1
|
Gan R, Xie H, Zhao Z, Wu X, Wang R, Wu B, Chen Q, Jia Z. Investigation of patterns and associations of neuroinflammation in cognitive impairment. Cereb Cortex 2025; 35:bhaf013. [PMID: 39917815 DOI: 10.1093/cercor/bhaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/29/2024] [Accepted: 01/19/2025] [Indexed: 03/17/2025] Open
Abstract
Neuroinflammation has been identified as an important pathological component of cognitive impairment, and translocator protein imaging has become a valuable tool for assessing its patterns. We aimed to obtain the exact distribution of neuroinflammation in cognitive impairment and its underlying mechanisms with amyloid-beta. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, two investigators searched literature databases for studies that measured translocator protein binding levels. This measurement was performed between healthy controls and subjects with mild cognitive impairment or Alzheimer's disease via voxel-based positron emission tomography image analysis at the whole-brain level. This meta-analysis was performed with the anisotropic effect-size based algorithm. Neuroinflammation in patients with mild cognitive impairment was mainly concentrated in the left middle temporal gyrus and left amygdala. In Alzheimer's disease patients, the brain regions involved were the left inferior temporal gyrus, left calcarine fissure/surrounding cortex, left parahippocampal gyrus, right lingual gyrus, and right middle temporal gyrus. In addition, neuroinflammation in patients with cognitive impairment was highly correlated with amyloid-beta deposition in the cortex. This study deepens our understanding of the patterns of neuroinflammation in patients with cognitive impairment and its interaction with amyloid-beta, providing potential insights for therapeutic approaches targeting neuroinflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Ruoqiu Gan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Department of Radiology, Sanya People's Hospital, No. 558 Jiefang Road, 572000, Sanya, Hainan, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Ziru Zhao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Ruihan Wang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guo Xue Alley, 610041, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Lin S, Shu Y, Shen R, Zhou Y, Pan H, He L, Fang F, Zhu X, Wang X, Wang Y, Xu W, Ding J. The regulation of NFKB1 on CD200R1 expression and their potential roles in Parkinson's disease. J Neuroinflammation 2024; 21:229. [PMID: 39294682 PMCID: PMC11409543 DOI: 10.1186/s12974-024-03231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Overactivated microglia are a key contributor to Parkinson's disease (PD) by inducing neuroinflammation. CD200R1, a membrane glycoprotein mainly found on microglia, is crucial for maintaining quiescence with its dysregulation linked to microglia's abnormal activation. We and other groups have reported a decline in CD200R1 levels in several neurological disorders including PD. However, the mechanism regulating CD200R1 expression and the specific reasons for its reduction in PD remain largely unexplored. Given the pivotal role of transcription factors in gene expression, this study aimed to elucidate the transcriptional regulation of CD200R1 and its implications in PD. METHODS The CD200R1 promoter core region was identified via luciferase assays. Potential transcription factors were predicted using the UCSC ChIP-seq database and JASPAR. NFKB1 binding to the CD200R1 core promoter was substantiated through electrophoretic mobility shift and chromatin immunoprecipitation assays. Knocking-down or overexpressing NFKB1 validated its regulatory effect on CD200R1. Correlation between decreased CD200R1 and deficient NFKB1 was studied using Genotype-Tissue Expression database. The clinical samples of the peripheral blood mononuclear cells were acquired from 44 PD patients (mean age 64.13 ± 9.78, 43.2% male, median Hoehn-Yahr stage 1.77) and 45 controls (mean age 64.70 ± 9.41, 52.1% male). NFKB1 knockout mice were utilized to study the impact of NFKB1 on CD200R1 expression and to assess their roles in PD pathophysiology. RESULTS The study identified the CD200R1 core promoter region, located 482 to 146 bp upstream of its translation initiation site, was directly regulated by NFKB1. Significant correlation between NFKB1 and CD200R1 expression was observed in human PMBCs. Both NFKB1 and CD200R1 were significantly decreased in PD patient samples. Furthermore, NFKB1-/- mice exhibited exacerbated microglia activation and dopaminergic neuron loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. CONCLUSION Our study identified that NFKB1 served as a direct regulator of CD200R1. Reduced NFKB1 played a critical role in CD200R1 dysregulation and subsequent microglia overactivation in PD. These findings provide evidence that targeting the NFKB1-CD200R1 axis would be a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifan Zhou
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Aging, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinrui Wang
- Maternity and child care centers, Fuzhou, Fujian, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200135, China.
| |
Collapse
|
3
|
Lauritsen J, Romero-Ramos M. The systemic immune response in Parkinson's disease: focus on the peripheral immune component. Trends Neurosci 2023; 46:863-878. [PMID: 37598092 DOI: 10.1016/j.tins.2023.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
During Parkinson's disease (PD), both the central nervous system (CNS) and peripheral nervous system (PNS) are affected. In parallel, innate immune cells respond early to neuronal changes and alpha-synuclein (α-syn) pathology. Moreover, some of the affected neuronal groups innervate organs with a relevant role in immunity. Consequently, not only microglia, but also peripheral immune cells are altered, resulting in a systemic immune response. Innate and adaptive immune cells may participate in the neurodegenerative process by acting peripherally, infiltrating the brain, or releasing mediators that can protect or harm neurons. However, the sequence of the changes and the significance of each immune compartment in the disease remain to be clarified. In this review, we describe current understanding of the peripheral immune response in PD and discuss the road ahead.
