1
|
Bencze N, Scheich B, Szőke É, Wilhelm I, Körmöndi S, Botz B, Helyes Z. Osteosarcoma-Induced Pain Is Mediated by Glial Cell Activation in the Spinal Dorsal Horn, but Not Capsaicin-Sensitive Nociceptive Neurons: A Complex Functional and Morphological Characterization in Mice. Cancers (Basel) 2024; 16:1788. [PMID: 38791867 PMCID: PMC11120600 DOI: 10.3390/cancers16101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Bone cancer and its related chronic pain are huge clinical problems since the available drugs are often ineffective or cannot be used long term due to a broad range of side effects. The mechanisms, mediators and targets need to be identified to determine potential novel therapies. Here, we characterize a mouse bone cancer model induced by intratibial injection of K7M2 osteosarcoma cells using an integrative approach and investigate the role of capsaicin-sensitive peptidergic sensory nerves. The mechanical pain threshold was assessed by dynamic plantar aesthesiometry, limb loading by dynamic weight bearing, spontaneous pain-related behaviors via observation, knee diameter with a digital caliper, and structural changes by micro-CT and glia cell activation by immunohistochemistry in BALB/c mice of both sexes. Capsaicin-sensitive peptidergic sensory neurons were defunctionalized by systemic pretreatment with a high dose of the transient receptor potential vanilloid 1 (TRPV1) agonist resiniferatoxin (RTX). During the 14- and 28-day experiments, weight bearing on the affected limb and the paw mechanonociceptive thresholds significantly decreased, demonstrating secondary mechanical hyperalgesia. Signs of spontaneous pain and osteoplastic bone remodeling were detected both in male and female mice without any sex differences. Microglia activation was shown by the increased ionized calcium-binding adapter molecule 1 (Iba1) immunopositivity on day 14 and astrocyte activation by the enhanced glial fibrillary acidic protein (GFAP)-positive cell density on day 28 in the ipsilateral spinal dorsal horn. Interestingly, defunctionalization of the capsaicin-sensitive afferents representing approximately 2/3 of the nociceptive fibers did not alter any functional parameters. Here, we provide the first complex functional and morphological characterization of the K7M2 mouse osteosarcoma model. Bone-cancer-related chronic pain and hyperalgesia are likely to be mediated by central sensitization involving neuroinflammation via glial cell activation in the spinal dorsal horn, but not the capsaicin-sensitive sensory neuronal system.
Collapse
Affiliation(s)
- Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary;
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN-PTE), 7624 Pécs, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
| | - Sándor Körmöndi
- Department of Traumatology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- Department of Medical Imaging, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN-PTE), 7624 Pécs, Hungary
- PharmInVivo Ltd., Szondy György Str. 10, 7629 Pécs, Hungary
| |
Collapse
|
2
|
Borbély É, Kecskés A, Kun J, Kepe E, Fülöp B, Kovács-Rozmer K, Scheich B, Renner É, Palkovits M, Helyes Z. Hemokinin-1 is a mediator of chronic restraint stress-induced pain. Sci Rep 2023; 13:20030. [PMID: 37973885 PMCID: PMC10654722 DOI: 10.1038/s41598-023-46402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The Tac4 gene-derived hemokinin-1 (HK-1) binds to the NK1 receptor, similarly to Substance P, and plays a role in acute stress reactions and pain transmission in mice. Here we investigated Tac4 mRNA expression in stress and pain-related regions and its involvement in chronic restraint stress-evoked behavioral changes and pain using Tac4 gene-deleted (Tac4-/-) mice compared to C57Bl/6 wildtypes (WT). Tac4 mRNA was detected by in situ hybridization RNAscope technique. Touch sensitivity was assessed by esthesiometry, cold tolerance by paw withdrawal latency from 0°C water. Anxiety was evaluated in the light-dark box (LDB) and open field test (OFT), depression-like behavior in the tail suspension test (TST). Adrenal and thymus weights were measured at the end of the experiment. We found abundant Tac4 expression in the hypothalamic-pituitary-adrenal axis, but Tac4 mRNA was also detected in the hippocampus, amygdala, somatosensory and piriform cortices in mice, and in the frontal regions and the amygdala in humans. In Tac4-/- mice of both sexes, stress-induced mechanical, but not cold hyperalgesia was significantly decreased compared to WTs. Stress-induced behavioral alterations were mild or absent in male WT animals, while significant changes of these parameters could be detected in females. Thymus weight decrease can be observed in both sexes. Higher baseline anxiety and depression-like behaviors were detected in male but not in female HK-1-deficient mice, highlighting the importance of investigating both sexes in preclinical studies. We provided the first evidence for the potent nociceptive and stress regulating effects of HK-1 in chronic restraint stress paradigm. Identification of its targets might open new perspectives for therapy of stress-induced pain.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.
- Centre for Neuroscience, University of Pécs, Pécs, Hungary.
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Kepe
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Barbara Fülöp
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Katalin Kovács-Rozmer
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Chronic Pain Research Group, Hungarian Research Network, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd, Pécs, Hungary
- Chronic Pain Research Group, Hungarian Research Network, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| |
Collapse
|
3
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Cai Y, Chen J, Sun H, Zhou T, Cai X, Fu Y. Crosstalk between TRPV1 and immune regulation in Fuchs endothelial corneal dystrophy. Clin Immunol 2023; 254:109701. [PMID: 37482117 DOI: 10.1016/j.clim.2023.109701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading indication for corneal transplantation worldwide. Our aim was to investigate the role of transient receptor potential vanilloid subtype 1 (TRPV1) and the associated immune regulation contributing to this pathological condition. Significant upregulation of TRPV1 was detected in the H2O2-induced in vitro FECD model. Based on gene expression microarray dataset GSE142538 and in vitro results, a comprehensive immune landscape was studied and a negative correlation was found between TRPV1 with different immune cells, especially regulatory T cells (Tregs). Functional analyses of the 313 TRPV1-related differentially expressed genes (DEGs) revealed the involvement of TRP-regulated calcium transport, as well as inflammatory and immune pathways. Four TRPV1-related core genes (MAPK14, GNB1, GNAQ, and ARRB2) were screened, validated by microarray dataset GSE112039 and the combined validation dataset E-GEAD-399 & 564, and verified by in vitro experiments. Our study suggested a potential crosstalk between TRPV1 and immune regulation contributing to FECD pathogenesis. The identified pivotal biomarkers and immune-related pathways provide a novel framework for future mechanistic and therapeutic studies of FECD.
Collapse
Affiliation(s)
- Yuchen Cai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jin Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyi Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xueyao Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
5
|
Futosi K, Németh T, Horváth ÁI, Abram CL, Tusnády S, Lowell CA, Helyes Z, Mócsai A. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J Exp Med 2023; 220:e20221010. [PMID: 37074415 PMCID: PMC10120404 DOI: 10.1084/jem.20221010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Ádám I. Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Clare L. Abram
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Tusnády
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Fülöp B, Hunyady Á, Bencze N, Kormos V, Szentes N, Dénes Á, Lénárt N, Borbély É, Helyes Z. IL-1 Mediates Chronic Stress-Induced Hyperalgesia Accompanied by Microglia and Astroglia Morphological Changes in Pain-Related Brain Regions in Mice. Int J Mol Sci 2023; 24:ijms24065479. [PMID: 36982563 PMCID: PMC10052634 DOI: 10.3390/ijms24065479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αβ-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15–20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.
Collapse
Affiliation(s)
- Barbara Fülöp
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- GSK Vaccines Institute for Global Health, I-53100 Siena, Italy
| | - Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Dénes
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Nikolett Lénárt
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Eotvos Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
8
|
Bencze N, Schvarcz C, Kriszta G, Danics L, Szőke É, Balogh P, Szállási Á, Hamar P, Helyes Z, Botz B. Desensitization of Capsaicin-Sensitive Afferents Accelerates Early Tumor Growth via Increased Vascular Leakage in a Murine Model of Triple Negative Breast Cancer. Front Oncol 2021; 11:685297. [PMID: 34336669 PMCID: PMC8317060 DOI: 10.3389/fonc.2021.685297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
There is growing interest in the role of nerve-driven mechanisms in tumorigenesis and tumor growth. Capsaicin-sensitive afferents have been previously shown to possess antitumoral and immune-regulatory properties, the mechanism of which is currently poorly understood. In this study, we have assessed the role of these terminals in the triple negative 4T1 orthotopic mouse model of breast cancer. The ultrapotent capsaicin-analogue resiniferatoxin (RTX) was used for the selective, systemic desensitization of capsaicin-sensitive afferents. Growth and viability of orthotopically implanted 4T1 tumors were measured by caliper, in vivo MRI, and bioluminescence imaging, while tumor vascularity and protease enzyme activity were assessed using fluorescent in vivo imaging. The levels of the neuropeptides Calcitonin Gene-Related Peptide (CGRP), Substance P (SP), and somatostatin were measured from tumor tissue homogenates using radioimmunoassay, while tumor structure and peritumoral inflammation were evaluated by conventional use of CD31, CD45 and CD3 immunohistology. RTX-pretreated mice demonstrated facilitated tumor growth in the early phase measured using a caliper, which was coupled with increased tumor vascular leakage demonstrated using fluorescent vascular imaging. The tumor size difference dissipated by day seven. The MRI tumor volume was similar, while the intratumoral protease enzyme activity measured by fluorescence imaging was also comparable in RTX-pretreated and non-pretreated animals. Tumor viability or immunohistopathological profile was measured using CD3, CD31, and CD45 stains and did not differ significantly from the non-pretreated control group. Intratumoral somatostatin, CGRP, and SP levels were similar in both groups. Our results underscore the beneficial, antitumoral properties of capsaicin sensitive nerve terminals in this aggressive model of breast cancer, which is presumed to be due to the inhibition of tumor vascular bed disruption. The absence of any difference in intratumoral neuropeptide levels indicates non-neural sources playing a substantial part in their expression.
