyla, Finland
| | - Juha Väyrynen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kirsi-Maria Haapasaari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuomo Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Ilmo Kellokumpu
- Department of Surgery, Central Finland Central Hospital, Jyvaskyla, Finland
| | - Olli Helminen
- Department of Surgery, Central Finland Central Hospital, Jyvaskyla, Finland
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jan Böhm
- Department of Pathology, Central Finland Central Hospital, Jyvaskyla, Finland
| |
Collapse
|
37
|
Emmanouilidi A, Fyffe CA, Ferro R, Edling CE, Capone E, Sestito S, Rapposelli S, Lattanzio R, Iacobelli S, Sala G, Maffucci T, Falasca M. Preclinical validation of 3-phosphoinositide-dependent protein kinase 1 inhibition in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:191. [PMID: 31088502 PMCID: PMC6518649 DOI: 10.1186/s13046-019-1191-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 11/02/2022]
Abstract
BACKGROUND The very aggressive nature and low survival rate of pancreatic ductal adenocarcinoma (PDAC) dictates the necessity to find novel efficacious therapies. Recent evidence suggests that phosphoinositide 3-kinase (PI3K) and 3-phosphoinositide-dependent protein kinase 1 (PDK1) are key effectors of oncogenic KRAS in PDAC. Herein, we report the role and mechanism of action of PDK1, a protein kinase of the AGC family, in PDAC. METHODS PDAC cell lines were treated with selective PDK1 inhibitors or transfected with specific PDK1-targeting siRNAs. In vitro and in vivo assays were performed to investigate the functional role of PDK1 in PDAC. Specifically, anchorage-dependent and anchorage-independent growth was assessed in PDAC cells upon inhibition or downregulation of PDK1. Detailed investigation of the effect of PDK1 inhibition/downregulation on specific signalling pathways was also performed by Western blotting analysis. A xenograft tumour mouse model was used to determine the effect of pharmacological inhibition of PDK1 on PDAC cells growth in vivo. RESULTS Treatment with specific inhibitors of PDK1 impaired anchorage-dependent and anchorage-independent growth of pancreatic cancer cell lines, as well as pancreatic tumour growth in a xenograft model. Mechanistically, inhibition or downregulation of PDK1 resulted in reduced activation of the serum/glucocorticoid regulated kinase family member 3 and subsequent reduced phosphorylation of its target N-Myc downstream regulated 1. Additionally, we found that combination of sub-optimal concentrations of inhibitors selective for PDK1 and the class IB PI3K isoform p110γ inhibits pancreatic cancer cell growth and colonies formation more potently than each single treatment. CONCLUSIONS Our data indicate that PDK1 is a suitable target for therapeutic intervention in PDAC and support the clinical development of PDK1 inhibitors for PDAC.
Collapse
Affiliation(s)
- Aikaterini Emmanouilidi
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Chanse A Fyffe
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Riccardo Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Charlotte E Edling
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Simona Sestito
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy
| | - Rossano Lattanzio
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Stefano Iacobelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy.,MediaPharma Srl, Via della Colonnetta, 50/A, 66100, Chieti, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Tania Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia. .,Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK.
| |
Collapse
|
38
|
Emmanouilidi A, Paladin D, Greening DW, Falasca M. Oncogenic and Non‐Malignant Pancreatic Exosome Cargo Reveal Distinct Expression of Oncogenic and Prognostic Factors Involved in Tumor Invasion and Metastasis. Proteomics 2019; 19:e1800158. [DOI: 10.1002/pmic.201800158] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Aikaterini Emmanouilidi
- Metabolic SignalingSchool of Pharmacy and Biomedical SciencesCurtin Health Innovation Research InstituteCurtin University 6102 Perth Western Australia Australia
| | - Dino Paladin
- Metabolic SignalingSchool of Pharmacy and Biomedical SciencesCurtin Health Innovation Research InstituteCurtin University 6102 Perth Western Australia Australia
| | - David W. Greening
- Baker Heart and Diabetes InstituteDepartment of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe University 3086 Melbourne Victoria Australia
| | - Marco Falasca
- Metabolic SignalingSchool of Pharmacy and Biomedical SciencesCurtin Health Innovation Research InstituteCurtin University 6102 Perth Western Australia Australia
| |
Collapse
|
39
|
Lankadasari MB, Mukhopadhyay P, Mohammed S, Harikumar KB. TAMing pancreatic cancer: combat with a double edged sword. Mol Cancer 2019; 18:48. [PMID: 30925924 PMCID: PMC6441154 DOI: 10.1186/s12943-019-0966-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Among all the deadly cancers, pancreatic cancer ranks seventh in mortality. The absence of any grave symptoms coupled with the unavailability of early prognostic and diagnostic markers make the disease incurable in most of the cases. This leads to a late diagnosis, where the disease would have aggravated and thus, incurable. Only around 20% of the cases present the early disease diagnosis. Surgical resection is the prime option available for curative local disease but in the case of advanced cancer, chemotherapy is the standard treatment modality although the patients end up with drug resistance and severe side effects. Desmoplasia plays a very important role in chemoresistance associated with pancreatic cancer and consists of a thick scar tissue around the tumor comprised of different cell populations. The interplay between this heterogenous population in the tumor microenvironment results in sustained tumor growth and metastasis. Accumulating evidences expose the crucial role played by the tumor-associated macrophages in pancreatic cancer and this review briefly presents the origin from their parent lineage and the importance in maintaining tumor hallmarks. Finally we have tried to address their role in imparting chemoresistance and the therapeutic interventions leading to reduced tumor burden.