Collapse
Affiliation(s)
- Johanne Lauritsen
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Bedi SS, Scott MC, Skibber MA, Kumar A, Caplan HW, Xue H, Sequeira D, Speer AL, Cardenas F, Gudenkauf F, Uray K, Srivastava AK, Prossin AR, Cox CS. PET imaging of microglia using PBR28suv determines therapeutic efficacy of autologous bone marrow mononuclear cells therapy in traumatic brain injury. Sci Rep 2023; 13:16142. [PMID: 37752232 PMCID: PMC10522669 DOI: 10.1038/s41598-023-43245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
Traumatic brain injury (TBI) results in activated microglia. Activated microglia can be measured in vivo by using positron emission topography (PET) ligand peripheral benzodiazepine receptor standardized uptake values (PBR28suv). Cell based therapies have utilized autologous bone marrow mononuclear cells (BMMNCs) to attenuate activated microglia after TBI. This study aims to utilize in vivo PBR28suv to assess the efficacy of BMMNCs therapy after TBI. Seventy-two hours after CCI injury, BMMNCs were harvested from the tibia and injected via tail-vein at 74 h after injury at a concentration of 2 million cells per kilogram of body weight. There were three groups of rats: Sham, CCI-alone and CCI-BMMNCs (AUTO). One hundred twenty days after injury, rodents were imaged with PBR28 and their cognitive behavior assessed utilizing the Morris Water Maze. Subsequent ex vivo analysis included brain volume and immunohistochemistry. BMMNCs therapy attenuated PBR28suv in comparison to CCI alone and it improved spatial learning as measured by the Morris Water Maze. Ex vivo analysis demonstrated preservation of brain volume, a decrease in amoeboid-shaped microglia in the dentate gyrus and an increase in the ratio of ramified to amoeboid microglia in the thalamus. PBR28suv is a viable option to measure efficacy of BMMNCs therapy after TBI.
Collapse
Affiliation(s)
- Supinder S Bedi
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA.
| | - Michael C Scott
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Max A Skibber
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Akshita Kumar
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Henry W Caplan
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Hasen Xue
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - David Sequeira
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Alison L Speer
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Fanni Cardenas
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Franciska Gudenkauf
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Karen Uray
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| | - Amit K Srivastava
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Alan R Prossin
- Department of Psychiatry and Behavioral Sciences, University of Texas Medical School at Houston, Houston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.230, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Zhang X, Gao R, Zhang C, Teng Y, Chen H, Li Q, Liu C, Wu J, Wei L, Deng L, Wu L, Ye-Lehmann S, Mao X, Liu J, Zhu T, Chen C. Extracellular RNAs-TLR3 signaling contributes to cognitive impairment after chronic neuropathic pain in mice. Signal Transduct Target Ther 2023; 8:292. [PMID: 37544956 PMCID: PMC10404588 DOI: 10.1038/s41392-023-01543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic pain is often associated with cognitive decline, which could influence the quality of the patient's life. Recent studies have suggested that Toll-like receptor 3 (TLR3) is crucial for memory and learning. Nonetheless, the contribution of TLR3 to the pathogenesis of cognitive decline after chronic pain remains unclear. The level of TLR3 in hippocampal neurons increased in the chronic constriction injury (CCI) group than in the sham group in this study. Importantly, compared to the wild-type (WT) mice, TLR3 knockout (KO) mice and TLR3-specific neuronal knockdown mice both displayed improved cognitive function, reduced levels of inflammatory cytokines and neuronal apoptosis and attenuated injury to hippocampal neuroplasticity. Notably, extracellular RNAs (exRNAs), specifically double-stranded RNAs (dsRNAs), were increased in the sciatic nerve, serum, and hippocampus after CCI. The co-localization of dsRNA with TLR3 was also increased in hippocampal neurons. And the administration of poly (I:C), a dsRNA analog, elevated the levels of dsRNAs and TLR3 in the hippocampus, exacerbating hippocampus-dependent memory. In additon, the dsRNA/TLR3 inhibitor improved cognitive function after CCI. Together, our findings suggested that exRNAs, particularly dsRNAs, that were present in the condition of chronic neuropathic pain, activated TLR3, initiated downstream inflammatory and apoptotic signaling, caused damage to synaptic plasticity, and contributed to the etiology of cognitive impairment after chronic neuropathic pain.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Changteng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Teng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Changliang Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahui Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Liuxing Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Shixin Ye-Lehmann
- Diseases and Hormones of the Nervous System, University of Paris-Scalay Bicêtre Hosptial, Le Kremlin-Bicêtre, France
| | - Xiaobo Mao
- Department of Neurology, Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China.
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Bersano A, Engele J, Schäfer MKE. Neuroinflammation and Brain Disease. BMC Neurol 2023; 23:227. [PMID: 37308838 DOI: 10.1186/s12883-023-03252-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
Starting from the perspective of an immune-privileged site, our knowledge of the inflammatory processes within the central nervous system has increased rapidly over the last 30 years, leading to a rather puzzling picture today. Of particular interest is the emergence of disease- and injury-specific inflammatory responses within the brain, which may form the basis for future therapeutic approaches. To advance this important topic, we invite authors to contribute research and clinical papers to the Collection "Neuroinflammation and Brain Disease".