Collapse
Affiliation(s)
- Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Csaba Schvarcz
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Kriszta
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, University of Pécs Medical School, Pécs, Hungary
| | - Árpád Szállási
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Medical Imaging, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
9
|
Sahebari M, Salimi J, Shalchian Tabrizi P, Khodabandeh M, Ariaee Nasab N, Salari M. Skin reaction to capsaicin in patients with systemic lupus erythematosus compared to healthy controls. CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 12:140-147. [PMID: 34012530 PMCID: PMC8111804 DOI: 10.22088/cjim.12.2.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The interaction between nervous and immune systems has been under investigation. Transient receptor potential vanilloid type 1(TRPV1) is a ligand gated calcium channel expressed by sensory neurons which mediates neurogenic inflammatory response. Substance p which can be released following exposure to capsaicin is a TRPV1 inducer, shown to have altered concentration and function in mice with systemic lupus erythematosus (SLE). We evaluated skin reaction to capsaicin in newly diagnosed and established SLE patients compared to healthy controls. Methods: Twenty-nine SLE patients (12 newly diagnosed cases under treatment, and 17 established ones, not receiving medications) who referred to rheumatologic disease research center, and 33 healthy subjects of the control group were recruited in this study. A topical solution of capsaicin (0.075%) was applied on the volar forearm during skin test, and time to the tingling sensation, area of induration and area of redness (centimeters2) were recorded after 5, 10, and 20 minutes. Results: The area of redness and area of induration within 15 minutes, time to the tingling sensation (P=0.02), and the overall frequency of tingling sensation (P=0.01) after capsaicin skin test was considerably higher in SLE patients than the healthy controls. Redness, induration and tingling sensation were more frequent but not statistically significant among the established SLE group compared to the newly diagnosed patients. Conclusion: Since skin reaction to capsaicin is more prominent in SLE patients than the healthy individuals, neurogenic inflammation and the role of P substance should be investigated more in ongoing lupus. Capsaicin test can not predict lupus activity.
Collapse
Affiliation(s)
- Maryam Sahebari
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Salimi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mina Khodabandeh
- Allergy Research Center,Quaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazila Ariaee Nasab
- Allergy Research Center,Quaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Salari
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Cell-cell interactions in joint pain: rheumatoid arthritis and osteoarthritis. Pain 2021; 162:714-717. [PMID: 33591110 DOI: 10.1097/j.pain.0000000000002174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
|
11
|
Mailhot B, Christin M, Tessandier N, Sotoudeh C, Bretheau F, Turmel R, Pellerin È, Wang F, Bories C, Joly-Beauparlant C, De Koninck Y, Droit A, Cicchetti F, Scherrer G, Boilard E, Sharif-Naeini R, Lacroix S. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J Exp Med 2021; 217:151879. [PMID: 32573694 PMCID: PMC7478735 DOI: 10.1084/jem.20191430] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is a major comorbidity of chronic inflammatory diseases. Here, we report that the cytokine IL-1β, which is abundantly produced during multiple sclerosis (MS), arthritis (RA), and osteoarthritis (OA) both in humans and in animal models, drives pain associated with these diseases. We found that the type 1 IL-1 receptor (IL-1R1) is highly expressed in the mouse and human by a subpopulation of TRPV1+ dorsal root ganglion neurons specialized in detecting painful stimuli, termed nociceptors. Strikingly, deletion of the Il1r1 gene specifically in TRPV1+ nociceptors prevented the development of mechanical allodynia without affecting clinical signs and disease progression in mice with experimental autoimmune encephalomyelitis and K/BxN serum transfer–induced RA. Conditional restoration of IL-1R1 expression in nociceptors of IL-1R1–knockout mice induced pain behavior but did not affect joint damage in monosodium iodoacetate–induced OA. Collectively, these data reveal that neuronal IL-1R1 signaling mediates pain, uncovering the potential benefit of anti–IL-1 therapies for pain management in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Benoit Mailhot
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Marine Christin
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Canada
| | - Nicolas Tessandier
- Axe Maladies infectieuses et immunitaires du Centre de recherche du CHU de Québec-Université Laval et Département de microbiologie-infectiologie et d'immunologie de l'Université Laval, Québec, Canada
| | - Chaudy Sotoudeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Roxanne Turmel
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Ève Pellerin
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Feng Wang
- Centre de recherche CERVO, Québec, Canada
| | | | - Charles Joly-Beauparlant
- Axe Endocrinologie-néphrologie du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | | | - Arnaud Droit
- Axe Endocrinologie-néphrologie du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Francesca Cicchetti
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de psychiatrie et de neurosciences de l'Université Laval, Québec, Canada
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC.,New York Stem Cell Foundation - Robertson Investigator, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Eric Boilard
- Axe Maladies infectieuses et immunitaires du Centre de recherche du CHU de Québec-Université Laval et Département de microbiologie-infectiologie et d'immunologie de l'Université Laval, Québec, Canada
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| |
Collapse
|
12
|
Sharma D, Chaubey P, Suvarna V. Role of natural products in alleviation of rheumatoid arthritis-A review. J Food Biochem 2021; 45:e13673. [PMID: 33624882 DOI: 10.1111/jfbc.13673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RHA) is one of the most prevalent complex, chronic, inflammatory diseases, manifested by elevated oxidative stress and inflammatory biomarkers. Prolonged administration of NSAIDs, steroids, and DMARDs, used in the treatment of RHA, is associated with deleterious side effects. This necessitates the urge of new and safe approaches for RHA management, based on the complementary and alternative system of medicine. Documented evidences have suggested that supplementation with nutritional, dietary, and herbal components; can play a crucial role as an adjuvant, in the alleviation of the RHA symptoms, through their influence on the pathological inflammatory processes. Dietary phenolic compounds, flavonoids, carotenoids, and alkaloids with their ability to modulate prooxidant and pro-inflammatory pathways, have been effective in delaying the arthritic disease progression. Moreover, in scientific explorations, herbs containing phenolic compounds, alkaloids, carotenoids flavonoids, spices such as ginger, turmeric, Ayurvedic formulations, different diets such as Mediterranean diet, vegan diet, beverages, and oils such as sesame oil, rice bran oil, vitamins, and probiotics are proven to modulate the action of inflammatory molecules, involved in RHA pathology. Subsequently, the purpose of this review article is to summarize various in vitro, in vivo, and clinical studies in RHA, which have documented remarkable insights into the anti-inflammatory, antioxidant, analgesic, and immunomodulatory, bone erosion preventing properties of dietary, nutritional, and herbal components with the focus on their molecular level mechanisms involved in RHA. Even though major findings were derived from in vitro studies, several in vivo and clinical studies have established the use of diet, herbal, and nutritional management in RHA treatment. PRACTICAL APPLICATIONS: Thickening of the synovial membrane, bone erosion, and cartilage destruction is known to trigger rheumatoid arthritis causing inflammation and pain in bone joints. Continuous intake of NSAIDs, steroids, and DMARD therapy are associated with detrimental side effects. These side effects can be overcome by the use of dietary, nutritional, and herbal interventions based on the complementary and alternative therapy. This concept portrays the food components and other natural components having the potential to promote health, improve general well-being, and reduce the risk of RHA.
Collapse
Affiliation(s)
- Dhvani Sharma
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia, Saudi Arabia
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
13
|
Capsaicin-Sensitive Peptidergic Sensory Nerves Are Anti-Inflammatory Gatekeepers in the Hyperacute Phase of a Mouse Rheumatoid Arthritis Model. Int J Mol Sci 2021; 22:ijms22041682. [PMID: 33567493 PMCID: PMC7915323 DOI: 10.3390/ijms22041682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Capsaicin-sensitive peptidergic sensory nerves play complex, mainly protective regulatory roles in the inflammatory cascade of the joints via neuropeptide mediators, but the mechanisms of the hyperacute arthritis phase has not been investigated. Therefore, we studied the involvement of these afferents in the early, "black box" period of a rheumatoid arthritis (RA) mouse model. Capsaicin-sensitive fibres were defunctionalized by pretreatment with the ultrapotent capsaicin analog resiniferatoxin and arthritis was induced by K/BxN arthritogenic serum. Disease severity was assessed by clinical scoring, reactive oxygen species (ROS) burst by chemiluminescent, vascular permeability by fluorescent in vivo imaging. Contrast-enhanced magnetic resonance imaging was used to correlate the functional and morphological changes. After sensory desensitization, both early phase ROS-burst and vascular leakage were significantly enhanced, which was later followed by the increased clinical severity scores. Furthermore, the early vascular leakage and ROS-burst were found to be good predictors of later arthritis severity. We conclude that the anti-inflammatory role of peptidergic afferents depends on their activity in the hyperacute phase, characterized by decreased cellular and vascular inflammatory components presumably via anti-inflammatory neuropeptide release. Therefore, these fibres might serve as important gatekeepers in RA.
