1
|
Jacobs LM, Helder LS, Albers KI, Kranendonk J, Keijzer C, Joosten LA, Strobbe LJ, Warlé MC. The role of surgical tissue injury and intraoperative sympathetic activation in postoperative immunosuppression after breast-conserving surgery versus mastectomy: a prospective observational study. Breast Cancer Res 2024; 26:42. [PMID: 38468349 PMCID: PMC10926636 DOI: 10.1186/s13058-024-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Breast cancer is the second most common cause of death from cancer in women worldwide. Counterintuitively, large population-based retrospective trials report better survival after breast-conserving surgery (BCS) compared to mastectomy, corrected for tumour- and patient variables. More extensive surgical tissue injury and activation of the sympathetic nervous system by nociceptive stimuli are associated with immune suppression. We hypothesized that mastectomy causes a higher expression of plasma damage associated molecular patterns (DAMPs) and more intraoperative sympathetic activation which induce postoperative immune dysregulation. Immune suppression can lead to postoperative complications and affect tumour-free survival. METHODS In this prospective observational study, plasma DAMPs (HMGB1, HSP70, S100A8/A9 and S100A12), intraoperative sympathetic activation (Nociception Level (NOL) index from 0 to 100), and postoperative immune function (plasma cytokine concentrations and ex vivo cytokine production capacity) were compared in patients undergoing elective BCS (n = 20) versus mastectomy (n = 20). RESULTS Ex vivo cytokine production capacity of TNF, IL-6 and IL-1β was nearly absent in both groups one hour after surgery. Levels appeared recovered on postoperative day 3 (POD3), with significantly higher ex vivo production capacity of IL-1β after BCS (p = .041) compared to mastectomy. Plasma concentration of IL-6 was higher one hour after mastectomy (p = .045). Concentrations of plasma alarmins S100A8/A9 and S100A12 were significantly higher on POD3 after mastectomy (p = .003 and p = .041, respectively). Regression analysis showed a significantly lower percentage of NOL measurements ≤ 8 (absence of nociception) during mastectomy when corrected for norepinephrine equivalents (36% versus 45% respectively, p = .038). Percentage of NOL measurements ≤ 8 of all patients correlated with ex vivo cytokine production capacity of IL-1β and TNF on POD3 (r = .408; p = .011 and r = .500; p = .001, respectively). CONCLUSIONS This pilot study revealed substantial early postoperative immune suppression after BCS and mastectomy that appears to recover in the following days. Differences between BCS and mastectomy in release of DAMPs and intraoperative sympathetic activation could affect postoperative immune homeostasis and thereby contribute to the better survival reported after BCS in previous large population-based retrospective trials. These results endorse further exploration of (1) S100 alarmins as potential therapeutic targets in breast cancer surgery and (2) suppression of intraoperative sympathetic activation to substantiate the observed association with postoperative immune dysregulation.
Collapse
Affiliation(s)
- Lotte Mc Jacobs
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, The Netherlands
| | - Leonie S Helder
- Department of Anaesthesiology, Radboudumc, Nijmegen, The Netherlands
| | - Kim I Albers
- Department of Anaesthesiology, Radboudumc, Nijmegen, The Netherlands
| | - Josephine Kranendonk
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, The Netherlands
| | | | - Leo Ab Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Luc Ja Strobbe
- Department of Surgery, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Michiel C Warlé
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
2
|
Cata JP, Sessler DI. Lost in Translation: Failure of Preclinical Studies to Accurately Predict the Effect of Regional Analgesia on Cancer Recurrence. Anesthesiology 2024; 140:361-374. [PMID: 38170786 DOI: 10.1097/aln.0000000000004823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The major goal of translational research is to evaluate the efficacy and effectiveness of treatments and interventions that have emerged from exhaustive preclinical evidence. In 2007, a major clinical trial was started to investigate the impact of paravertebral analgesia on breast cancer recurrence. The trial was based on preclinical evidence demonstrating that spinal anesthesia suppressed metastatic dissemination by inhibiting surgical stress, boosting the immunological response, avoiding volatile anesthetics, and reducing opioid use. However, that trial and three more recent randomized trials with a total of 4,770 patients demonstrate that regional analgesia does not improve survival outcomes after breast, lung, and abdominal cancers. An obvious question is why there was an almost complete disconnect between the copious preclinical investigations suggesting benefit and robust clinical trials showing no benefit? The answer is complex but may result from preclinical research being mechanistically driven and based on reductionist models. Both basic scientists and clinical investigators underestimated the limitations of various preclinical models, leading to the apparently incorrect hypothesis that regional anesthesia reduces cancer recurrence. This article reviews factors that contributed to the discordance between the laboratory science, suggesting that regional analgesia might reduce cancer recurrence and clinical trials showing that it does not-and what can be learned from the disconnect.