Collapse
Affiliation(s)
- A Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Via Celoria 11, Milan, 20133, Italy.
| | - J Engele
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - M K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg- University, Mainz, Germany
| |
Collapse
|
7
|
Rodina AV, Semochkina YP, Vysotskaya OV, Parfenova AA, Moskaleva EY. Radiation-induced neuroinflammation monitoring by the level of peripheral blood monocytes with high expression of translocator protein. Int J Radiat Biol 2023; 99:1364-1377. [PMID: 36821843 DOI: 10.1080/09553002.2023.2177765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Currently there are no effective diagnostic methods for the control of neuroinflammation before manifestation of cognitive impairment after head irradiation. The translocator protein (TSPO) is highly expressed in glial cells upon brain damage, therefore we compared the changes in the number of cells with high TSPO expression in the brain and peripheral blood during radiation-induced neuroinflammation. MATERIALS AND METHODS Hippocampal cytokines mRNA expression and the content of cells with high TSPO expression in the brain and peripheral blood monocytes were analyzed up to eight months after mice head γ-irradiation at a dose of 2 Gy or 8Gy. RESULTS Mice irradiation at a dose of 8 Gy causes neuroinflammation, accompanied by an increase of M1 microglia and TSPOhigh cells in the brain, elevated gene expression of pro-inflammatory and decreased of anti-inflammatory cytokines along with an increased number of microglia and astrocytes in the hippocampus. The content of TSPOhigh cells in the brain correlates with the level TSPOhigh monocytes in three days, one month and two months after exposure. CONCLUSIONS An increase in the level of the monocytes with high expression of TSPO may be considered as a marker for an early diagnostics of post-radiation brain damage leading to cognitive impairment.
Collapse
Affiliation(s)
- Alla V Rodina
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Yulia P Semochkina
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Olga V Vysotskaya
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Anna A Parfenova
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Elizaveta Y Moskaleva
- Department of Cell Biology, Immunology and Molecular Medicine, Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| |
Collapse
|
8
|
Sanfilippo C, Castrogiovanni P, Vinciguerra M, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. A sex-stratified analysis of neuroimmune gene expression signatures in Alzheimer's disease brains. GeroScience 2023; 45:523-541. [PMID: 36136224 PMCID: PMC9886773 DOI: 10.1007/s11357-022-00664-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697). The AD patients were stratified according to sex. Comparing the high CHI3L1 and CHI3L2 expression group (75th percentile), and low CHI3L1 and CHI3L2 expression group (25th percentile), we obtained eight signatures according to the sex of patients and performed a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to twelve cell populations. Expression analysis revealed significantly higher CHI3L1 and CHI3L2 expression in AD compared with NDC, and positive correlations of these genes with GFAP and TMEM119. Furthermore, deconvolution analysis revealed that CHI3L1 and CHI3L2 high expression was associated with inflammatory signatures in both sexes. Neuronal activation profiles were significantly activated in AD patients with low CHI3L1 and CHI3L2 expression levels. Furthermore, gene ontology analysis of common genes regulated by the two chitinases unveiled immune response as a main biological process. Finally, microglia NIS significantly correlated with CHI3L2 expression levels and were more than 98% similar to microglia NIS determined by CHI3L1. According to our results, high levels of CHI3L1 and CHI3L2 in the brains of AD patients are associated with inflammatory transcriptomic signatures. The high correlation between CHI3L1 and CHI3L2 suggests strong co-regulation.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Catania, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Francesco Fazio
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
9
|
Kim MJ, Anaya FJ, Manly LS, Lee JH, Hong J, Shrestha S, Telu S, Henry K, Santamaria JAM, Liow JS, Zanotti-Fregonara P, Shetty HU, Zoghbi SS, Pike VW, Innis RB. Whole-Body PET Imaging in Humans Shows That 11C-PS13 Is Selective for Cyclooxygenase-1 and Can Measure the In Vivo Potency of Nonsteroidal Antiinflammatory Drugs. J Nucl Med 2023; 64:159-164. [PMID: 35798558 PMCID: PMC9841251 DOI: 10.2967/jnumed.122.264061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023] Open
Abstract
Both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) convert arachidonic acid to prostaglandin H2, which has proinflammatory effects. The recently developed PET radioligand 11C-PS13 has excellent in vivo selectivity for COX-1 over COX-2 in nonhuman primates. This study sought to evaluate the selectivity of 11C-PS13 binding to COX-1 in humans and assess the utility of 11C-PS13 to measure the in vivo potency of nonsteroidal antiinflammatory drugs. Methods: Baseline 11C-PS13 whole-body PET scans were obtained for 26 healthy volunteers, followed by blocked scans with ketoprofen (n = 8), celecoxib (n = 8), or aspirin (n = 8). Ketoprofen is a highly potent and selective COX-1 inhibitor, celecoxib is a preferential COX-2 inhibitor, and aspirin is a selective COX-1 inhibitor with a distinct mechanism that irreversibly inhibits substrate binding. Because blood cells, including platelets and white blood cells, also contain COX-1, 11C-PS13 uptake inhibition from blood cells was measured in vitro and ex vivo (i.e., using blood obtained during PET scanning). Results: High 11C-PS13 uptake was observed in major organs with high COX-1 density, including the spleen, lungs, kidneys, and gastrointestinal tract. Ketoprofen (1-75 mg orally) blocked uptake in these organs far more effectively than did