Collapse
|
14
|
Pongratz G. [Pain in rheumatic diseases : What can biologics and JAK inhibitors offer?]. Z Rheumatol 2021; 80:214-225. [PMID: 33443608 DOI: 10.1007/s00393-020-00957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Persistent pain despite adequate inflammation control poses a big challenge in many rheumatic diseases for patients as well as physicians. The focus of drug development over the past years was on anti-inflammatory therapies. Enormous progress has been made and several treatment options have been added. It has been observed that pain triggered by inflammation can be effectively treated by inflammation control; however, the chronic pain component remains a problem, is little studied and specific treatment options are missing. Pain is influenced by inflammatory mediators, such as cytokines, which act on peripheral nociceptors and lead to peripheral sensitization. If inflammation continues, this can potentially lead to central sensitization and chronification of pain via immigration of immune cells and/or local activation of e.g. microglia. This leads to increasing autonomization and uncoupling of pain from the actual inflammatory process. The present review deals with the question if bDMARD or tsDMARD also show benefits concerning pain processes in addition to the profound inhibitory effects on inflammation. There are preclinical data that show an influence on sensitization following the use of cytokine inhibitors. On the other hand, so far clinical data show that bDMARDs as well as tsDMARDs consistently rapidly and reliably reduce nociceptive inflammatory pain across disease entities. An effect especially on the process of central sensitization and therefore on chronification of pain cannot be finally evaluated based on the currently available data.
Collapse
Affiliation(s)
- G Pongratz
- Poliklink, Funktionsbereich und Hiller Forschungszentrum für Rheumatologie, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| |
Collapse
|
15
|
Rapid quantitative detection of capsaicinoids in serum based on an electrochemical immunosensor with a dual-signal amplification strategy. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Shao YJ, Chen X, Chen Z, Jiang HY, Zhong DY, Wang YF, Yang HL, Saijilafu, Luo ZP. Sensory nerves protect from the progression of early stage osteoarthritis in mice. Connect Tissue Res 2020; 61:445-455. [PMID: 31274342 DOI: 10.1080/03008207.2019.1611796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Osteoarthritis (OA) is a chronic degenerative joint disease. Sensory nerves play an important role in bone metabolism and in the progression of inflammation. This study explored the effects of sensory nerve on OA progression at early stage in mice. MATERIALS AND METHODS OA was induced via destabilization of the medial meniscus (DMM) in C57BL/6 mice. Sensory denervation was induced by subcutaneous injection of capsaicin (90 mg/kg) one week prior to DMM. One week after capsaicin injection, sensory denervation in the tibia was confirmed by immunofluorescent staining. Four weeks after DMM, micro-CT scans, histological analysis, and RT-PCR tests were performed to evaluate OA progression. RESULTS Subcutaneous injection of capsaicin successfully induced sensory denervation in tibia. The Osteoarthritis Research Society International (OARSI) score and synovitis score of the capsaicin+DMM group were significantly higher than the score of the vehicle+DMM group. The BV/TV of the tibial subchondral bone in the capsaicin+DMM group was significantly lower than in the vehicle+DMM group. In addition, the level of expression of inflammatory factors in the capsaicin+DMM group was significantly higher than in the vehicle+DMM group. CONCLUSIONS Capsaicin-induced sensory denervation accelerated OA progression at early stage in mice. To put it another way, sensory nerve protects from OA progression at early stage in mice.
Collapse
Affiliation(s)
- Yi-Jie Shao
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Xi Chen
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China
| | - Zhi Chen
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Hua-Ye Jiang
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Dong-Yan Zhong
- Suzhou Gusu District Women & Children Health Care Institution , Suzhou, P.R. China
| | - Yi-Fan Wang
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Hui-Lin Yang
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Saijilafu
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China
| | - Zong-Ping Luo
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China
| |
Collapse
|
17
|
Zhang X, Ye L, Huang Y, Ding X, Wang L. The potential role of TRPV1 in pulmonary hypertension: Angel or demon? Channels (Austin) 2020; 13:235-246. [PMID: 31189399 PMCID: PMC6602577 DOI: 10.1080/19336950.2019.1631106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a pathological state defined by increased pulmonary artery pressure, the pathogenesis of which is related to genetic mutations, intracellular calcium ([Ca2+]i), inflammation and proliferation. Transient receptor potential vanilloid subfamily member 1 (TRPV1) is a nonselective cation channel expressed in neural and nonneural cells, including pulmonary vessels and nerves. As a calcium channel, TRPV1 can make vessels contracted, and promote smooth muscle cells proliferation through calcium-dependent transcription factors. Activation of TRPV1 in sensory nerves can release neuropeptides, including calcitonin gene-related peptide (CGRP), substance P (SP), and somatostatin (SST), which can regulate inflammation via transcription factor NF-kB. Considering the increased level of [Ca2+]i and inflammation in the pathogenesis of PH, our review summarizes the role of TRPV1 in PH with regard to [Ca2+]i, neuropeptides, and inflammation. In view of the limited research illustrating the relationship between TRPV1 and PH directly, our review also considers the role of TRPV1 in other types of vascular inflammation. Through this review, we hope to raise awareness about the function of TRPV1 in PH.
Collapse
Affiliation(s)
- Xin Zhang
- a The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , China.,b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Lifang Ye
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Yu Huang
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Xueyan Ding
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Lihong Wang
- a The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , China.,b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| |
Collapse
|
18
|
Bátai IZ, Sár CP, Horváth Á, Borbély É, Bölcskei K, Kemény Á, Sándor Z, Nemes B, Helyes Z, Perkecz A, Mócsai A, Pozsgai G, Pintér E. TRPA1 Ion Channel Determines Beneficial and Detrimental Effects of GYY4137 in Murine Serum-Transfer Arthritis. Front Pharmacol 2019; 10:964. [PMID: 31551776 PMCID: PMC6737045 DOI: 10.3389/fphar.2019.00964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/29/2019] [Indexed: 01/09/2023] Open
Abstract
Modulation of nociception and inflammation by sulfide in rheumatoid arthritis and activation of transient receptor potential ankyrin 1 (TRPA1) ion channels by sulfide compounds are well documented. The present study aims to investigate TRPA1-mediated effects of sulfide donor GYY4137 in K/BxN serum-transfer arthritis, a rodent model of rheumatoid arthritis. TRPA1 and somatostatin sst4 receptor wild-type (WT) and knockout mice underwent K/BxN serum transfer and were treated daily with GYY4137. Functional and biochemical signs of inflammation were recorded, together with histological characterization. These included detection of hind paw mechanical hyperalgesia by dynamic plantar esthesiometry, hind paw volume by plethysmometry, and upside-down hanging time to failure. Hind paw erythema, edema, and passive movement range of tibiotarsal joints were scored. Somatostatin release from sensory nerve endings of TRPA1 wild-type and knockout mice in response to polysulfide was detected by radioimmunoassay. Polysulfide formation from GYY4137 was uncovered by cold cyanolysis. GYY4137 aggravated mechanical hyperalgesia in TRPA1 knockout mice but ameliorated it in wild-type ones. Arthritis score was lowered by GYY4137 in TRPA1 wild-type animals. Increased myeloperoxidase activity, plasma extravasation, and subcutaneous MIP-2 levels of hind paws were detected in TRPA1 knockout mice upon GYY4137 treatment. Genetic lack of sst4 receptors did not alter mechanical hyperalgesia, edema formation, hanging performance, arthritis score, plasma extravasation, or myeloperoxidase activity. TRPA1 WT animals exhibited smaller cartilage destruction upon GYY4137 administration. Sodium polysulfide caused TRPA1-dependent somatostatin release from murine nerve endings. Sulfide released from GYY4137 is readily converted into polysulfide by hypochlorite. Polysulfide potently activates human TRPA1 receptors expressed in Chinese hamster ovary (CHO) cells. According to our data, the protective effect of GYY4137 is mediated by TRPA1, while detrimental actions are independent of the ion channel in the K/BxN serum-transfer arthritis model in mice. At acidic pH in inflamed tissue sulfide is released from GYY4137 and reacts with neutrophil-derived hypochlorite. Resulting polysulfide might be responsible for TRPA1-mediated antinociceptive and anti-inflammatory as well as TRPA1-independent pro-inflammatory effects.