Collapse
Affiliation(s)
- Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Daniel I Sessler
- Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
3
|
Kim JH, Lee HJ, Song HJ, Park JB. Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:60. [PMID: 38256321 PMCID: PMC10817649 DOI: 10.3390/medicina60010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Mesenchymal stem cells hold promise for tissue regeneration, given their robust growth and versatile differentiation capabilities. An analysis of bone marrow-sourced mesenchymal stem cell proliferation showed that 17β-estradiol could enhance their growth. This study aims to investigate the influence of 17β-estradiol on the shape, survival, osteogenic differentiation, and mineralization of human mesenchymal stem cells. Materials and Methods: Spheroids made from human gingiva-derived stem cells were cultivated with varying concentrations of 17β-estradiol: 0, 0.01, 0.1, 1, and 10 nM. Morphology was assessed on days 1, 3, and 5. The live/dead kit assay was employed on day 3 for qualitative cell viability, while cell counting kit-8 was used for quantitative viability assessments on days 1, 3, and 5. To evaluate the osteogenic differentiation of the spheroids, a real-time polymerase chain reaction assessed the expressions of RUNX2 and COL1A1 on day 7. Results: The stem cells formed cohesive spheroids, and the inclusion of 17β-estradiol did not noticeably alter their shape. The spheroid diameter remained consistent across concentrations of 0, 0.01, 0.1, 1, and 10 nM of 17β-estradiol. However, cellular viability was boosted with the addition of 1 and 10 nM of 17β-estradiol. The highest expression levels for RUNX2 and COL1A1 were observed with the introduction of 17β-estradiol at 0.1 nM. Conclusions: In conclusion, from the results obtained, it can be inferred that 17β-estradiol can be utilized for differentiating stem cell spheroids. Furthermore, the localized and controlled use, potentially through localized delivery systems or biomaterials, can be an area of active research. While 17β-estradiol holds promise for enhancing stem cell applications, any clinical use requires a thorough understanding of its mechanisms, careful control of its dosage and delivery, and extensive testing to ensure safety and efficacy.
Collapse
Affiliation(s)
- Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
| | - Hye-Jung Song
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Perioperative escape from dormancy of spontaneous micro-metastases: A role for malignant secretion of IL-6, IL-8, and VEGF, through adrenergic and prostaglandin signaling. Brain Behav Immun 2023; 109:175-187. [PMID: 36646396 DOI: 10.1016/j.bbi.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
We recently showed that a minimally-invasive removal of MDA-MB-231HM primary tumors (PTs) and elimination of their secreted factors (including IL-6, IL-8, VEGF, EGF, PDGF-aa, MIF, SerpinE1, and M-CSF), caused regression of spontaneous micro-metastases into a non-growing dormant state. To explore the underlying mechanisms and potential clinical ramifications of this phenomenon, we herein used the MDA-MB-231HM human breast cancer cell-line, in-vitro, and in vivo following orthotopic implantation in immune-deficient BALB/C nu/nu mice. Employing bioluminescence imaging, we found that adding laparotomy to minimally-invasive removal of the PT caused an outbreak of micro-metastases. However, perioperative β-adrenergic and COX-2 inhibition, using propranolol + etodolac, maintained metastatic dormancy following laparotomy. In-vitro, β-adrenergic agonists (epinephrine or metaproterenol) and prostaglandin-E2 markedly increased MDA-MB-231HM secretion of the pro-metastatic factors IL-6, IL-8, and VEGF, whereas cortisol reduced their secretion, effects that were maintained even 12 h after the washout of these agonists. In-vivo, laparotomy elevated IL-6 and IL-8 levels in both plasma and ex-vivo PT spontaneous secretion, whereas perioperative propranolol + etodolac administration blocked these effects. Similar trends were evident for EGF and MIF. Promoter-based bioinformatics analyses of excised PT transcriptomes implicated elevated NF-kB activity and reduced IRF1 activity in the gene regulatory effects of laparotomy, and these effects were inhibited by pre-surgical propranolol + etodolac. Taken together, our findings suggest a novel mechanism of post-operative metastatic outbreak, where surgery-induced adrenergic and prostanoid signaling increase the secretion of pro-metastatic factors, including IL-6, IL-8, and VEGF, from PT and possibly residual malignant tissue, and thereby prevent residual disease from entering dormancy.
Collapse
|
5
|
Schauer T, Djurhuus SS, Simonsen C, Brasso K, Christensen JF. The effects of acute exercise and inflammation on immune function in early-stage prostate cancer. Brain Behav Immun Health 2022; 25:100508. [PMID: 36133956 PMCID: PMC9483738 DOI: 10.1016/j.bbih.2022.100508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background The immune system plays a vital role in cancer development and progression. Strategies mobilizing cytotoxic cells of the immune system to combat immunosuppression in cancer may help to improve the treatment response of patients. To this end, we aimed to characterize the anti-cancer effect of acute exercise, including the involvement of inflammatory signals. Patients and methods Twenty patients with early-stage prostate cancer (PCa) scheduled to undergo prostatectomy performed one bout of acute exercise consisting of a watt-max test and four high-intensity intervals. Natural Killer (NK), NKT-like and T cell phenotype, NK cell cytotoxic activity (NKCA), and NKCA per-cell against cell lines of leukemia (K562) and prostate cancer origin (LNCaP and PC-3) were assessed. Inflammatory markers (TNF-α, IL-6, and CRP) were measured in plasma. Results Exercise increased NK, NKT-like, and CD8 T cell concentration in the circulation. Furthermore, exercise shifted immune cells towards a mature and cytotoxic phenotype e.g., NK cells exhibited higher CD57 as well as lower NKG2A expression. NKT-like and CD8 cells exhibited elevated CD57, TIGIT and Granzyme-B expression. Exercise significantly improved NKCA against K562 (+16% [5%; 27%]; p = 0.002) and LNCaP (+24% [14%; 34%]; p < 0.001) but not PC-3. NKCA per NK cell decreased during exercise and increased 1-h post exercise compared to baseline in K562, LNCap, and PC-3 cell lines. Baseline IL-6 correlated with lymphocyte, monocyte and T cell concentration pre-exercise and inversely correlated with the fold-change of mobilized lymphocytes and CD8 T cells during exercise. Furthermore, baseline IL-6 and TNF-α inversely correlated with NKCA against PC-3 cells during exercise. Conclusions Acute exercise mobilized cytotoxic immune cells and improved NKCA in patients with PCa whereas low-grade inflammation might impair the response. Whether the observed improvements impact long-term outcomes warrant further investigation. Clinical trial number NCT03675529.