Collapse
Affiliation(s)
- Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Pramiti Mukhopadhyay
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Present address: Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.
| |
Collapse
|
40
|
Yarrow supercritical extract exerts antitumoral properties by targeting lipid metabolism in pancreatic cancer. PLoS One 2019; 14:e0214294. [PMID: 30913248 PMCID: PMC6435158 DOI: 10.1371/journal.pone.0214294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is considered a hallmark of cancer. Currently, the altered lipid metabolism in cancer is a topic of interest due to the prominent role of lipids regulating the progression of various types of tumors. Lipids and lipid-derived molecules have been shown to activate growth regulatory pathways and to promote malignancy in pancreatic cancer. In a previous work, we have described the antitumoral properties of Yarrow (Achillea Millefolium) CO2 supercritical extract (Yarrow SFE) in pancreatic cancer. Herein, we aim to investigate the underlaying molecular mechanisms by which Yarrow SFE induces cytotoxicity in pancreatic cancer cells. Yarrow SFE downregulates SREBF1 and downstream molecular targets of this transcription factor, such as fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD). Importantly, we demonstrate the in vivo effect of Yarrow SFE diminishing the tumor growth in a xenograft mouse model of pancreatic cancer. Our data suggest that Yarrow SFE can be proposed as a complementary adjuvant or nutritional supplement in pancreatic cancer therapy.
Collapse
|
41
|
Meng Q, Xu J, Liang C, Liu J, Hua J, Zhang Y, Ni Q, Shi S, Yu X. GPx1 is involved in the induction of protective autophagy in pancreatic cancer cells in response to glucose deprivation. Cell Death Dis 2018; 9:1187. [PMID: 30538220 PMCID: PMC6290009 DOI: 10.1038/s41419-018-1244-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
Given the dense stroma and poor vascularization, access to nutrients is limited in the microenvironment of pancreatic ductal adenocarcinoma (PDA). PDA cells can efficiently recycle various metabolic substrates through the activation of different rescuing pathways, including the autophagy pathway. However, the precise roles of autophagy in cancer metabolism are not yet fully understood. In the present study, we first monitored the effect of glucose deprivation on autophagy and on the expression of glutathione peroxidase-1 (GPx1) in PDA cells under the glucose-free environment. Glucose starvation induced progressive autophagy activation in PDA cells via the activation of ROS/AMPK signaling. GPx1 degradation caused by glucose deprivation led to further ROS-dependent autophagy activation. Both GPx1 overexpression and autophagy inhibition sensitized cells to starvation-induced cell death through the activation of caspase-dependent apoptosis. Moreover, GPx1 may regulate glycolysis inhibition in PDA cells under glucose-deprived conditions. In summary, this study increases our understanding of the role of GPx1 in the induction of protective autophagy in PDA cells under extreme glucose starvation and may provide new therapeutic targets or innovative therapies.
Collapse
Affiliation(s)
- Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Pramanik KC, Makena MR, Bhowmick K, Pandey MK. Advancement of NF-κB Signaling Pathway: A Novel Target in Pancreatic Cancer. Int J Mol Sci 2018; 19:ijms19123890. [PMID: 30563089 PMCID: PMC6320793 DOI: 10.3390/ijms19123890] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers and is the third highest among cancer related deaths. Despite modest success with therapy such as gemcitabine, pancreatic cancer incidence remains virtually unchanged in the past 25 years. Among the several driver mutations for PDAC, Kras mutation contributes a central role for its development, progression and therapeutic resistance. In addition, inflammation is implicated in the development of most human cancer, including pancreatic cancer. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is recognized as a key mediator of inflammation and has been frequently observed to be upregulated in PDAC. Several lines of evidence suggest that NF-κB pathways play a crucial role in PDAC development, progression and resistance. In this review, we focused on emphasizing the recent advancements in the involvement of NF-κB in PADC’s progression and resistance. We also highlighted the interaction of NF-κB with other signaling pathways. Lastly, we also aim to discuss how NF-κB could be an excellent target for PDAC prevention or therapy. This review could provide insight into the development of novel therapeutic strategies by considering NF-κB as a target to prevent or treat PDAC.