Collapse
Affiliation(s)
- István Z. Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Cecília Pápainé Sár
- Department of Organic and Pharmacological Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Balázs Nemes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Anikó Perkecz
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
19
|
|
20
|
Horváth Á, Botz B, Kiss T, Csekő K, Kiss I, Felinger A, Szabados T, Kenyeres É, Bencsik P, Mócsai A, Ferdinandy P, Helyes Z. Subantimicrobial Dose Doxycycline Worsens Chronic Arthritis-Induced Bone Microarchitectural Alterations in a Mouse Model: Role of Matrix Metalloproteinases? Front Pharmacol 2019; 10:233. [PMID: 30949048 PMCID: PMC6435543 DOI: 10.3389/fphar.2019.00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/22/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease hallmarked by irreversible damage of cartilage and bone. Matrix metalloproteinases (MMPs) involved in connective tissue remodeling play an important role in this process. Numerous MMPs have been examined in humans and animals, but their functions are still not fully understood. Therefore, we investigated the role of MMPs in the K/BxN serum-transfer model of RA with the broad-spectrum MMP inhibitor subantimicrobial dose doxycycline (SDD) using complex in vivo and in vitro methodolgy. Methods: Chronic arthritis was induced by repetitive i.p. injections of K/BxN serum in C57BL/6J mice. SDD was administered daily in acidified drinking water (0.5 mg/mL, 80 mg/kg) during the 30 days experimental period. Mechanonociceptive threshold of the paw was evaluated by aesthesiometry, grasping ability by grid test, arthritis severity by scoring, neutrophil myeloperoxidase activity by luminescence, vascular hyperpermeability and MMP activity by fluorescence in vivo imaging and the latter also by gelatin zymography, bone structure by micro-computed tomography (micro-CT). Plasma concentrations of doxycycline were determined by liquid chromatography-mass spectrometry analysis. Results: K/BxN serum induced significant inflammatory signs, mechanical hyperalgesia, joint function impairment, increased myeloperoxidase activity and vascular hyperpermeability. Significant increase of MMP activity was also observed both in vivo and ex vivo with elevation of the 57–60, 75, and 92 kDa gelatinolytic isoforms in the arthritic ankle joints, but neither MMP activity nor any above described functional parameters were influenced by SDD. Most importantly, SDD significantly reduced bone mineral density in the distal tibia and enhanced the Euler number in the ankle. Arthritis-induced microarchitectural alterations demonstrating increased irregularity and cancellous bone remodeling, such as increased Euler number was significantly elevated by SDD in both regions. Conclusion: We showed increase of various MMP activities in the joints by in vivo fluorescence imaging together with ex vivo zymography, and investigated their functional significance using the broad-spectrum MMP inhibitor SDD in the translational RA model. This is the first demonstration that SDD worsens arthritis-induced bone microarchitectural alterations, but it appears to be independent of MMP inhibition.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.,Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Radiology, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Tamás Kiss
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.,Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.,Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ibolya Kiss
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, Institute of Chemistry, University of Pécs, Pécs, Hungary.,Environmental Analytical and Geoanalytical Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Felinger
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, Institute of Chemistry, University of Pécs, Pécs, Hungary.,Environmental Analytical and Geoanalytical Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Éva Kenyeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.,Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Chronic Pain Research Group, National Brain Research Program, Medical School, University of Pécs, Pécs, Hungary.,PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
21
|
Bencsik P, Kiss K, Ágg B, Baán JA, Ágoston G, Varga A, Gömöri K, Mendler L, Faragó N, Zvara Á, Sántha P, Puskás LG, Jancsó G, Ferdinandy P. Sensory Neuropathy Affects Cardiac miRNA Expression Network Targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2 mRNAs. Int J Mol Sci 2019; 20:ijms20040991. [PMID: 30823517 PMCID: PMC6412859 DOI: 10.3390/ijms20040991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Here we examined myocardial microRNA (miRNA) expression profile in a sensory neuropathy model with cardiac diastolic dysfunction and aimed to identify key mRNA molecular targets of the differentially expressed miRNAs that may contribute to cardiac dysfunction. Methods: Male Wistar rats were treated with vehicle or capsaicin for 3 days to induce systemic sensory neuropathy. Seven days later, diastolic dysfunction was detected by echocardiography, and miRNAs were isolated from the whole ventricles. Results: Out of 711 known miRNAs measured by miRNA microarray, the expression of 257 miRNAs was detected in the heart. As compared to vehicle-treated hearts, miR-344b, miR-466b, miR-98, let-7a, miR-1, miR-206, and miR-34b were downregulated, while miR-181a was upregulated as validated also by quantitative real time polymerase chain reaction (qRT-PCR). By an in silico network analysis, we identified common mRNA targets (insulin-like growth factor 1 (IGF-1), solute carrier family 2 facilitated glucose transporter member 12 (SLC2a-12), eukaryotic translation initiation factor 4e (EIF-4e), and Unc-51 like autophagy activating kinase 2 (ULK-2)) targeted by at least three altered miRNAs. Predicted upregulation of these mRNA targets were validated by qRT-PCR. Conclusion: This is the first demonstration that sensory neuropathy affects cardiac miRNA expression network targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2, which may contribute to cardiac diastolic dysfunction. These results further support the need for unbiased omics approach followed by in silico prediction and validation of molecular targets to reveal novel pathomechanisms.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Krisztina Kiss
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
| | - Bence Ágg
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary.
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary.
| | - Júlia A Baán
- Muscle Adaptation Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
| | - Gergely Ágoston
- Institute of Family Medicine, University of Szeged, Tisza Lajos krt. 109., H-6720 Szeged, Hungary.
| | - Albert Varga
- Institute of Family Medicine, University of Szeged, Tisza Lajos krt. 109., H-6720 Szeged, Hungary.
| | - Kamilla Gömöri
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Luca Mendler
- Muscle Adaptation Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Nóra Faragó
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Péter Sántha
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - László G Puskás
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Péter Ferdinandy
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary.
| |
Collapse
|
22
|
Li YR, Gupta P. Immune aspects of the bi-directional neuroimmune facilitator TRPV1. Mol Biol Rep 2018; 46:1499-1510. [PMID: 30554315 DOI: 10.1007/s11033-018-4560-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
A rapidly growing area of interest in biomedical science involves the reciprocal crosstalk between the sensory nervous and immune systems. Both of these systems are highly integrated, detecting potential environmental harms and restoring homeostasis. Many different cytokines, receptors, neuropeptides, and other proteins are involved in this bidirectional communication that are common to both systems. One such family of proteins includes the transient receptor potential vanilloid (TRPV) proteins. Though much progress has been made in understanding TRPV proteins in the nervous system, their functions in the immune system are not well elucidated. Hence, further understanding their role in the peripheral immune system and as regulators of neuroimmunity is critical for evaluating their potential as therapeutic targets for numerous inflammatory disorders, cancers, and other disease states. Here, we focus on the latest advancements in understanding TRPV1 and TRPV2's roles in the immune system, TRPV1 in neuroimmunity, and TRPV1's potential involvement in anti-tumor therapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China. .,Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Puneet Gupta
- School of Arts and Sciences, St. Bonaventure University, St. Bonaventure, New York, 14778, USA. .,School of Medicine and Health Sciences, The George Washington University, 2300 I Street NW, Washington, D.C., 20037, USA.
| |
Collapse
|
23
|
Horváth Á, Borbély É, Bölcskei K, Szentes N, Kiss T, Belák M, Rauch T, Glant T, Zákány R, Juhász T, Karanyicz E, Boldizsár F, Helyes Z, Botz B. Regulatory role of capsaicin-sensitive peptidergic sensory nerves in the proteoglycan-induced autoimmune arthritis model of the mouse. J Neuroinflammation 2018; 15:335. [PMID: 30509328 PMCID: PMC6276168 DOI: 10.1186/s12974-018-1364-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The regulatory role of capsaicin-sensitive peptidergic sensory nerves has been shown in acute inflammation, but little is known about their involvement in T/B-cell driven autoimmune arthritis. This study integratively characterized the function of these nerve endings in the proteoglycan-induced chronic arthritis (PGIA), a translational model of rheumatoid arthritis. Methods Peptidergic afferents were defunctionalized by resiniferatoxin (RTX) pretreatment in BALB/c mice, PGIA was induced by repeated antigen challenges. Hind paw volume, arthritis severity, grasping ability and the mechanonociceptive threshold were monitored during the 17-week experiment. Myeloperoxidase activity, vascular leakage and bone turnover were evaluated by in vivo optical imaging. Bone morphology was assessed using micro-CT, the intertarsal small joints were processed for histopathological analysis. Results Following desensitization of the capsaicin-sensitive afferents, ankle edema, arthritis severity and mechanical hyperalgesia were markedly diminished. Myeloperoxidase activity was lower in the early, but increased in the late phase, whilst plasma leakage and bone turnover were not altered. Desensitized mice displayed similar bone spurs and erosions, but increased trabecular thickness of the tibia and bony ankylosis of the spine. Intertarsal cartilage thickness was not altered in the model, but desensitization increased this parameter in both the non-arthritic and arthritic groups. Conclusion This is the first integrative in vivo functional and morphological characterization of the PGIA mouse model, wherein peptidergic afferents have an important regulatory function. Their overall effect is proinflammatory by increasing acute inflammation, immune cell activity and pain. Meanwhile, their activation decreases spinal ankylosis, arthritis-induced altered trabecularity, and cartilage thickness in small joints. Electronic supplementary material The online version of this article (10.1186/s12974-018-1364-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Kiss
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Mátyás Belák
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary
| | - Tibor Rauch
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, USA
| | - Tibor Glant
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, USA
| | - Róza Zákány
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Edina Karanyicz
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Boldizsár
- Medical School, Department of Immunology, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary. .,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary.
| | - Bálint Botz
- János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Medical School, Department of Radiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
24
|
Complex Role of Capsaicin-Sensitive Afferents in the Collagen Antibody-Induced Autoimmune Arthritis of the Mouse. Sci Rep 2018; 8:15916. [PMID: 30374145 PMCID: PMC6206070 DOI: 10.1038/s41598-018-34005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/08/2018] [Indexed: 01/23/2023] Open
Abstract
Capsaicin-sensitive afferents have complex regulatory functions in the joints orchestrated via neuropeptides. This study aimed to determine their role in the collagen-antibody induced rheumatoid arthritis model. Capsaicin-sensitive nerves were defunctionalized by the capsaicin receptor agonist resiniferatoxin in C57Bl/6 mice. Arthritis was induced by the ArithroMab antibody cocktail and adjuvant. Arthritis was monitored by measuring body weight, joint edema by plethysmometry, arthritis severity by clinical scoring, mechanonociceptive threshold by plantar esthesiometry, thermonociceptive threshold by hot plate, cold tolerance by paw withdrawal latency from 0 °C water. Grasping ability was determined by the wire-grid grip test. Bone structure was evaluated by in vivo micro-CT and histology. Arthritic animals developed a modest joint edema, mechanical and cold hyperalgesia, weight loss, and a diminished grasping function, while thermal hyperalgesia is absent in the model. Desensitised mice displayed reduced arthritis severity, edema, and mechanical hyperalgesia, however, cold hyperalgesia was significantly greater in this group. Arthritic controls displayed a transient decrease of bone volume and an increased porosity, while bone density and trabecularity increased in desensitised mice. The activation of capsaicin-sensitive afferents increases joint inflammation and mechanical hyperalgesia, but decreases cold allodynia. It also affects inflammatory bone structural changes by promoting bone resorption.