Collapse
Affiliation(s)
- Tim Schauer
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Casper Simonsen
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus Brasso
- Copenhagen Prostate Cancer Center, Department of Urology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Jesper Frank Christensen
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Exercise and Biomechanics, University of Southern Denmark, Denmark
- Digestive Disease Center, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E, Delfino DV. Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol 2022; 198:114930. [PMID: 35149054 DOI: 10.1016/j.bcp.2022.114930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Glucocorticoids exert their pharmacological actions by mimicking and amplifying the function of the endogenous glucocorticoid system's canonical physiological stress response. They affect the immune system at the levels of inflammation and adaptive and innate immunity. These effects are the basis for therapeutic use of glucocorticoids. Innate immunity is the body's first line of defense against disease conditions. It is relatively nonspecific and, among its mediators, natural killer (NK) cells link innate and acquired immunity. NK cell numbers are altered in patients with auto immune diseases, and research suggests that interactions between glucocorticoids and natural killer cells are critical for successful glucocorticoid therapy. The aim of this review is to summarize these interactions while highlighting the latest and most important developments in this field. Production and release in the blood of endogenous glucocorticoids are strictly regulated by the hypothalamus-pituitary adrenal axis. A self-regulatory mechanism prevents excessive plasma levels of these hormones. However, exogenous stimuli such as stress, inflammation, infections, cancer, and autoimmune disease can trigger the hypothalamus-pituitary-adrenal axis response and lead to excessive systemic release of glucocorticoids. Thus, stress stimuli, such as sleep deprivation, intense exercise, depression, viral infections, and cancer, can result in release of glucocorticoids and associated immunosuppressant effects. Among these effects are decreases in the numbers and activities of NK cells in inflammatory and autoimmune diseases (e.g., giant cell arteritis, polymyalgia rheumatica, and familial hypogammaglobulinemia).
Collapse
Affiliation(s)
- Isabella Muscari
- Section of Onco-hematology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sabrina Adorisio
- Foligno Nursing School, Department of Medicine and Surgery, University of Perugia, Foligno, PG, Italy
| | - Marina Moretti
- Section of Onco-hematology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Foligno Nursing School, Department of Medicine and Surgery, University of Perugia, Foligno, PG, Italy; Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
7
|
Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioeng 2021; 5:020901. [PMID: 33834152 PMCID: PMC8019355 DOI: 10.1063/5.0032196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
There is a fundamental need for clinically relevant, reproducible, and standardized in vitro human neural tissue models, not least of all to study heterogenic and complex human-specific neurological (such as neuropsychiatric) disorders. Construction of three-dimensional (3D) bioprinted neural tissues from native human-derived stem cells (e.g., neural stem cells) and human pluripotent stem cells (e.g., induced pluripotent) in particular is appreciably impacting research and conceivably clinical translation. Given the ability to artificially and favorably regulate a cell's survival and behavior by manipulating its biophysical environment, careful consideration of the printing technique, supporting biomaterial and specific exogenously delivered stimuli, is both required and advantageous. By doing so, there exists an opportunity, more than ever before, to engineer advanced and precise tissue analogs that closely recapitulate the morphological and functional elements of natural tissues (healthy or diseased). Importantly, the application of electrical stimulation as a method of enhancing printed tissue development in vitro, including neuritogenesis, synaptogenesis, and cellular maturation, has the added advantage of modeling both traditional and new stimulation platforms, toward improved understanding of efficacy and innovative electroceutical development and application.
Collapse
Affiliation(s)
- Danielle Warren
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | | | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | - Jeremy M. Crook
- Author to whom correspondence should be addressed:. Tel.: +61 2 4221 3011
| |
Collapse
|
8
|
Abstract
Natural killer (NK) cell deficiency (NKD) is a subset of primary immunodeficiency disorders (PID) in which an abnormality of NK cells represents a major immunological defect resulting in the patient’s clinical immunodeficiency. This is distinct from a much larger group of PIDs that include an NK cell abnormality as a minor component of the immunodeficiency. Patients with NKD most frequently have atypical consequences of herpesviral infections. There are now 6 genes that have been ascribed to causing NKD, some exclusively and others that also cause other known immunodeficiencies. This list has grown in recent years and as such the mechanistic and molecular clarity around what defines an NKD is an emerging and important field of research. Continued increased clarity will allow for more rational approaches to the patients themselves from a therapeutic standpoint. Having evaluated numerous individuals for NKD, I share my perspective on approaching the diagnosis and managing these patients.