celecoxib (100-400 mg orally). On the basis of the plasma concentration to inhibit 50% of the maximum radioligand binding in the spleen (in vivo IC 50), ketoprofen (<0.24 μM) was more than 10-fold more potent than celecoxib (>2.5 μM) as a COX-1 inhibitor, consistent with the in vitro potencies of these drugs for inhibiting COX-1. Blockade of 11C-PS13 uptake from blood cells acquired during the PET scans mirrored that in organs of the body. Aspirin (972-1,950 mg orally) blocked such a small percentage of uptake that its in vivo IC 50 could not be determined. Conclusion: 11C-PS13 selectively binds to COX-1 in humans and can measure the in vivo potency of nonsteroidal antiinflammatory drugs that competitively inhibit arachidonic acid binding to COX-1. These in vivo studies, which reflect the net effect of drug absorption and metabolism in all organs of the body, demonstrated that ketoprofen had unexpectedly high potency, that celecoxib substantially inhibited COX-1, and that aspirin acetylation of COX-1 did not block binding of the representative nonsteroidal inhibitor 11C-PS13.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and,Department of Psychiatry and Behavioral Health, Stony Brook University School of Medicine, Stony Brook, New York
| | - Fernanda Juarez Anaya
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Lester S. Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Stal Shrestha
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Katharine Henry
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jose A. Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - H. Umesha Shetty
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
10
|
Su X, Wang L, Yang R, Guo Z. Longitudinal 18F-VUIIS1008 PET imaging in a rat model of rheumatoid arthritis. Front Chem 2022; 10:1064518. [PMID: 36618864 PMCID: PMC9816387 DOI: 10.3389/fchem.2022.1064518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages have crucial roles in the pathogenesis of rheumatoid arthritis (RA). We aimed to elucidate the temporal profile of macrophage infiltration in synovitis in RA rat models using PET (positron emission tomography) imaging based a new generation of TSPO (Translocator protein, 18 kDa)-PET ligand, 18F-VUIIS1008 {2-[5,7-Diethyl-2-{4-[2-(18F)fluoroethoxy]phenyl}pyrazolo(1,5-a)pyri-midin-3-yl]-N, N-diethylacetamide}. In vitro and in vivo studies were conducted using RAW264.7 macrophage cells and a rat model of RA induced by Complete Freund's Adjuvant (CFA). Our results showed 18F-VUIIS1008 showed excellent stability in vitro and binding specificity to RAW264.7 cells, and rapid accumulation in the left inflammatory ankles. PET studies revealed that 18F-VUIIS1008 could clearly identify the left inflammatory ankles with good contrast at 30-120 min post-injection. The uptake of 18F-VUIIS1008 of left inflammatory ankles was a wiggle trace with two peaks on day 7 and 29, and then, the highest peak uptake was seen on day 29 (3.00% ± 0.08%ID/g) at 60 min after injection. Tracer uptakes could be inhibited by PK11195 or VUIIS1008. Immunohistochemistry and immunofluorescence tests showed that elevated TSPO expression and infiltrated macrophages were found in the left inflammation ankles. 18F-VUIIS1008 as a novel PET imaging agent showed great potential to identify temporal profile of macrophage infiltration in synovitis in RA, and deliver accurate non-invasive diagnosis and real-time monitoring of RA development.
Collapse
Affiliation(s)
- Xinhui Su
- Department of Nuclear Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China,The School of Clinical Medicine, Fujian Medical University, Fuzhou, China,Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China,*Correspondence: Xinhui Su,
| | - Liangliang Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China,Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China,Department of Nuclear Medicine, Linyi People’s Hospital, Linyi, China
| | - Rongshui Yang
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Zhide Guo
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Musumeci G, Vecchio M, Li Volti G, Tibullo D, Broggi G, Caltabiano R, Ulivieri M, Kazakova M, Parenti R, Vicario N, Fazio F, Di Rosa M. Sex-dependent neuro-deconvolution analysis of Alzheimer's disease brain transcriptomes according to CHI3L1 expression levels. J Neuroimmunol 2022; 373:577977. [PMID: 36228382 DOI: 10.1016/j.jneuroim.2022.577977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Glial activation and related neuroinflammatory processes play a key role in the aging and progression of Alzheimer's disease (AD). CHI3L1/ YKL40 is a widely investigated chitinase in neurodegenerative diseases and recent studies have shown its involvement in aging and AD. Nevertheless, the biological function of CHI3L1 in AD is still unknown. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of not demented healthy controls (NDHC) who died from causes not attributable to neurodegenerative disorders (n = 460), and of deceased patients suffering from Alzheimer's disease (AD) (n = 697). The NDHC and AD patients were stratified according to CHI3L1 expression levels as a cut-off. We identified two groups both males and females, subsequently used for our statistical comparisons: the high CHI3L1 expression group (HCEG) and the low CHI3L1 expression group (LCEG). Comparing HCEG to LCEG, we attained four signatures according to the sex of patients, in order to identify the healthy and AD brain cellular architecture, performing a genomic deconvolution analysis. We used neurological signatures (NS) belonging to six neurological cells populations and nine signatures that included the main physiological neurological processes. We discovered that, in the brains of NDHC the high expression levels of CHI3L1 were associated with astrocyte activation profile, while in AD males and females we showed an inflammatory profile microglia-mediated. The low CHI3L1 brain expression levels in NDHC and AD patients highlighted a neuronal activation profile. Furthermore, using drugs opposing CHI3L1 transcriptomic signatures, we found a specific drug profile for AD males and females characterized by high levels of CHI3L1 composed of fostamatinib, rucaparib, cephaeline, prednisolone, and dinoprostone. Brain levels of CHI3L1 in AD patients represent a biological signature that allows distinguishing between males and females and their likely cellular brain architecture.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, 95100 Catania, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele", Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Martina Ulivieri