Collapse
|
25
|
Galindo T, Reyna J, Weyer A. Evidence for Transient Receptor Potential (TRP) Channel Contribution to Arthritis Pain and Pathogenesis. Pharmaceuticals (Basel) 2018; 11:E105. [PMID: 30326593 PMCID: PMC6315622 DOI: 10.3390/ph11040105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Based on clinical and preclinical evidence, Transient Receptor Potential (TRP) channels have emerged as potential drug targets for the treatment of osteoarthritis, rheumatoid arthritis, and gout. This review summarizes the relevant data supporting a role for various TRP channels in arthritis pain and pathogenesis, as well as the current state of pharmacological efforts to ameliorate arthritis symptoms in patient populations.
Collapse
Affiliation(s)
- Tabitha Galindo
- School of Physical Therapy and Athletic Training, Pacific University, Hillsboro, OR 97116, USA.
| | - Jose Reyna
- School of Physical Therapy and Athletic Training, Pacific University, Hillsboro, OR 97116, USA.
| | - Andy Weyer
- Biological Sciences Department, City College of San Francisco, San Francisco, CA 94112, USA.
| |
Collapse
|
26
|
Tékus V, Borbély É, Kiss T, Perkecz A, Kemény Á, Horváth J, Kvarda A, Pintér E. Investigation of Lake Hévíz Mineral Water Balneotherapy and Hévíz Mud Treatment in Murine Osteoarthritis and Rheumatoid Arthritis Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4816905. [PMID: 30224931 PMCID: PMC6129852 DOI: 10.1155/2018/4816905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Arthritic diseases are the most frequent causes of chronic pain and disability. Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and progressive structural joint damage. Osteoarthritis is a degenerative process of the articular cartilage associated with hypertrophic changes in the bone. The aim of the present study was to investigate the anti-inflammatory and analgesic effects of Hévíz thermal water and mud in monosodium iodoacetate- (MIA-) (25 mg/ml, 20 μl i.a.) induced osteoarthritis and Complete Freund's adjuvant- (CFA-) (1 mg/ml, 50-50 μl s.c) induced rheumatoid arthritis murine models. The mechanonociceptive threshold of female NMRI mice (n=6- 8 mice/ group) was measured by aesthesiometry, and paw volume was monitored with plethysmometry, knee joint diameter with digital micrometer, and dynamic weight bearing on the hind limbs with a Bioseb instrument. Periarticular bone destruction was assessed by SkyScan 1176 in vivo micro-CT. Inflammatory cytokines were detected by ELISA in plasma samples. Treatments (30 min, every working day) with tap water, sand, and a combined therapy of tap water and sand served as controls. Hévíz medicinal water and combined treatment with water and mud significantly decreased the mechanical hyperalgesia and knee oedema in MIA-induced osteoarthritis model. However, balneotherapy did not influence mechanical hyperalgesia, weight bearing, or oedema formation induced by CFA. Neither medicinal water nor mud treatment ameliorated deep structural damage of the bones or the joints in the animal models. On the basis of the present findings, we conclude that balneotherapy is an effective complementary treatment to reduce the pain sensation and swelling in degenerative joint diseases such as osteoarthritis. Our experimental data are in agreement with the previous human studies that also confirmed antinociceptive and anti-inflammatory effects of thermal water and Hévíz mud treatments.
Collapse
Affiliation(s)
- V. Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - É. Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - T. Kiss
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - A. Perkecz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
| | - Á. Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - J. Horváth
- Saint Andrew Hospital for Rheumatic Diseases, H-8380, Héviz, Dr. Schulhof Vilmos Sétány 1, Hungary
| | - A. Kvarda
- Saint Andrew Hospital for Rheumatic Diseases, H-8380, Héviz, Dr. Schulhof Vilmos Sétány 1, Hungary
| | - E. Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
- PharmInVivo Ltd, H-7629, Pécs, Szondi György U. 10, Hungary
| |
Collapse
|
27
|
Horváth Á, Tékus V, Bencze N, Szentes N, Scheich B, Bölcskei K, Szőke É, Mócsai A, Tóth-Sarudy É, Mátyus P, Pintér E, Helyes Z. Analgesic effects of the novel semicarbazide-sensitive amine oxidase inhibitor SZV 1287 in mouse pain models with neuropathic mechanisms: Involvement of transient receptor potential vanilloid 1 and ankyrin 1 receptors. Pharmacol Res 2018; 131:231-243. [DOI: 10.1016/j.phrs.2018.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
|
28
|
Tackling Pain Associated with Rheumatoid Arthritis: Proton-Sensing Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:49-64. [PMID: 30306514 DOI: 10.1007/978-981-13-1756-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA), characterized by chronic inflammation of synovial joints, is often associated with ongoing pain and increased pain sensitivity. Chronic pain that comes with RA turns independent, essentially becoming its own disease. It could partly explain that a significant number (50%) of RA patients fail to respond to current RA therapies that focus mainly on suppression of joint inflammation. The acute phase of pain seems to associate with joint inflammation in early RA. In established RA, the chronic phase of pain could be linked to inflammatory components of neuron-immune interactions and noninflammatory components. Accumulating evidence suggests that the initial inflammation and autoimmunity in RA (preclinical RA) begin outside of the joint and may originate at mucosal sites and alterations in the composition of microbiota located at mucosal sites could be essential for mucosal inflammation, triggering joint inflammation. Fibroblast-like synoviocytes in the inflamed joint respond to cytokines to release acidic components, lowering pH in synovial fluid. Extracellular proton binds to proton-sensing ion channels, and G-protein-coupled receptors in joint nociceptive fibers may contribute to sensory transduction and release of neurotransmitters, leading to pain and hyperalgesia. Activation of peripheral sensory neurons or nociceptors further modulates inflammation, resulting in neuroinflammation or neurogenic inflammation. Peripheral and central nerves work with non-neuronal cells (such as immune cells, glial cells) in concert to contribute to the chronic phase of RA-associated pain. This review will discuss actions of proton-sensing receptors on neurons or non-neuronal cells that modulate RA pathology and associated chronic pain, and it will be beneficial for the development of future therapeutic treatments.
Collapse
|
29
|
Bátai IZ, Horváth Á, Pintér E, Helyes Z, Pozsgai G. Role of Transient Receptor Potential Ankyrin 1 Ion Channel and Somatostatin sst4 Receptor in the Antinociceptive and Anti-inflammatory Effects of Sodium Polysulfide and Dimethyl Trisulfide. Front Endocrinol (Lausanne) 2018; 9:55. [PMID: 29535682 PMCID: PMC5835328 DOI: 10.3389/fendo.2018.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) non-selective ligand-gated cation channels are mostly expressed in primary sensory neurons. Polysulfides (POLYs) are Janus-faced substances interacting with numerous target proteins and associated with both protective and detrimental processes. Activation of TRPA1 in sensory neurons, consequent somatostatin (SOM) liberation and action on sst4 receptors have recently emerged as mediators of the antinociceptive effect of organic trisulfide dimethyl trisulfide (DMTS). In the frame of the present study, we set out to compare the participation of this mechanism in antinociceptive and anti-inflammatory effects of inorganic sodium POLY and DMTS in carrageenan-evoked hind-paw inflammation. Inflammation of murine hind paws was induced by intraplantar injection of carrageenan (3% in 30 µL saline). Animals were treated intraperitoneally with POLY (17 µmol/kg) or DMTS (250 µmol/kg) or their respective vehicles 30 min prior paw challenge and six times afterward every 60 min. Mechanical pain threshold and swelling of the paws were measured by dynamic plantar aesthesiometry and plethysmometry at 2, 4, and 6 h after initiation of inflammation. Myeloperoxidase (MPO) activity in the hind paws were detected 6 h after challenge by luminescent imaging. Mice genetically lacking TRPA1 ion channels, sst4 receptors and their wild-type counterparts were used to examine the participation of these proteins in POLY and DMTS effects. POLY counteracted carrageenan-evoked mechanical hyperalgesia in a TRPA1 and sst4 receptor-dependent manner. POLY did not influence paw swelling and MPO activity. DMTS ameliorated all examined inflammatory parameters. Mitigation of mechanical hyperalgesia and paw swelling by DMTS were mediated through sst4 receptors. These effects were present in TRPA1 knockout animals, too. DMTS inhibited MPO activity with no participation of the sensory neuron-SOM axis. While antinociceptive effects of POLY are transmitted by activation of peptidergic nerves via TRPA1, release of SOM and its effect on sst4 receptors, those of DMTS partially rely on SOM release triggered by other routes. SOM is responsible for the inhibition of paw swelling by DMTS, but TRPA1 does not contribute to its release. Modulation of MPO activity by DMTS is independent of TRPA1 and sst4.