Collapse
Affiliation(s)
- Jordan S Orange
- Department of Pediatrics, NewYork Presbyterian Morgan Stanley Children's Hospital, Columbia University Vagelos College of Physicians and Surgeons, 622 W 168th St., New York, NY, 10032, USA.
| |
Collapse
|
9
|
Semple SL, Rodríguez-Ramos T, Carpio Y, Lumsden JS, Estrada MP, Dixon B. PACAP Is Lethal to Flavobacterium psychrophilum Through Either Direct Membrane Permeabilization or Indirectly, by Priming the Immune Response in Rainbow Trout Macrophages. Front Immunol 2019; 10:926. [PMID: 31105711 PMCID: PMC6498415 DOI: 10.3389/fimmu.2019.00926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed in mammals and is capable of performing roles as a neurotransmitter, neuromodulator, and vasodilator. This polypeptide belongs to the glucagon/secretin superfamily, of which some members have been shown to act as antimicrobial peptides in both mammalian and aquatic organisms. In teleosts, PACAP has been demonstrated to have direct antimicrobial activity against several aquatic pathogens, yet this phenomenon has never been studied throughout a live bacterial challenge. The present study focuses on the influence of synthetic Clarias gariepinus 38 amino acid PACAP on the rainbow trout monocyte/macrophage-like cell line, RTS11, when exposed to the coldwater bacterial pathogen Flavobacterium psychrophilum. PACAP was shown to have direct antimicrobial activity on F. psychrophilum when grown in both cytophaga broth and cell culture media (L-15). Further, the ability of teleostean PACAP to permeabilize the membrane of an aquatic pathogen, F. psychrophilum, was demonstrated for the first time. The viability of RTS11 when exposed to PACAP was also observed using a trypan blue exclusion assay to determine optimal experimental doses of the antimicrobial peptide. This displayed that only concentrations higher than 0.1 μM negatively impacted RTS11 survival. Interestingly, when RTS11 was pre-treated with PACAP for 24 h before experiencing infection with live F. psychrophilum, growth of the pathogen was severely inhibited in a dose-dependent manner when compared to cells receiving no pre-treatment with the polypeptide. Relative expression of pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) and PACAP receptors (VPAC1 and PAC1) was also analyzed in RTS11 following PACAP exposure alone and in conjunction with live F. psychrophilum challenge. These qRT-PCR findings revealed that PACAP may have a synergistic effect on RTS11 immune function. The results of this study provide evidence that PACAP has immunostimulatory activity on rainbow trout immune cells as well as antimicrobial activity against aquatic bacterial pathogens such as F. psychrophilum. As there are numerous pathogens that plague the aquaculture industry, PACAP may stimulate the teleost immune system while also providing an efficacious alternative to antibiotic use.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mario P Estrada
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
10
|
Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019; 144:90-111. [PMID: 31419450 PMCID: PMC6986687 DOI: 10.1016/j.addr.2019.08.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
The complexity of nanoscale interactions between biomaterials and cells has limited the realization of the ultimate vision of nanotechnology in diagnostics and therapeutics. As such, significant effort has been devoted to advancing our understanding of the biophysical interactions of the myriad nanoparticles. Endocytosis of nanomedicine has drawn tremendous interest in the last decade. Here, we highlight the ever-present barriers to efficient intracellular delivery of nanoparticles as well as the current advances and strategies deployed to breach these barriers. We also introduce new barriers that have been largely overlooked such as the glycocalyx and macromolecular crowding. Additionally, we draw attention to the potential complications arising from the disruption of the newly discovered functions of the lysosomes. Novel strategies of exploiting the inherent intracellular defects in disease states to enhance delivery and the use of exosomes for bioanalytics and drug delivery are explored. Furthermore, we discuss the advances in imaging techniques like electron microscopy, super resolution fluorescence microscopy, and single particle tracking which have been instrumental in our growing understanding of intracellular pathways and nanoparticle trafficking. Finally, we advocate for the push towards more intravital analysis of nanoparticle transport phenomena using the multitude of techniques available to us. Unraveling the underlying mechanisms governing the cellular barriers to delivery and biological interactions of nanoparticles will guide the innovations capable of breaching these barriers.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
11
|
Haldar R, Shaashua L, Lavon H, Lyons YA, Zmora O, Sharon E, Birnbaum Y, Allweis T, Sood AK, Barshack I, Cole S, Ben-Eliyahu S. Perioperative inhibition of β-adrenergic and COX2 signaling in a clinical trial in breast cancer patients improves tumor Ki-67 expression, serum cytokine levels, and PBMCs transcriptome. Brain Behav Immun 2018; 73:294-309. [PMID: 29800703 DOI: 10.1016/j.bbi.2018.05.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Catecholamines and prostaglandins are secreted abundantly during the perioperative period in response to stress and surgery, and were shown by translational studies to promote tumor metastasis. Here, in a phase-II biomarker clinical trial in breast cancer patients (n = 38), we tested the combined perioperative use of the β-blocker, propranolol, and the COX2-inhibitor, etodolac, scheduled for 11 consecutive perioperative days, starting 5 days before surgery. Blood samples were taken before treatment (T1), on the mornings before and after surgery (T2&T3), and after treatment cessation (T4). Drugs were well tolerated. Results based on a-priori hypotheses indicated that already before surgery (T2), serum levels of pro-inflammatory IL-6, CRP, and IFNγ, and anti-inflammatory, cortisol and IL-10, increased. At T2 and/or T3, drug treatment reduced serum levels of the above pro-inflammatory cytokines and of TRAIL, as well as activity of multiple inflammation-related transcription factors (including NFκB, STAT3, ISRE), but not serum levels of cortisol, IL-10, IL-18, IL-8, VEGF and TNFα. In the excised tumor, treatment reduced the expression of the proliferation marker Ki-67, and positively affected its transcription factors SP1 and AhR. Exploratory analyses of transcriptome modulation in PBMCs revealed treatment-induced improvement at T2/T3 in several transcription factors that in primary tumors indicate poor prognosis (CUX1, THRa, EVI1, RORa, PBX1, and T3R), angiogenesis (YY1), EMT (GATA1 and deltaEF1/ZEB1), proliferation (GATA2), and glucocorticoids response (GRE), while increasing the activity of the oncogenes c-MYB and N-MYC. Overall, the drug treatment may benefit breast cancer patients through reducing systemic inflammation and pro-metastatic/pro-growth biomarkers in the excised tumor and PBMCs.