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Maria Kazakova
- Department of Medical Biology, Medical University, Plovdiv, 4002 Plovdiv, Bulgaria; Research Institute, Medical University-, Plovdiv, 4002 Plovdiv, Bulgaria
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesco Fazio
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
12
|
Liu SY, Qiao HW, Song TB, Liu XL, Yao YX, Zhao CS, Barret O, Xu SL, Cai YN, Tamagnan GD, Sossi V, Lu J, Chan P. Brain microglia activation and peripheral adaptive immunity in Parkinson's disease: a multimodal PET study. J Neuroinflammation 2022; 19:209. [PMID: 36038917 PMCID: PMC9422161 DOI: 10.1186/s12974-022-02574-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background Abnormal activation of immune system is an important pathogenesis of Parkinson’s disease, but the relationship between peripheral inflammation, central microglia activation and dopaminergic degeneration remains unclear. Objectives To evaluate the brain regional microglia activation and its relationship with clinical severity, dopaminergic presynaptic function, and peripheral inflammatory biomarkers related to adaptive immunity. Methods In this case–control study, we recruited 23 healthy participants and 24 participants with early-stage Parkinson’s disease. 18F-PBR06 PET/MR for microglia activation, 18F-FP-DTBZ for dopaminergic denervation, total account of T cells and subpopulations of T helper (Th1/Th2/Th17) cells, and the levels of serum inflammatory cytokines were assessed. Sanger sequencing was used to exclude the mix-affinity binders of 18F-PBR06-PET. Results Compared to healthy controls, patients with Parkinson’s disease had an increased 18F-PBR06-PET standardized uptake value ratio (SUVR) in the putamen, particularly in the ipsilateral side of the motor onset. 18F-PBR06-PET SUVR was positively associated with 18F-FP-DTBZ-PET SUVR in the brainstem and not associated with disease severity measured by Hoehn and Yahr stage, MDS-UPDRS III scores. Patients with Parkinson’s disease had elevated frequencies of Th1 cells and serum levels of IL10 and IL17A as compared to healthy controls. No significant association between peripheral inflammation markers and microglia activation in the brain of PD was observed. Conclusion Parkinson’s disease is associated with early putaminal microglial activation and peripheral phenotypic Th1 bias. Peripheral adaptive immunity might be involved in microglia activation in the process of neurodegeneration in PD indirectly, which may be a potential biomarker for the early detection and the target for immunomodulating therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02574-z.
Collapse
Affiliation(s)
- Shu-Ying Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China. .,Chinese Institute for Brain Research (CIBR), Beijing, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Hong-Wen Qiao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Tian-Bin Song
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiu-Lin Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China
| | - Yun-Xia Yao
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chun-Song Zhao
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Olivier Barret
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-Aux-Roses, France
| | - Sheng-Li Xu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan-Ning Cai
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gilles D Tamagnan
- National Clinical Research Center for Geriatric Diseases, Beijing, China.,Mental Health PET Radioligand Development (MHPRD) Program, Yale University, New Haven, USA
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
13
|
Tikhonova MA, Zhanaeva SY, Shvaikovskaya AA, Olkov NM, Aftanas LI, Danilenko KV. Neurospecific Molecules Measured in Periphery in Humans: How Do They Correlate with the Brain Levels? A Systematic Review. Int J Mol Sci 2022; 23:ijms23169193. [PMID: 36012459 PMCID: PMC9409387 DOI: 10.3390/ijms23169193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Human brain state is usually estimated by brain-specific substances in peripheral tissues, but, for most analytes, a concordance between their content in the brain and periphery is unclear. In this systematic review, we summarized the investigated correlations in humans. PubMed was searched up to June 2022. We included studies measuring the same endogenous neurospecific analytes in the central nervous system and periphery in the same subjects. Not eligible were studies of cerebrospinal fluid, with significant blood–brain barrier disruption, of molecules with well-established blood-periphery concordance or measured in brain tumors. Seventeen studies were eligible. Four studies did not report on correlation and four revealed no significant correlation. Four molecules were examined twice. For BDNF, there was no correlation in both studies. For phenylalanine, glutamine, and glutamate, results were contradictory. Strong correlations were found for free tryptophan (r = 0.97) and translocator protein (r = 0.90). Thus, only for three molecules was there some certainty. BDNF in plasma or serum does not reflect brain content, whereas free tryptophan (in plasma) and translocator protein (in blood cells) can serve as peripheral biomarkers. We expect a breakthrough in the field with advanced in vivo metabolomic analyses, neuroimaging techniques, and blood assays for exosomes of brain origin.