Collapse
Affiliation(s)
- István Z. Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- *Correspondence: Gábor Pozsgai,
| |
Collapse
|
30
|
Foster SL, Seehus CR, Woolf CJ, Talbot S. Sense and Immunity: Context-Dependent Neuro-Immune Interplay. Front Immunol 2017; 8:1463. [PMID: 29163530 PMCID: PMC5675863 DOI: 10.3389/fimmu.2017.01463] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
The sensory nervous and immune systems, historically considered autonomous, actually work in concert to promote host defense and tissue homeostasis. These systems interact with each other through a common language of cell surface G protein-coupled receptors and receptor tyrosine kinases as well as cytokines, growth factors, and neuropeptides. While this bidirectional communication is adaptive in many settings, helping protect from danger, it can also become maladaptive and contribute to disease pathophysiology. The fundamental logic of how, where, and when sensory neurons and immune cells contribute to either health or disease remains, however, unclear. Our lab and others’ have begun to explore how this neuro-immune reciprocal dialog contributes to physiological and pathological immune responses and sensory disorders. The cumulative results collected so far indicate that there is an important role for nociceptors (noxious stimulus detecting sensory neurons) in driving immune responses, but that this is highly context dependent. To illustrate this concept, we present our findings in a model of airway inflammation, in which nociceptors seem to have major involvement in type 2 but not type 1 adaptive immunity.
Collapse
Affiliation(s)
- Simmie L Foster
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, United States
| | - Corey R Seehus
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
31
|
Montilla-García Á, Tejada MÁ, Perazzoli G, Entrena JM, Portillo-Salido E, Fernández-Segura E, Cañizares FJ, Cobos EJ. Grip strength in mice with joint inflammation: A rheumatology function test sensitive to pain and analgesia. Neuropharmacology 2017; 125:231-242. [PMID: 28760650 DOI: 10.1016/j.neuropharm.2017.07.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023]
Abstract
Grip strength deficit is a measure of pain-induced functional disability in rheumatic disease. We tested whether this parameter and tactile allodynia, the standard pain measure in preclinical studies, show parallels in their response to analgesics and basic mechanisms. Mice with periarticular injections of complete Freund's adjuvant (CFA) in the ankles showed periarticular immune infiltration and synovial membrane alterations, together with pronounced grip strength deficits and tactile allodynia measured with von Frey hairs. However, inflammation-induced tactile allodynia lasted longer than grip strength alterations, and therefore did not drive the functional deficits. Oral administration of the opioid drugs oxycodone (1-8 mg/kg) and tramadol (10-80 mg/kg) induced a better recovery of grip strength than acetaminophen (40-320 mg/kg) or the nonsteroidal antiinflammatory drugs ibuprofen (10-80 mg/kg) or celecoxib (40-160 mg/kg); these results are consistent with their analgesic efficacy in humans. Functional impairment was generally a more sensitive indicator of drug-induced analgesia than tactile allodynia, as drug doses that attenuated grip strength deficits showed little or no effect on von Frey thresholds. Finally, ruthenium red (a nonselective TRP antagonist) or the in vivo ablation of TRPV1-expressing neurons with resiniferatoxin abolished tactile allodynia without altering grip strength deficits, indicating that the neurobiology of tactile allodynia and grip strength deficits differ. In conclusion, grip strength deficits are due to a distinct type of pain that reflects an important aspect of the human pain experience, and therefore merits further exploration in preclinical studies to improve the translation of new analgesics from bench to bedside.
Collapse
Affiliation(s)
- Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Gloria Perazzoli
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Department of Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - José M Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Enrique Portillo-Salido
- Drug Discovery and Preclinical Development, ESTEVE, Parc Científic de Barcelona, Baldiri Reixac 4-8, Barcelona, Spain
| | - Eduardo Fernández-Segura
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Francisco J Cañizares
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain; Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Scheich B, Vincze P, Szőke É, Borbély É, Hunyady Á, Szolcsányi J, Dénes Á, Környei Z, Gaszner B, Helyes Z. Chronic stress-induced mechanical hyperalgesia is controlled by capsaicin-sensitive neurones in the mouse. Eur J Pain 2017; 21:1417-1431. [PMID: 28444833 DOI: 10.1002/ejp.1043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Clinical studies demonstrated peripheral nociceptor deficit in stress-related chronic pain states, such as fibromyalgia. The interactions of stress and nociceptive systems have special relevance in chronic pain, but the underlying mechanisms including the role of specific nociceptor populations remain unknown. We investigated the role of capsaicin-sensitive neurones in chronic stress-related nociceptive changes. METHOD Capsaicin-sensitive neurones were desensitized by the capsaicin analogue resiniferatoxin (RTX) in CD1 mice. The effects of desensitization on chronic restraint stress (CRS)-induced responses were analysed using behavioural tests, chronic neuronal activity assessment in the central nervous system with FosB immunohistochemistry and peripheral cytokine concentration measurements. RESULTS Chronic restraint stress induced mechanical and cold hypersensitivity and increased light preference in the light-dark box test. Open-field and tail suspension test activities were not altered. Adrenal weight increased, whereas thymus and body weights decreased in response to CRS. FosB immunopositivity increased in the insular cortex, dorsomedial hypothalamic and dorsal raphe nuclei, but not in the spinal cord dorsal horn after the CRS. CRS did not affect the cytokine concentrations of hindpaw tissues. Surprisingly, RTX pretreatment augmented stress-induced mechanical hyperalgesia, abolished light preference and selectively decreased the CRS-induced neuronal activation in the insular cortex. RTX pretreatment alone increased the basal noxious heat threshold without influencing the CRS-evoked cold hyperalgesia and augmented neuronal activation in the somatosensory cortex and interleukin-1α and RANTES production. CONCLUSIONS Chronic restraint stress induces hyperalgesia without major anxiety, depression-like behaviour or peripheral inflammatory changes. Increased stress-induced mechanical hypersensitivity in RTX-pretreated mice is presumably mediated by central mechanisms including cortical plastic changes. SIGNIFICANCE These are the first data demonstrating the complex interactions between capsaicin-sensitive neurones and chronic stress and their impact on nociception. Capsaicin-sensitive neurones are protective against stress-induced mechanical hyperalgesia by influencing neuronal plasticity in the brain.
Collapse
Affiliation(s)
- B Scheich
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - P Vincze
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary
| | - É Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Á Hunyady
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - J Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,PharmInVivo Ltd., Pécs, Hungary
| | - Á Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zs Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - B Gaszner
- Department of Anatomy, University of Pécs Medical School, Hungary
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary.,PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
33
|
Dahan S, Segal Y, Shoenfeld Y. Dietary factors in rheumatic autoimmune diseases: a recipe for therapy? Nat Rev Rheumatol 2017; 13:348-358. [PMID: 28405001 DOI: 10.1038/nrrheum.2017.42] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Today, we are facing a new era of digitization in the health care system, and with increased access to health care information has come a growing demand for safe, cost-effective and easy to administer therapies. Dietary habits have a crucial influence on human health, affecting an individual's risk for hypertension, heart disease and stroke, as well as influencing the risk of developing of cancer. Moreover, an individual's lifestyle choices can greatly influence the progression and manifestation of chronic autoimmune rheumatic diseases. In light of these effects, it makes sense that the search for additional therapies to attenuate such diseases would include investigations into lifestyle modifications. When considering the complex web of factors that influence autoimmunity, it is not surprising to find that several dietary elements are involved in disease progression or prevention. In this Review, several common nutritional components of the human diet are presented, and the evidence for their effects on rheumatic diseases is discussed.
Collapse
Affiliation(s)
- Shani Dahan
- The Zabludowicz Centre for Autoimmune Diseases, Chaim Sheba Medical Centre, Derech Sheba 2, Tel-Hashomer, Ramat-Gan 52621, Israel
| | - Yahel Segal
- The Zabludowicz Centre for Autoimmune Diseases, Chaim Sheba Medical Centre, Derech Sheba 2, Tel-Hashomer, Ramat-Gan 52621, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Centre for Autoimmune Diseases, Chaim Sheba Medical Centre, Derech Sheba 2, Tel-Hashomer, Ramat-Gan 52621, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Analgesic and Anti-Inflammatory Effects of the Novel Semicarbazide-Sensitive Amine-Oxidase Inhibitor SzV-1287 in Chronic Arthritis Models of the Mouse. Sci Rep 2017; 7:39863. [PMID: 28067251 PMCID: PMC5220351 DOI: 10.1038/srep39863] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/28/2016] [Indexed: 01/03/2023] Open
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) catalyses oxidative deamination of primary amines. Since there is no data about its function in pain and arthritis mechanisms, we investigated the effects of our novel SSAO inhibitor SzV-1287 in chronic mouse models of joint inflammation. Effects of SzV-1287 (20 mg/kg i.p./day) were investigated in the K/BxN serum-transfer and complete Freund's adjuvant (CFA)-evoked active immunization models compared to the reference SSAO inhibitor LJP-1207. Mechanonociception was assessed by aesthesiometry, oedema by plethysmometry, clinical severity by scoring, joint function by grid test, myeloperoxidase activity by luminescence, vascular leakage by fluorescence in vivo imaging, histopathological changes by semiquantitative evaluation, and cytokines by Luminex assay. SzV-1287 significantly inhibited hyperalgesia and oedema in both models. Plasma leakage and keratinocyte chemoattractant production in the tibiotarsal joint, but not myeloperoxidase activity was significantly reduced by SzV-1287 in K/BxN-arthritis. SzV-1287 did not influence vascular and cellular mechanisms in CFA-arthritis, but significantly decreased histopathological alterations. There was no difference in the anti-hyperalgesic and anti-inflammatory actions of SzV-1287 and LJP-1207, but only SzV-1287 decreased CFA-induced tissue damage. Unlike SzV-1287, LJP-1207 induced cartilage destruction, which was confirmed in vitro. SzV-1287 exerts potent analgesic and anti-inflammatory actions in chronic arthritis models of distinct mechanisms, without inducing cartilage damage.