Collapse
Affiliation(s)
- Rita Haldar
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Israel
| | - Lee Shaashua
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Israel
| | - Hagar Lavon
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Israel
| | - Yasmin A Lyons
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, M.D. Anderson Cancer Center at University of Texas, Huston, TX, USA
| | - Oded Zmora
- Department of Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
| | - Eran Sharon
- Department of Surgery, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel
| | - Yehudit Birnbaum
- Department of Surgery, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel
| | - Tanir Allweis
- Department of Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, M.D. Anderson Cancer Center at University of Texas, Huston, TX, USA
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Steve Cole
- Department of Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Israel.
| |
Collapse
|
12
|
Read MN, Alden K, Timmis J, Andrews PS. Strategies for calibrating models of biology. Brief Bioinform 2018; 21:24-35. [PMID: 30239570 DOI: 10.1093/bib/bby092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/10/2018] [Accepted: 08/27/2018] [Indexed: 11/14/2022] Open
Abstract
Computational and mathematical modelling has become a valuable tool for investigating biological systems. Modelling enables prediction of how biological components interact to deliver system-level properties and extrapolation of biological system performance to contexts and experimental conditions where this is unknown. A model's value hinges on knowing that it faithfully represents the biology under the contexts of use, or clearly ascertaining otherwise and thus motivating further model refinement. These qualities are evaluated through calibration, typically formulated as identifying model parameter values that align model and biological behaviours as measured through a metric applied to both. Calibration is critical to modelling but is often underappreciated. A failure to appropriately calibrate risks unrepresentative models that generate erroneous insights. Here, we review a suite of strategies to more rigorously challenge a model's representation of a biological system. All are motivated by features of biological systems, and illustrative examples are drawn from the modelling literature. We examine the calibration of a model against distributions of biological behaviours or outcomes, not only average values. We argue for calibration even where model parameter values are experimentally ascertained. We explore how single metrics can be non-distinguishing for complex systems, with multiple-component dynamic and interaction configurations giving rise to the same metric output. Under these conditions, calibration is insufficiently constraining and the model non-identifiable: multiple solutions to the calibration problem exist. We draw an analogy to curve fitting and argue that calibrating a biological model against a single experiment or context is akin to curve fitting against a single data point. Though useful for communicating model results, we explore how metrics that quantify heavily emergent properties may not be suitable for use in calibration. Lastly, we consider the role of sensitivity and uncertainty analysis in calibration and the interpretation of model results. Our goal in this manuscript is to encourage a deeper consideration of calibration, and how to increase its capacity to either deliver faithful models or demonstrate them otherwise.