Collapse
Affiliation(s)
- Kartick C Pramanik
- Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA.
| | - Monish Ram Makena
- Department of Physiology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Kuntal Bhowmick
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
43
|
Ferro R, Adamska A, Lattanzio R, Mavrommati I, Edling CE, Arifin SA, Fyffe CA, Sala G, Sacchetto L, Chiorino G, De Laurenzi V, Piantelli M, Sansom OJ, Maffucci T, Falasca M. GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine. Oncogene 2018; 37:6368-6382. [PMID: 30061636 DOI: 10.1038/s41388-018-0390-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/19/2018] [Accepted: 06/02/2018] [Indexed: 12/28/2022]
Abstract
The life expectancy for pancreatic cancer patients has seen no substantial changes in the last 40 years as very few and mostly just palliative treatments are available. As the five years survival rate remains around 5%, the identification of novel pharmacological targets and development of new therapeutic strategies are urgently needed. Here we demonstrate that inhibition of the G protein-coupled receptor GPR55, using genetic and pharmacological approaches, reduces pancreatic cancer cell growth in vitro and in vivo and we propose that this may represent a novel strategy to inhibit pancreatic ductal adenocarcinoma (PDAC) progression. Specifically, we show that genetic ablation of Gpr55 in the KRASWT/G12D/TP53WT/R172H/Pdx1-Cre+/+ (KPC) mouse model of PDAC significantly prolonged survival. Importantly, KPC mice treated with a combination of the GPR55 antagonist Cannabidiol (CBD) and gemcitabine (GEM, one of the most used drugs to treat PDAC), survived nearly three times longer compared to mice treated with vehicle or GEM alone. Mechanistically, knockdown or pharmacologic inhibition of GPR55 reduced anchorage-dependent and independent growth, cell cycle progression, activation of mitogen-activated protein kinase (MAPK) signalling and protein levels of ribonucleotide reductases in PDAC cells. Consistent with this, genetic ablation of Gpr55 reduced proliferation of tumour cells, MAPK signalling and ribonucleotide reductase M1 levels in KPC mice. Combination of CBD and GEM inhibited tumour cell proliferation in KPC mice and it opposed mechanisms involved in development of resistance to GEM in vitro and in vivo. Finally, we demonstrate that the tumour suppressor p53 regulates GPR55 protein expression through modulation of the microRNA miR34b-3p. Our results demonstrate the important role played by GPR55 downstream of p53 in PDAC progression. Moreover our data indicate that combination of CBD and GEM, both currently approved for medical use, might be tested in clinical trials as a novel promising treatment to improve PDAC patients' outcome.
Collapse
Affiliation(s)
- R Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, 4 Newark Street, London, E1 2AT, UK
| | - A Adamska
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, 6102, Perth, WA, Australia
| | - R Lattanzio
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, Chieti, 66100, Italy
| | - I Mavrommati
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, 4 Newark Street, London, E1 2AT, UK
| | - C E Edling
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, 4 Newark Street, London, E1 2AT, UK
| | - S A Arifin
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, 4 Newark Street, London, E1 2AT, UK
| | - C A Fyffe
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, 4 Newark Street, London, E1 2AT, UK
| | - G Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, Chieti, 66100, Italy
| | - L Sacchetto
- Cancer Genomics Laboratory, Fondazione Edo and Elvo Tempia, Biella, Italy
| | - G Chiorino
- Cancer Genomics Laboratory, Fondazione Edo and Elvo Tempia, Biella, Italy
| | - V De Laurenzi
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, 6102, Perth, WA, Australia
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, Chieti, 66100, Italy
| | - M Piantelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, Chieti, 66100, Italy
| | - O J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - T Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, 4 Newark Street, London, E1 2AT, UK
| | - M Falasca
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, 4 Newark Street, London, E1 2AT, UK.