Collapse
|
35
|
Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol 2016; 38:5-19. [PMID: 27793571 DOI: 10.1016/j.it.2016.10.001] [Citation(s) in RCA: 674] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Nociceptor sensory neurons protect organisms from danger by eliciting pain and driving avoidance. Pain also accompanies many types of inflammation and injury. It is increasingly clear that active crosstalk occurs between nociceptor neurons and the immune system to regulate pain, host defense, and inflammatory diseases. Immune cells at peripheral nerve terminals and within the spinal cord release mediators that modulate mechanical and thermal sensitivity. In turn, nociceptor neurons release neuropeptides and neurotransmitters from nerve terminals that regulate vascular, innate, and adaptive immune cell responses. Therefore, the dialog between nociceptor neurons and the immune system is a fundamental aspect of inflammation, both acute and chronic. A better understanding of these interactions could produce approaches to treat chronic pain and inflammatory diseases.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA; Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Assas MB, Wakid MH, Zakai HA, Miyan JA, Pennock JL. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 2016; 147:292-304. [PMID: 26643862 DOI: 10.1111/imm.12562] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
Neuro-immune interactions, particularly those driven by neuropeptides, are increasingly implicated in immune responses. For instance, triggering calcium-channel transient receptor potential vanilloid 1 (TRPV1) on sensory nerves induces the release of calcitonin-gene-related peptide (CGRP), a neuropeptide known to moderate dendritic cell activation and T helper cell type 1 polarization. Despite observations that CGRP is not confined to the nervous system, few studies have addressed the possibility that immune cells can respond to well-documented 'neural' ligands independently of peripheral nerves. Here we have identified functionally relevant TRPV1 on primary antigen-presenting cells of the spleen and have demonstrated both calcium influx and CGRP release in three separate strains of mice using natural agonists. Furthermore, we have shown down-regulation of activation markers CD80/86 on dendritic cells, and up-regulation of interleukin-6 and interleukin-10 in response to CGRP treatment. We suggest that dendritic cell responses to neural ligands can amplify neuropeptide release, but more importantly that variability in CGRP release across individuals may have important implications for immune cell homeostasis.
Collapse
Affiliation(s)
- Mushref Bakri Assas
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Visiting Scientist, Faculty of Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - Majed H Wakid
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haytham A Zakai
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaleel A Miyan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Joanne L Pennock
- Institute of Inflammation & Repair, Faculty of Medicine and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Christensen AD, Haase C, Cook AD, Hamilton JA. K/BxN Serum-Transfer Arthritis as a Model for Human Inflammatory Arthritis. Front Immunol 2016; 7:213. [PMID: 27313578 PMCID: PMC4889615 DOI: 10.3389/fimmu.2016.00213] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/29/2022] Open
Abstract
The K/BxN serum-transfer arthritis (STA) model is a murine model in which the immunological mechanisms occurring in rheumatoid arthritis (RA) and other arthritides can be studied. To induce K/BxN STA, serum from arthritic transgenic K/BxN mice is transferred to naive mice and manifestations of arthritis occur a few days later. The inflammatory response in the model is driven by autoantibodies against the ubiquitously expressed self-antigen, glucose-6-phosphate isomerase (G6PI), leading to the formation of immune complexes that drive the activation of different innate immune cells such as neutrophils, macrophages, and possibly mast cells. The pathogenesis further involves a range of immune mediators including cytokines, chemokines, complement factors, Toll-like receptors, Fc receptors, and integrins, as well as factors involved in pain and bone erosion. Hence, even though the K/BxN STA model mimics only the effector phase of RA, it still involves a wide range of relevant disease mediators. Additionally, as a murine model for arthritis, the K/BxN STA model has some obvious advantages. First, it has a rapid and robust onset of arthritis with 100% incidence in genetically identical animals. Second, it can be induced in a wide range of strain backgrounds and can therefore also be induced in gene-deficient strains to study the specific importance of disease mediators. Even though G6PI might not be an essential autoantigen, for example, in RA, the K/BxN STA model is a useful tool to understand how autoantibodies, in general, drive the progression of arthritis by interacting with downstream components of the innate immune system. Finally, the model has also proven useful as a model wherein arthritic pain can be studied. Taken together, these features make the K/BxN STA model a relevant one for RA, and it is a potentially valuable tool, especially for the preclinical screening of new therapeutic targets for RA and perhaps other forms of inflammatory arthritis. Here, we describe the molecular and cellular pathways in the development of K/BxN STA focusing on the recent advances in the understanding of the important mechanisms. Additionally, this review provides a comparison of the K/BxN STA model to some other arthritis models.
Collapse
Affiliation(s)
- Anne D Christensen
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia; Novo Nordisk A/S, Måløv, Denmark
| | | | - Andrew D Cook
- Department of Medicine, University of Melbourne , Parkville, VIC , Australia
| | - John A Hamilton
- Department of Medicine, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
38
|
Botz B, Kemény Á, Brunner SM, Sternberg F, Csepregi J, Mócsai A, Pintér E, McDougall JJ, Kofler B, Helyes Z. Lack of Galanin 3 Receptor Aggravates Murine Autoimmune Arthritis. J Mol Neurosci 2016; 59:260-9. [PMID: 26941032 PMCID: PMC4884566 DOI: 10.1007/s12031-016-0732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
Neurogenic inflammation mediated by peptidergic sensory nerves has a crucial impact on the pathogenesis of various joint diseases. Galanin is a regulatory sensory neuropeptide, which has been shown to attenuate neurogenic inflammation, modulate neutrophil activation, and be involved in the development of adjuvant arthritis, but our current understanding about its targets and physiological importance is incomplete. Among the receptors of galanin (GAL1-3), GAL3 has been found to be the most abundantly expressed in the vasculature and on the surface of some immune cells. However, since there are minimal in vivo data on the role of GAL3 in joint diseases, we analyzed its involvement in different inflammatory mechanisms of the K/BxN serum transfer-model of autoimmune arthritis employing GAL 3 gene-deficient mice. After arthritis induction, GAL3 knockouts demonstrated increased clinical disease severity and earlier hindlimb edema than wild types. Vascular hyperpermeability determined by in vivo fluorescence imaging was also elevated compared to the wild-type controls. However, neutrophil accumulation detected by in vivo luminescence imaging or arthritic mechanical hyperalgesia was not altered by the lack of the GAL3 receptor. Our findings suggest that GAL3 has anti-inflammatory properties in joints by inhibiting vascular hyperpermeability and consequent edema formation.
Collapse
Affiliation(s)
- Bálint Botz
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ágnes Kemény
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Susanne M Brunner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Felix Sternberg
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Janka Csepregi
- Department of Physiology, Semmelweis University School of Medicine and MTA-SE "Lendület" Inflammation Physiology Research Group, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine and MTA-SE "Lendület" Inflammation Physiology Research Group, Budapest, Hungary
| | - Erika Pintér
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Jason J McDougall
- Departments of Pharmacology and Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria.
| | - Zsuzsanna Helyes
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary
| |
Collapse
|
39
|
Borbély É, Sándor K, Markovics A, Kemény Á, Pintér E, Szolcsányi J, Quinn JP, McDougall JJ, Helyes Z. Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees. Inflamm Res 2016; 65:725-36. [PMID: 27251170 DOI: 10.1007/s00011-016-0954-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE, DESIGN Mast cell tryptase (MCT) is elevated in arthritic joints, but its direct effects are not known. Here, we investigated MCT-evoked acute inflammatory and nociceptive mechanisms with behavioural, in vivo imaging and immunological techniques. MATERIAL AND SUBJECTS Neurogenic inflammation involving capsaicin-sensitive afferents, transient receptor potential vanilloid 1 receptor (TRPV1), substance P (SP), neurokinin A (NKA) and their NK1 tachykinin receptor were studied using gene-deleted mice compared to C57Bl/6 wildtypes (n = 5-8/group). TREATMENT MCT was administered intraarticularly or topically (20 μl, 12 μg/ml). Capsaicin-sensitive afferents were defunctionalized with the TRPV1 agonist resiniferatoxin (RTX; 30-70-100 μg/kg s.c. pretreatment). METHODS Knee diameter was measured with a caliper, synovial perfusion with laser Doppler imaging, mechanonociception with aesthesiometry and weight distribution with incapacitance tester over 6 h. Cytokines and neuropeptides were determined with immunoassays. RESULTS MCT induced synovial vasodilatation, oedema, impaired weight distribution and mechanical hyperalgesia, but cytokine or neuropeptide levels were not altered at the 6-h timepoint. Hyperaemia was reduced in RTX-treated and TRPV1-deleted animals, and oedema was absent in NK1-deficient mice. Hyperalgesia was decreased in SP/NKA- and NK1-deficient mice, weight bearing impairment in RTX-pretreated, TRPV1- and NK1-deficient animals. CONCLUSIONS MCT evokes synovial hyperaemia, oedema, hyperalgesia and spontaneous pain. Capsaicin-sensitive afferents and TRPV1 receptors are essential for vasodilatation, while tachykinins mediate oedema and pain.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Katalin Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary
| | - Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - John P Quinn
- School of Biomedical Sciences, Liverpool University, Liverpool, UK
| | - Jason J McDougall
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary. .,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary. .,MTA-PTE NAP B Chronic Pain Research Group, Pecs, Hungary.