Collapse
Affiliation(s)
| | | | | | - Paul S Andrews
- SimOmics Ltd, Suite 10 IT Centre, Innovation Way, York, UK
| |
Collapse
|
13
|
Angka L, Martel AB, Kilgour M, Jeong A, Sadiq M, de Souza CT, Baker L, Kennedy MA, Kekre N, Auer RC. Natural Killer Cell IFNγ Secretion is Profoundly Suppressed Following Colorectal Cancer Surgery. Ann Surg Oncol 2018; 25:3747-3754. [DOI: 10.1245/s10434-018-6691-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/27/2023]
|
14
|
Gupta P, Bigley AB, Markofski M, Laughlin M, LaVoy EC. Autologous serum collected 1 h post-exercise enhances natural killer cell cytotoxicity. Brain Behav Immun 2018; 71:81-92. [PMID: 29656052 DOI: 10.1016/j.bbi.2018.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED Natural Killer cells are cytotoxic lymphocytes that recognize and eliminate tumor cells. Exercise enhances NK cell cytotoxic activity (NKCA), yet the underlying mechanisms are not fully understood. Exercise-induced shifts in NK-cell subsets has been proposed as one mechanism. Alternatively, exercise alters stress hormone and cytokine levels, which are also known to affect NKCA. AIM Determine the role(s) of exercise-induced shifts in the proportions of NK-cell subsets found in the blood, and changes in serum IL-2, IL-6, IL-12, IFN-γ, TNF-α and cortisol, on exercise-induced changes in NKCA. METHODS Twelve adults cycled 30 min at 115% of their lactate threshold power. Peripheral blood mononuclear cells (PBMCs) and serum were isolated from blood collected pre-, post-, and 1 h post-exercise. To investigate the effect of shifts in NK-cell subsets, pre-, post- and 1 h post-exercise NK cells were incubated with target cells (K562 and U266) in the presence of autologous pre-exercise serum. The effects of hormones and cytokines released during exercise were determined by incubating pre-exercise PBMCs with tumor target cells (K562 and U266) in the presence of pre-, post-, and 1 h post-exercise serum. NKCA and phenotypes were assessed by flow cytometry. RESULTS Although exercise mobilized high-differentiated NK cell subsets (NKG2A-/KIR+), NKCA per cell was not altered post-exercise in the presence of pre-exercise serum. Conversely, 1 h post-exercise serum significantly increased the cytotoxicity of pre-exercise NK cells against HLA-expressing target cells (U266). This increase associated with lower levels of cortisol, and occurred when serum contained higher levels of IFN-γ. CONCLUSIONS Exercise-induced shifts in NK-cell subsets did not fully explain changes in NKCA. Rather, factors present in serum during exercise recovery enhanced NKCA against target cells. Our results suggest lower cortisol and higher IFN-γ levels may explain exercise-induced changes in NKCA.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Health & Human Performance, University of Houston, Houston, TX, USA
| | - Austin B Bigley
- Department of Health & Human Performance, University of Houston, Houston, TX, USA
| | - Melissa Markofski
- Department of Health & Human Performance, University of Houston, Houston, TX, USA
| | - Mitzi Laughlin
- Department of Health & Human Performance, University of Houston, Houston, TX, USA
| | - Emily C LaVoy
- Department of Health & Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Zika Virus Infection Preferentially Counterbalances Human Peripheral Monocyte and/or NK Cell Activity. mSphere 2018; 3:mSphere00120-18. [PMID: 29600283 PMCID: PMC5874443 DOI: 10.1128/mspheredirect.00120-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) has reemerged in the population and caused unprecedented global outbreaks. Here, the transcriptomic consequences of ZIKV infection were studied systematically first in human peripheral blood CD14+ monocytes and monocyte-derived macrophages with high-density RNA sequencing. Analyses of the ZIKV genome revealed that the virus underwent genetic diversification, and differential mRNA abundance was found in host cells during infection. Notably, there was a significant change in the cellular response, with cross talk between monocytes and natural killer (NK) cells as one of the highly identified pathways. Immunophenotyping of peripheral blood from ZIKV-infected patients further confirmed the activation of NK cells during acute infection. ZIKV infection in peripheral blood cells isolated from healthy donors led to the induction of gamma interferon (IFN-γ) and CD107a-two key markers of NK cell function. Depletion of CD14+ monocytes from peripheral blood resulted in a reduction of these markers and reduced priming of NK cells during infection. This was complemented by the immunoproteomic changes observed. Mechanistically, ZIKV infection preferentially counterbalances monocyte and/or NK cell activity, with implications for targeted cytokine immunotherapies. IMPORTANCE ZIKV reemerged in recent years, causing outbreaks in many parts of the world. Alarmingly, ZIKV infection has been associated with neurological complications such as Guillain-Barré syndrome (GBS) in adults and congenital fetal growth-associated anomalies in newborns. Host peripheral immune cells are one of the first to interact with the virus upon successful transmission from an infected female Aedes mosquito. However, little is known about the role of these immune cells during infection. In this work, the immune responses of monocytes, known target cells of ZIKV infection, were investigated by high-density transcriptomics. The analysis saw a robust immune response being elicited. Importantly, it also divulged that monocytes prime NK cell activities during virus infection. Removal of monocytes during the infection changed the immune milieu, which in turn reduced NK cell stimulation. This study provides valuable insights into the pathobiology of the virus and allows for the possibility of designing novel targeted therapeutics.
Collapse
|
16
|
Misale MS, Witek Janusek L, Tell D, Mathews HL. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction. Brain Behav Immun 2018; 67:279-289. [PMID: 28911980 PMCID: PMC5696065 DOI: 10.1016/j.bbi.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022] Open
Abstract
It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells.
Collapse
Affiliation(s)
- Michael S Misale
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Linda Witek Janusek
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Dina Tell
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Herbert L Mathews
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States.
| |
Collapse
|
17
|
Kobayashi T, Mattarollo SR. Natural killer cell metabolism. Mol Immunol 2017; 115:3-11. [PMID: 29179986 DOI: 10.1016/j.molimm.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are a critical component in the innate immune response against disease. NK cell function is tightly regulated by specific cytokine and activation/inhibitory receptor signalling, leading to diverse effector responses. Like all living cells, energy metabolism is a fundamental requirement for NK cell activation and survival. There is growing evidence that distinct functional profiles of NK cells are determined by alterations to cellular metabolic pathways. In this review, we summarise current literature that has explored NK cell metabolism to provide insight into how metabolic regulation controls NK cell function. We focus on metabolism pathways induced by different NK cell stimuli, metabolic regulatory proteins, and nutrient and hormonal levels in health and disease which impact on NK cell metabolic and functional activity.