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, 6102, Perth, WA, Australia.
| |
Collapse
|
44
|
ABC transporters as cancer drivers: Potential functions in cancer development. Biochim Biophys Acta Gen Subj 2018; 1863:52-60. [PMID: 30268729 DOI: 10.1016/j.bbagen.2018.09.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND ABC transporters have attracted considerable attention for their function as drug transporters in a broad range of tumours and are therefore considered as major players in cancer chemoresistance. However, less attention has been focused on their potential role as active players in cancer development and progression. SCOPE OF REVIEW This review presents the evidence suggesting that ABC transporters might have a more active role in cancer other than the well known involvement in multidrug resistance and discusses the potential strategies to target each ABC transporter for a specific tumour setting. MAJOR CONCLUSIONS Emerging evidence suggests that ABC transporters are able to transport bioactive molecules capable of playing key roles in tumour development. Characterization of the effects of these transporters in specific cancer settings opens the possibility for the development of personalized treatments. GENERAL SIGNIFICANCE A more targeted approach of ABC transporters should be implemented that considers which specific transporter is playing a major role in a particular tumour setting in order to achieve a more successful outcome for ABC transporters inhibitors in cancer therapy.
Collapse
|
45
|
The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers (Basel) 2018; 10:cancers10100356. [PMID: 30261620 PMCID: PMC6210336 DOI: 10.3390/cancers10100356] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viral therapy has been accepted as a standard immunotherapy since talimogene laherparepvec (T-VEC, Imlygic®) was approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for melanoma treatment in 2015. Various oncolytic viruses (OVs), such as HF10 (Canerpaturev—C-REV) and CVA21 (CAVATAK), are now actively being developed in phase II as monotherapies, or in combination with immune checkpoint inhibitors against melanoma. Moreover, in glioma, several OVs have clearly demonstrated both safety and a promising efficacy in the phase I clinical trials. Additionally, the safety of several OVs, such as pelareorep (Reolysin®), proved their safety and efficacy in combination with paclitaxel in breast cancer patients, but the outcomes of OVs as monotherapy against breast cancer have not provided a clear therapeutic strategy for OVs. The clinical trials of OVs against pancreatic cancer have not yet demonstrated efficacy as either monotherapy or as part of combination therapy. However, there are several oncolytic viruses that have successfully proved their efficacy in different preclinical models. In this review, we mainly focused on the oncolytic viruses that transitioned into clinical trials against melanoma, glioma, pancreatic, and breast cancers. Hence, we described the current status and future prospects of OVs clinical trials against melanoma, glioma, pancreatic, and breast cancers.
Collapse
|
46
|
Kunovsky L, Tesarikova P, Kala Z, Kroupa R, Kysela P, Dolina J, Trna J. The Use of Biomarkers in Early Diagnostics of Pancreatic Cancer. Can J Gastroenterol Hepatol 2018; 2018:5389820. [PMID: 30186820 PMCID: PMC6112218 DOI: 10.1155/2018/5389820] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies with increasing incidence. The poor prognosis is due to the aggressive nature of the tumor, late detection, and the resistance to chemotherapy and radiotherapy. A radical surgery procedure is the only treatment that has been shown to improve the 5-year survival rate to 20-25%. However, the majority of patients (80-85%) are diagnosed with locally advanced or metastatic disease and just 15-20% patients are diagnosed in an early stage allowing them to undergo the potentially curative surgical resection. The early detection of PDAC without the use of invasive methods is challenging and discovery of a cost-effective biomarker with high specificity and sensitivity could significantly improve the treatment and survival in these patients. In this review, we summarize current and newly examined biomarkers in early PDAC detection.