Collapse
|
14
|
Lee JH, Siméon FG, Liow JS, Morse CL, Gladding RL, Santamaria JAM, Henter ID, Zoghbi SS, Pike VW, Innis RB. In Vivo Evaluation of 6 Analogs of 11C-ER176 as Candidate 18F-Labeled Radioligands for 18-kDa Translocator Protein. J Nucl Med 2022; 63:1252-1258. [PMID: 35027372 PMCID: PMC9364345 DOI: 10.2967/jnumed.121.263168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
Because of its excellent ratio of specific to nondisplaceable uptake, the radioligand 11C-ER176 can successfully image 18-kDa translocator protein (TSPO), a biomarker of inflammation, in the human brain and accurately quantify target density in homozygous low-affinity binders. Our laboratory sought to develop an 18F-labeled TSPO PET radioligand based on ER176 with the potential for broader distribution. This study used generic 11C labeling and in vivo performance in the monkey brain to select the most promising among 6 fluorine-containing analogs of ER176 for subsequent labeling with longer-lived 18F. Methods: Six fluorine-containing analogs of ER176-3 fluoro and 3 trifluoromethyl isomers-were synthesized and labeled by 11C methylation at the secondary amide group of the respective N-desmethyl precursor. PET imaging of the monkey brain was performed at baseline and after blockade by N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide (PK11195). Uptake was quantified using radiometabolite-corrected arterial input function. The 6 candidate radioligands were ranked for performance on the basis of 2 in vivo criteria: the ratio of specific to nondisplaceable uptake (i.e., nondisplaceable binding potential [BPND]) and the time stability of total distribution volume (VT), an indirect measure of lack of radiometabolite accumulation in the brain. Results: Total TSPO binding was quantified as VT corrected for plasma free fraction (VT/fP) using Logan graphical analysis for all 6 radioligands. VT/fP was generally high at baseline (222 ± 178 mL·cm-3) and decreased by 70%-90% after preblocking with PK11195. BPND calculated using the Lassen plot was 9.6 ± 3.8; the o-fluoro radioligand exhibited the highest BPND (12.1), followed by the m-trifluoromethyl (11.7) and m-fluoro (8.1) radioligands. For all 6 radioligands, VT reached 90% of the terminal 120-min values by 70 min and remained relatively stable thereafter, with excellent identifiability (SEs < 5%), suggesting that no significant radiometabolites accumulated in the brain. Conclusion: All 6 radioligands had good BPND and good time stability of VT Among them, the o-fluoro, m-trifluoromethyl, and m-fluoro compounds were the 3 best candidates for development as radioligands with an 18F label.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Cheryl L. Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Robert L. Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jose A. Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Ioline D. Henter
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
15
|
Menthae Herba Attenuates Neuroinflammation by Regulating CREB/Nrf2/HO-1 Pathway in BV2 Microglial Cells. Antioxidants (Basel) 2022; 11:antiox11040649. [PMID: 35453334 PMCID: PMC9029636 DOI: 10.3390/antiox11040649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Chronic inflammation and oxidative stress cause microglia to be abnormally activated in the brain, resulting in neurodegenerative diseases such as Alzheimer’s disease (AD). Menthae Herba (MH) has been widely used as a medicinal plant with antimicrobial, anti-inflammatory, and antioxidant properties. In this study, we sought to evaluate the effects of MH on the inflammatory response and possible molecular mechanisms in microglia stimulated with lipopolysaccharide (LPS). Transcriptional and translational expression levels of the proinflammatory factors were measured using ELISA, RT-qPCR, and Western blot analysis. MH extract inhibited the production of proinflammatory enzymes and mediators nitric oxide (NO), NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-6 in LPS-stimulated cells. Our molecular mechanism study showed that MH inhibited the production of reactive oxygen species (ROS) and the phosphorylation of mitogen-activated protein kinase and nuclear factor (NF)-κB. In contrast, MH activated HO-1 and its transcriptional factors, cAMP response element-binding protein (CREB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Thus, MH reduces ROS and NF-κB-mediated inflammatory signaling and induces CREB/Nrf2/HO-1-related antioxidant signaling in microglia. Together, these results may provide specific prospects for the therapeutic use of MH in the context of neuroinflammatory diseases, including AD.
Collapse
|
16
|
Wimberley C, Lavisse S, Hillmer A, Hinz R, Turkheimer F, Zanotti-Fregonara P. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging 2021; 49:246-256. [PMID: 33693967 PMCID: PMC8712306 DOI: 10.1007/s00259-021-05248-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.