Collapse
Affiliation(s)
- Takumi Kobayashi
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane 4102, Queensland, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane 4102, Queensland, Australia.
| |
Collapse
|
18
|
Benbenishty A, Segev-Amzaleg N, Shaashua L, Melamed R, Ben-Eliyahu S, Blinder P. Maintaining unperturbed cerebral blood flow is key in the study of brain metastasis and its interactions with stress and inflammatory responses. Brain Behav Immun 2017; 62:265-276. [PMID: 28219803 PMCID: PMC5420452 DOI: 10.1016/j.bbi.2017.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
Blood-borne brain metastases are associated with poor prognosis, but little is known about the interplay between cerebral blood flow, surgical stress responses, and the metastatic process. The intra-carotid inoculation approach, traditionally used in animal studies, involves permanent occlusion of the common carotid artery (CCA). Herein we introduced a novel intra-carotid inoculation approach that avoids CCA ligation, namely - assisted external carotid artery inoculation (aECAi) - and compared it to the traditional approach in C57/BL6 mice, assessing cerebral blood flow; particle distribution; blood-brain barrier (BBB) integrity; stress, inflammatory and immune responses; and brain tumor retention and growth. Doppler flowmetry and two-photon imaging confirmed that only in the traditional approach regional and capillary cerebral blood flux were significantly reduced. Corticosterone and plasma IL-6 levels were higher in the traditional approach, splenic numbers of NK, CD3+, granulocytes, and dendritic cells were lower, and many of these indices were more profoundly affected by surgical stress in the traditional approach. BBB integrity was unaffected. Administration of spherical beads indicated that CCA ligation significantly limited brain distribution of injected particles, and inoculation of D122-LLC syngeneic tumor cells resulted in 10-fold lower brain tumor-cell retention in the traditional approach. Last, while most of the injected tumor cells were arrested in extra-cranial head areas, our method improved targeting of brain-tissue by 7-fold. This head versus brain distribution difference, commonly overlooked, cannot be detected using in vivo bioluminescent imaging. Overall, it is crucial to maintain unperturbed cerebral blood flow while studying brain metastasis and interactions with stress and inflammatory responses.
Collapse
Affiliation(s)
- Amit Benbenishty
- Sagol School of Neuroscience, Tel Aviv University, Israel; Neurobiology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel; School of Psychological Sciences, Tel Aviv University, Israel
| | - Niva Segev-Amzaleg
- Neurobiology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Lee Shaashua
- School of Psychological Sciences, Tel Aviv University, Israel
| | - Rivka Melamed
- School of Psychological Sciences, Tel Aviv University, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience, Tel Aviv University, Israel; School of Psychological Sciences, Tel Aviv University, Israel
| | - Pablo Blinder
- Sagol School of Neuroscience, Tel Aviv University, Israel; Neurobiology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
19
|
Stress impairs the efficacy of immune stimulation by CpG-C: Potential neuroendocrine mediating mechanisms and significance to tumor metastasis and the perioperative period. Brain Behav Immun 2016; 56:209-220. [PMID: 26944000 PMCID: PMC4917466 DOI: 10.1016/j.bbi.2016.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
We recently reported that immune stimulation can be compromised if animals are simultaneously subjected to stressful conditions. To test the generalizability of these findings, and to elucidate neuroendocrine mediating mechanisms, we herein employed CpG-C, a novel TLR-9 immune-stimulating agent. Animals were subjected to ongoing stress (20-h of wet cage exposure) during CpG-C treatment, and antagonists to glucocorticoids, β-adrenoceptor, COX2, or opioids were employed (RU486, nadolol, etodolac, naltrexone). In F344 rats, marginating-pulmonary NK cell numbers and cytotoxicity were studied, and the NK-sensitive MADB106 experimental metastasis model was used. In Balb/C mice, experimental hepatic metastases of the CT-26 colon tumor were studied; and in C57BL/6J mice, survival rates following excision of B16 melanoma was assessed - both mouse tumor models involved surgical stress. The findings indicated that simultaneous blockade of glucocorticoid and β-adrenergic receptors improved CpG-C efficacy against MADB106 metastasis. In mice bearing B16 melanoma, long-term survival rate was improved by CpG-C only when employed simultaneously with blockers of glucocorticoids, catecholamines, and prostaglandins. Prolonged stress impaired CpG-C efficacy in potentiating NK activity, and in resisting MADB106 metastasis in both sexes, as also supported by in vitro studies. This latter effect was not blocked by any of the antagonists or by adrenalectomy. In the CT26 model, prolonged stress only partially reduced the efficacy of CpG-C. Overall, our findings indicate that ongoing behavioral stress and surgery can jeopardize immune-stimulatory interventions and abolish their beneficial metastasis-reducing impacts. These findings have implications for the clinical setting, which often involve psychological and physiological stress responses during immune-stimulation.