| |
Collapse
|
40
|
Sikandar S, Gustavsson Y, Marino MJ, Dickenson AH, Yaksh TL, Sorkin LS, Ramachandran R. Effects of intraplantar botulinum toxin-B on carrageenan-induced changes in nociception and spinal phosphorylation of GluA1 and Akt. Eur J Neurosci 2016; 44:1714-22. [PMID: 27108664 DOI: 10.1111/ejn.13261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
Increasing evidence suggests that botulinum neurotoxins (BoNTs) delivered into the skin and muscle in certain human and animal pain states may exert antinociceptive efficacy though their uptake and transport to central afferent terminals. Cleavage of soluble N-methylaleimide-sensitive attachment protein receptor by BoNTs can impede vesicular mediated neurotransmitter release as well as transport/insertion of channel/receptor subunits into plasma membranes, an effect that can reduce activity-evoked facilitation. Here, we explored the effects of intraplantar botulinum toxin- B (BoNT-B) on peripheral inflammation and spinal nociceptive processing in an inflammatory model of pain. C57BL/6 mice (male) received unilateral intraplantar BoNT (1 U, 30 μL) or saline prior to intraplantar carrageenan (20 μL, 2%) or intrathecal N-methyl-D-aspartate (NMDA), substance P or saline (5 μL). Intraplantar carrageenan resulted in edema and mechanical allodynia in the injected paw and increased phosphorylation of a glutamate subunit (pGluA1ser845) and a serine/threonine-specific protein kinase (pAktser473) in spinal dorsal horn along with an increased incidence of spinal c-Fos positive cells. Pre-treatment with intraplantar BoNT-B reduced carrageenan evoked: (i) allodynia, but not edema; (ii) pGluA1 and pAkt and (iii) c-Fos expression. Further, intrathecal NMDA and substance P each increased dorsal horn levels of pGluA1 and pAkt. Intraplantar BoNT-B inhibited NMDA, but not substance P evoked phosphorylation of GluA1 and Akt. These results suggest that intraplantar toxin is transported centrally to block spinal activation and prevent phosphorylation of a glutamate receptor subunit and a kinase, which otherwise contribute to facilitated states.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Wolfson Inst for Biomedical Research, University College London, London, UK
| | | | - Marc J Marino
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Linda S Sorkin
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Roshni Ramachandran
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
41
|
Bas DB, Su J, Wigerblad G, Svensson CI. Pain in rheumatoid arthritis: models and mechanisms. Pain Manag 2016; 6:265-84. [PMID: 27086843 DOI: 10.2217/pmt.16.4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pain is one of the most challenging symptoms for patients with rheumatoid arthritis (RA). RA-related pain is frequently considered to be solely a consequence of inflammation in the joints; however, recent studies show that multiple mechanisms are involved. Indeed, RA pain may start even before the disease manifests, and frequently does not correlate with the degree of inflammation or pharmacological management. In this aspect, animal studies have the potential to provide new insights into the pathology that initiate and maintain pain in RA. The focus of this review is to describe the most commonly used animal models for studies of RA pathology, which have also been utilized in pain research, and to summarize findings providing potential clues to the mechanisms involved in the regulation of RA-induced pain.
Collapse
Affiliation(s)
- Duygu B Bas
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jie Su
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Gustaf Wigerblad
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Camilla I Svensson
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
42
|
Ordovas-Montanes J, Rakoff-Nahoum S, Huang S, Riol-Blanco L, Barreiro O, von Andrian UH. The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends Immunol 2016; 36:578-604. [PMID: 26431937 DOI: 10.1016/j.it.2015.08.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
The nervous system and the immune system are the principal sensory interfaces between the internal and external environment. They are responsible for recognizing, integrating, and responding to varied stimuli, and have the capacity to form memories of these encounters leading to learned or 'adaptive' future responses. We review current understanding of the cross-regulation between these systems. The autonomic and somatosensory nervous systems regulate both the development and deployment of immune cells, with broad functions that impact on hematopoiesis as well as on priming, migration, and cytokine production. In turn, specific immune cell subsets contribute to homeostatic neural circuits such as those controlling metabolism, hypertension, and the inflammatory reflex. We examine the contribution of the somatosensory system to autoimmune, autoinflammatory, allergic, and infectious processes in barrier tissues and, in this context, discuss opportunities for therapeutic manipulation of neuro-immune interactions.
Collapse
Affiliation(s)
- Jose Ordovas-Montanes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Siyi Huang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga Barreiro
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
43
|
Abstract
Evolution has yielded multiple complex and complementary mechanisms to detect environmental danger and protect tissues from damage. The nervous system rapidly processes information and coordinates complex defense behaviors, and the immune system eliminates diverse threats by virtue of mobile, specialized cell populations. The two systems are tightly integrated, cooperating in local and systemic reflexes that restore homeostasis in response to tissue injury and infection. They further share a broad common language of cytokines, growth factors, and neuropeptides that enables bidirectional communication. However, this reciprocal cross talk permits amplification of maladaptive feedforward inflammatory loops that contribute to the development of allergy, autoimmunity, itch, and pain. Appreciating the immune and nervous systems as a holistic, coordinated defense system provides both new insights into inflammation and exciting opportunities for managing acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Sébastien Talbot
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115; .,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Simmie L Foster
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115; .,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115; .,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
44
|
Li W, Wang JX, Zhou ZH, Lu Y, Li XQ, Liu BJ, Chen HS. Contribution of capsaicin-sensitive primary afferents to mechanical hyperalgesia induced by ventral root transection in rats: the possible role of BDNF. Neurol Res 2016; 38:80-5. [DOI: 10.1080/01616412.2015.1135570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Deng Y, Huang X, Wu H, Zhao M, Lu Q, Israeli E, Dahan S, Blank M, Shoenfeld Y. Some like it hot: The emerging role of spicy food (capsaicin) in autoimmune diseases. Autoimmun Rev 2016; 15:451-6. [PMID: 26812350 DOI: 10.1016/j.autrev.2016.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases refer to a spectrum of diseases characterized by an active immune response against the host, which frequently involves increased autoantibody production. The pathogenesis of autoimmune diseases is multifactorial and the exploitation of novel effective treatment is urgent. Capsaicin is a nutritional factor, the active component of chili peppers, which is responsible for the pungent component of chili pepper. As a stimuli, capsaicin selectively activate transient receptor potential vanilloid subfamily 1(TRPV1) and exert various biological effects. This review discusses the effect of capsaicin through its receptor on the development and modulation of autoimmune diseases, which may shed light upon potential therapies in capsaicin-targeted approaches.
Collapse
Affiliation(s)
- Yaxiong Deng
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | - Xin Huang
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China.
| | - Eitan Israeli
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Shani Dahan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Miri Blank
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
46
|
Horváth Á, Tékus V, Boros M, Pozsgai G, Botz B, Borbély É, Szolcsányi J, Pintér E, Helyes Z. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res Ther 2016; 18:6. [PMID: 26746673 PMCID: PMC4718022 DOI: 10.1186/s13075-015-0904-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/04/2022] Open
Abstract
Background The transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable cation channel that is expressed on capsaicin-sensitive sensory neurons, endothelial and inflammatory cells. It is activated by a variety of inflammatory mediators, such as methylglyoxal, formaldehyde and hydrogen sulphide. Since only few data are available about the role of TRPA1 in arthritis and related pain, we investigated its involvement in inflammation models of different mechanisms. Methods Chronic arthritis was induced by complete Freund’s adjuvant (CFA), knee osteoarthritis by monosodium iodoacetate (MIA) in TRPA1 knockout (KO) mice and C57Bl/6 wildtype mice. For comparison, carrageenan- and CFA-evoked acute paw and knee inflammatory changes were investigated. Thermonociception was determined on a hot plate, cold tolerance in icy water, mechanonociception by aesthesiometry, paw volume by plethysmometry, knee diameter by micrometry, weight distribution with incapacitance tester, neutrophil myeloperoxidase activity and vascular leakage by in vivo optical imaging, and histopathological alterations by semiquantitative scoring. Results CFA-induced chronic mechanical hypersensitivity, tibiotarsal joint swelling and histopathological alterations, as well as myeloperoxidase activity in the early phase (day 2), and vascular leakage in the later stage (day 7), were significantly reduced in TRPA1 KO mice. Heat and cold sensitivities did not change in this model. Although in TRPA1 KO animals MIA-evoked knee swelling and histopathological destruction were not altered, hypersensitivity and impaired weight bearing on the osteoarthritic limb were significantly decreased. In contrast, carrageenan- and CFA-induced acute inflammation and pain behaviours were not modified by TRPA1 deletion. Conclusions TRPA1 has an important role in chronic arthritis/osteoarthritis and related pain behaviours in the mouse. Therefore, it might be a promising target for novel analgesic/anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Melinda Boros
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary.
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary. .,MTA-PTE NAP B Chronic Pain Research Group, 12 Szigeti Street, Pécs, 7624, Hungary.
| |
Collapse
|