Collapse
Affiliation(s)
| | - Sonia Lavisse
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M20 3LJ, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, King's College London, De Crespigny Park, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Mattner F, Katsifis A, Bourdier T, Loc'h C, Berghofer P, Fookes C, Hung TT, Jackson T, Henderson D, Pham T, Lee BJ, Shepherd R, Greguric I, Wyatt N, Le T, Poon J, Power C, Fulham M. Synthesis and pharmacological evaluation of [ 18F]PBR316: a novel PET ligand targeting the translocator protein 18 kDa (TSPO) with low binding sensitivity to human single nucleotide polymorphism rs6971. RSC Med Chem 2021; 12:1207-1221. [PMID: 34355185 PMCID: PMC8292990 DOI: 10.1039/d1md00035g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Radiopharmaceuticals that target the translocator protein 18 kDa (TSPO) have been investigated with positron emission tomography (PET) to study neuroinflammation, neurodegeneration and cancer. We have developed the novel, achiral, 2-phenylimidazo[1,2-a]pyridine, PBR316 that targets the translocator protein 18 kDa (TSPO) that addresses some of the limitations inherent in current TSPO ligands; namely specificity in binding, blood brain barrier permeability, metabolism and insensitivity to TSPO binding in subjects as a result of rs6971 polymorphism. PBR316 has high nanomolar affinity (4.7-6.0 nM) for the TSPO, >5000 nM for the central benzodiazepine receptor (CBR) and low sensitivity to rs6971 polymorphism with a low affinity binders (LABs) to high affinity binders (HABs) ratio of 1.5. [18F]PBR316 was prepared in 20 ± 5% radiochemical yield, >99% radiochemical purity and a molar activity of 160-400 GBq μmol-1. Biodistribution in rats showed high uptake of [18F]PBR316 in organs known to express TSPO such as heart (3.9%) and adrenal glands (7.5% ID per g) at 1 h. [18F]PBR316 entered the brain and accumulated in TSPO-expressing regions with an olfactory bulb to brain ratio of 3 at 15 min and 7 at 4 h. Radioactivity was blocked by PK11195 and Ro 5-4864 but not Flumazenil. Metabolite analysis showed that radioactivity in adrenal glands and the brain was predominantly due to the intact radiotracer. PET-CT studies in mouse-bearing prostate tumour xenografts indicated biodistribution similar to rats with radioactivity in the tumour increasing with time. [18F]PBR316 shows in vitro binding that is insensitive to human polymorphism and has specific and selective in vivo binding to the TSPO. [18F]PBR316 is suitable for further biological and clinical studies.
Collapse
Affiliation(s)
- Filomena Mattner
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
- School of Pharmacy, University of Sydney Sydney NSW 2006 Australia
| | - Thomas Bourdier
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Christian Loc'h
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Paula Berghofer
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Christopher Fookes
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, University of New South Wales Sydney NSW Australia
| | - Timothy Jackson
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - David Henderson
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Tien Pham
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Brendan J Lee
- Biological Resources Imaging Laboratory, University of New South Wales Sydney NSW Australia
| | - Rachael Shepherd
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Ivan Greguric
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Naomi Wyatt
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Thanh Le
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Jackson Poon
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, University of New South Wales Sydney NSW Australia
| | - Michael Fulham
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
- Faculty of Engineering and Information Technologies, University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
18
|
Lind A, Boraxbekk CJ, Petersen ET, Paulson OB, Andersen O, Siebner HR, Marsman A. Do glia provide the link between low-grade systemic inflammation and normal cognitive ageing? A 1 H magnetic resonance spectroscopy study at 7 tesla. J Neurochem 2021; 159:185-196. [PMID: 34142382 DOI: 10.1111/jnc.15456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Low-grade systemic inflammation contributes to ageing-related cognitive decline, possibly by triggering a neuroinflammatory response through glial activation. Using proton magnetic resonance spectroscopy (1 H-MRS) at 7T in normal human individuals from 18 to 79 years in a cross-sectional study, we previously observed higher regional levels of myo-inositol (mIns), total creatine (tCr) and total choline (tCho) in older than younger age groups. Moreover, visuo-spatial working memory (vsWM) correlated negatively with tCr and tCho in anterior cingulate cortex (ACC) and mIns in hippocampus and thalamus. As mIns, tCr and tCho are higher in glia than neurons, this suggest a potential in vivo connection between cognitive ageing and higher regional levels of glia-related metabolites. In the present study, we tested whether these metabolic differences may be related to low-grade systemic inflammation. In the same individuals, plasma concentrations of the proinflammatory markers C-reactive protein (CRP), interleukin 8 (IL-8), and tumour necrosis factor α (TNF-α) were measured on the same day as 1 H-MRS assessments. We tested whether CRP, IL-8, and TNF-α concentrations correlated with the levels of glia-related metabolites. CRP and IL-8, but not TNF-α, were higher in older (69-79 years) than younger (18-26 years) individuals. CRP correlated positively with thalamic mIns and negatively with vsWM. IL-8 correlated positively with ACC tCho and hippocampal mIns, but not with vsWM. Mediation analysis revealed an indirect effect of IL-8 on vsWM via ACC tCho. Together, these findings corroborate the role of glial cells, perhaps via their role in neuroinflammation, as part of the neurobiological link between systemic inflammation and cognitive ageing.