Collapse
|
20
|
Bigler MB, Egli SB, Hysek CM, Hoenger G, Schmied L, Baldin FS, Marquardsen FA, Recher M, Liechti ME, Hess C, Berger CT. Stress-Induced In Vivo Recruitment of Human Cytotoxic Natural Killer Cells Favors Subsets with Distinct Receptor Profiles and Associates with Increased Epinephrine Levels. PLoS One 2015; 10:e0145635. [PMID: 26700184 PMCID: PMC4689586 DOI: 10.1371/journal.pone.0145635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Background Acute stress drives a ‘high-alert’ response in the immune system. Psychoactive drugs induce distinct stress hormone profiles, offering a sought-after opportunity to dissect the in vivo immunological effects of acute stress in humans. Methods 3,4-methylenedioxymethamphetamine (MDMA), methylphenidate (MPH), or both, were administered to healthy volunteers in a randomized, double-blind, placebo-controlled crossover-study. Lymphocyte subset frequencies, natural killer (NK) cell immune-phenotypes, and changes in effector function were assessed, and linked to stress hormone levels and expression of CD62L, CX3CR1, CD18, and stress hormone receptors on NK cells. Results MDMA/MPH > MDMA > MPH robustly induced an epinephrine-dominant stress response. Immunologically, rapid redistribution of peripheral blood lymphocyte-subsets towards phenotypically mature NK cells occurred. NK cytotoxicity was unaltered, but they expressed slightly reduced levels of the activating receptor NKG2D. Preferential circulation of mature NK cells was associated with high epinephrine receptor expression among this subset, as well as expression of integrin ligands previously linked to epinephrine-induced endothelial detachment. Conclusion The acute epinephrine-induced stress response was characterized by rapid accumulation of mature and functional NK cells in the peripheral circulation. This is in line with studies using other acute stressors and supports the role of the acute stress response in rapidly mobilizing the innate immune system to counteract incoming threats.
Collapse
MESH Headings
- Cells, Cultured
- Cross-Over Studies
- Double-Blind Method
- Epinephrine/blood
- Female
- Flow Cytometry
- Humans
- Immunophenotyping
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Male
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Physiological/immunology
Collapse
Affiliation(s)
- Marc B. Bigler
- Translational Immunology, Dep. of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Simon B. Egli
- Translational Immunology, Dep. of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Cédric M. Hysek
- Clinical Pharmacology, Dep. of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Gideon Hoenger
- Immunobiology Lab, Dep. of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Laurent Schmied
- Immunotherapy Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Fabian S. Baldin
- Immunodeficiency Lab, Dep. of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Florian A. Marquardsen
- Immunodeficiency Lab, Dep. of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Lab, Dep. of Biomedicine, University Hospital Basel, Basel, Switzerland
- Medical Outpatient Clinic, Dep. of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Matthias E. Liechti
- Clinical Pharmacology, Dep. of Internal Medicine, University Hospital Basel, Basel, Switzerland
- * E-mail: (CTB); (MEL)
| | - Christoph Hess
- Immunobiology Lab, Dep. of Biomedicine, University Hospital Basel, Basel, Switzerland
- Medical Outpatient Clinic, Dep. of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Christoph T. Berger
- Translational Immunology, Dep. of Biomedicine, University Hospital Basel, Basel, Switzerland
- Medical Outpatient Clinic, Dep. of Internal Medicine, University Hospital Basel, Basel, Switzerland
- * E-mail: (CTB); (MEL)
| |
Collapse
|
21
|
De Lorenzo BHP, de Oliveira Marchioro L, Greco CR, Suchecki D. Sleep-deprivation reduces NK cell number and function mediated by β-adrenergic signalling. Psychoneuroendocrinology 2015; 57:134-43. [PMID: 25929826 DOI: 10.1016/j.psyneuen.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 11/28/2022]
Abstract
Reduction of sleep time triggers a stress response, leading to augmented levels of glucocorticoids and adrenaline. These hormones regulate components of the innate immune system such as natural killer (NK) and NKT cells. In the present study, we sought to investigate whether and how stress hormones could alter the population and function of NK and NKT cells of mice submitted to different lengths of paradoxical sleep deprivation (PSD, from 24 to 72 h). Results showed that 72h of PSD decreased not only NK and NKT cell counts, but also their cytotoxic activity against B16F10 melanoma cells in vitro. Propranolol treatment during PSD reversed these effects, indicating a major inhibitory role of beta-adrenergic receptors (β-AR) on NK cells function. Moreover, both corticosterone plasma levels and expression of beta 2-adrenergic receptors (β2-AR) in NK cells increased by 48 h of PSD. In vitro incubation of NK cells with dexamethasone augmented the level of β2-AR in the cell surface, suggesting that glucocorticoids could induce β2-AR expression. In summary, we propose that reduction of NK and NKT cell number and cytotoxic activity appears to be mediated by glucocorticoids-induced increased expression of β2-AR in these cells.
Collapse
Affiliation(s)
- Beatriz H P De Lorenzo
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 - 1° andar, Vila Clementino, 04024-002 São Paulo, SP, Brazil; Centro Universitário São Camilo, Avenida Nazaré, 1501, Ipiranga, 04263-200 São Paulo, SP, Brazil.
| | - Laís de Oliveira Marchioro
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 - 1° andar, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | - Carollina Ribeiro Greco
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 - 1° andar, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 - 1° andar, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| |
Collapse
|