Collapse
Affiliation(s)
- Lumir Kunovsky
- Department of Gastroenterology, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
- Department of Surgery, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Pavla Tesarikova
- Department of Internal Medicine, Hospital Boskovice, Czech Republic
| | - Zdenek Kala
- Department of Surgery, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Radek Kroupa
- Department of Gastroenterology, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Petr Kysela
- Department of Surgery, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Jiri Dolina
- Department of Gastroenterology, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Jan Trna
- Department of Gastroenterology, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
- Department of Internal Medicine, Hospital Boskovice, Czech Republic
| |
Collapse
|
47
|
Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018; 24:3222-3238. [PMID: 30090003 PMCID: PMC6079284 DOI: 10.3748/wjg.v24.i29.3222] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases and is characterized by high chemoresistance, leading to the lack of effective therapeutic approaches and grim prognosis. Despite increasing understanding of the mechanisms of chemoresistance in cancer and the role of ATP-binding cassette (ABC) transporters in this resistance, the therapeutic potential of their pharmacological inhibition has not been successfully exploited yet. In spite of the discovery of potent pharmacological modulators of ABC transporters, the results obtained in clinical trials have been so far disappointing, with high toxicity levels impairing their successful administration to the patients. Critically, although ABC transporters have been mostly studied for their involvement in development of multidrug resistance (MDR), in recent years the contribution of ABC transporters to cancer initiation and progression has emerged as an important area of research, the understanding of which could significantly influence the development of more specific and efficient therapies. In this review, we explore the role of ABC transporters in the development and progression of malignancies, with focus on PDAC. Their established involvement in development of MDR will be also presented. Moreover, an emerging role for ABC transporters as prognostic tools for patients' survival will be discussed, demonstrating the therapeutic potential of ABC transporters in cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
48
|
Torres C, Grippo PJ. Pancreatic cancer subtypes: a roadmap for precision medicine. Ann Med 2018; 50:277-287. [PMID: 29537309 PMCID: PMC6151873 DOI: 10.1080/07853890.2018.1453168] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second cause of cancer-related deaths by 2020. Although it has traditionally been approached as a disease, accumulated evidences point to the clinical heterogeneity of this disease, which translate into disparity in outcomes among the patients. Much emphasis has been put into patient classification introducing a platform for more tailored therapies. In the last 10 years, there have been important advances in the understanding of the molecular pathogenesis of PDAC, which has culminated with a comprehensive integrated genomic analysis from RNA expression profiles. Bailey et al. defined four subtypes and the different transcriptional networks underlying them. Firstly, we briefly describe and compare different subtyping approaches, which are mostly based on tissue mRNA expression analysis. We propose that these latest approaches to disease classification embrace not only those patients that are surgically resectable (20%), but even patients ineligible for surgery. Such considerations will include possible reclassification of these specific subtypes, enabling more personalized diagnosis and individualized treatment. The ultimate goal of this review is to identify current challenges in this area and summarize current efforts in developing clinical modalities that can effectively identify these subtypes in order to advance Precision Medicine. KEY MESSAGES • Pancreatic cancer can no longer be considered as one disease. • The heterogeneity underlying pancreatic cancer patients makes therapeutic options based on one-size-fits-all approach ineffective. • Identifying patients that could benefit from a specific treatment would help to avoid futile therapy approaches and to improve outcomes and quality of life of those whose long-term survival is unpromising.
Collapse
Affiliation(s)
- Carolina Torres
- a Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| | - Paul J Grippo
- a Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
49
|
Adamska A, Elaskalani O, Emmanouilidi A, Kim M, Abdol Razak NB, Metharom P, Falasca M. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul 2018; 68:77-87. [PMID: 29221990 DOI: 10.1016/j.jbior.2017.11.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most chemoresistant cancers, and current therapies targeting cancer-associated molecular pathways have not given satisfactory results, owing in part to rapid upregulation of alternative compensatory pathways. Most of the available treatments are palliative, focussing on improving the quality of life. At present, available options are surgery, embolization, radiation, chemotherapy, immunotherapy and use of other more targeted drugs. In this review, we describe the cellular and molecular effects of current chemotherapy drugs such as gemcitabine, FOLFIRINOX (5-fluorouracil [5-FU], oxaliplatin, irinotecan, and leucovorin) and ABRAXANE (nab-Paclitaxel), which have shown a survival benefit, although modest, for pancreatic cancer patients. Nevertheless, gemcitabine remains the standard first-line option for advanced-stage pancreatic cancer patients and, as resistance to the drug has attracted an increasing scientific interest, we deliberate on the main intracellular processes and proteins vital in acquired chemoresistance to gemcitabine. Lastly, our review examines various microenvironmental factors capable of instigating PDAC to develop resistance to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Omar Elaskalani
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Aikaterini Emmanouilidi
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Minkyoung Kim
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
50
|
Yan Y, Fu G, Ming L. Role of exosomes in pancreatic cancer. Oncol Lett 2018; 15:7479-7488. [PMID: 29731898 PMCID: PMC5920881 DOI: 10.3892/ol.2018.8348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies. Exosomes, which are released by multiple cell types, such as cancer cells, contain functional biomolecules (including proteins, nucleic acids and lipids) that can be horizontally delivered to recipient cells. Exosomes act as the most prominent mediator of intercellular communication and can regulate, instruct and re-educate their surrounding microenvironment and target specific organs. The present review performed an extensive search of multiple databases from 2005 to April 23 2017, for eligible literature relating to exosomes and their role in pancreatic cancer. With a focus on the latest findings for pancreatic cancer exosomes, their role in tumorigenesis was summarized, as well as their aggressive behaviors and their contribution to immunosuppression and therapy resistance in pancreatic cancer. In addition, the potential function of exosomes as novel diagnostic biomarkers is briefly discussed. Finally, we propose potential clinical applications for exosomes in pancreatic cancer.
Collapse
Affiliation(s)
- Yunmeng Yan
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guangzhen Fu
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|