Collapse
Affiliation(s)
- Anna Lind
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Institute of Sports Medicine Copenhagen, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Olaf Bjarne Paulson
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ove Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
19
|
Tamm S, Lensmar C, Andreasson A, Axelsson J, Forsberg Morén A, Grunewald J, Gyllfors P, Karshikoff B, Kosek E, Lampa J, Olgart Höglund C, Strand V, Cervenka S, Lekander M. Objective and Subjective Sleep in Rheumatoid Arthritis and Severe Seasonal Allergy: Preliminary Assessments of the Role of Sickness, Central and Peripheral Inflammation. Nat Sci Sleep 2021; 13:775-789. [PMID: 34168509 PMCID: PMC8216747 DOI: 10.2147/nss.s297702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/18/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Disturbed sleep in inflammatory disorders such as allergy and rheumatoid arthritis (RA) is common and may be directly or indirectly related to disease processes, but has not been well characterized in these patient groups, especially not with objective methods. AIM The present study aimed to characterize objective and subjective sleep in patients with allergy or RA using sleep diaries, one-channel EEG and actigraphy. It also aimed to investigate if sleep measures were associated with central immune activation, assessed using translocator protein (TSPO) positron emission tomography, as well as cytokine markers of peripheral inflammation and disease-specific symptoms or general symptoms of sickness. METHODS In total, 18 patients with seasonal pollen allergy, 18 patients with RA and 26 healthy controls were included in the study. Allergy patients and matched controls were assessed twice, in and out of pollen season, and RA patients and controls were assessed once. Sleep was recorded for approximately 1 week at each occasion. RESULTS Patients with allergy had increased levels of slow-wave sleep during pollen season. In contrast, patients with RA had less SWS compared to healthy controls, while no differences were observed in sleep duration or subjective sleep quality. Across groups, neither proinflammatory cytokines, grey matter TSPO levels nor general sickness symptoms were associated with objective or subjective measures of sleep. Rhinitis, but not conjunctivitis, was correlated to worse subjective sleep and more slow wave sleep in allergy. Functional status, but not disease activity, predicted lower subjective sleep in RA. CONCLUSION This study tentatively indicates that both patients with allergy and RA display sleep alterations but does not support inflammation as an independent predictor of the sleep disturbance across these patient groups.
Collapse
Affiliation(s)
- Sandra Tamm
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Catarina Lensmar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Andreasson
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Anton Forsberg Morén
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services,Region Stockholm, Stockholm, Sweden
| | - Johan Grunewald
- Department of Medicine and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pär Gyllfors
- Asthma & Allergy Clinic at S:t Görans Hospital, Stockholm, Sweden
| | - Bianka Karshikoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center of Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Olgart Höglund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Victoria Strand
- Asthma & Allergy Clinic at S:t Görans Hospital, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services,Region Stockholm, Stockholm, Sweden
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Yang S, Yang Y, Chen C, Wang H, Ai Q, Lin M, Zeng Q, Zhang Y, Gao Y, Li X, Chen N. The Anti-Neuroinflammatory Effect of Fuzi and Ganjiang Extraction on LPS-Induced BV2 Microglia and Its Intervention Function on Depression-Like Behavior of Cancer-Related Fatigue Model Mice. Front Pharmacol 2021; 12:670586. [PMID: 34122094 PMCID: PMC8193093 DOI: 10.3389/fphar.2021.670586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Chinese herb couple Fuzi and Ganjiang (FG) has been a classic combination of traditional Chinese medicine that is commonly used clinically in China for nearly 2000 years. Traditional Chinese medicine suggests that FG can treat various ailments, including heart failure, fatigue, gastrointestinal upset, and depression. Neuroinflammation is one of the main pathogenesis of many neurodegenerative diseases in which microglia cells play a critical role in the occurrence and development of neuroinflammation. FG has been clinically proven to have an efficient therapeutic effect on depression and other neurological disorders, but its mechanism remains unknown. Cancer-related fatigue (CRF) is a serious threat to the quality of life of cancer patients and is characterized by both physical and psychological fatigue. Recent studies have found that neuroinflammation is a key inducement leading to the occurrence and development of CRF. Traditional Chinese medicine theory believes that extreme fatigue and depressive symptoms of CRF are related to Yang deficiency, and the application of Yang tonic drugs such as Fuzi and Ganjiang can relieve CRF symptoms, but the underlying mechanisms remain unknown. In order to define whether FG can inhibit CRF depression-like behavior by suppressing neuroinflammation, we conducted a series of experimental studies in vitro and in vivo. According to the UPLC-Q-TOF/MSE results, we speculated that there were 49 compounds in the FG extraction, among which 30 compounds were derived from Fuzi and 19 compounds were derived from Ganjiang. Our research data showed that FG can effectively reduce the production of pro-inflammatory mediators IL-6, TNF-α, ROS, NO, and PGE2 and suppress the expression of iNOS and COX2, which were related to the inhibition of NF-κB/activation of Nrf2/HO-1 signaling pathways. In addition, our research results revealed that FG can improve the depression-like behavior performance of CRF model mice in the tail suspension test, open field test, elevated plus maze test, and forced swimming test, which were associated with the inhibition of the expression of inflammatory mediators iNOS and COX2 in the prefrontal cortex and hippocampus of CRF model mice. Those research results suggested that FG has a satisfactory effect on depression-like behavior of CRF, which was related to the inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Songwei Yang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Yantao Yang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Cong Chen
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qidi Ai
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Meiyu Lin
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Qi Zeng
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Yi Zhang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Li
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Naihong Chen
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Cervenka S. Effects of acute glial cell activation on memory performance - Implications for treatment of cognitive symptoms in neurological and psychiatric disorders. Brain Behav Immun 2021; 93:8-9. [PMID: 33486001 DOI: 10.1016/j.bbi.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022] Open
Affiliation(s)
- Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
22
|
Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201:102022. [PMID: 33617919 DOI: 10.1016/j.pneurobio.2021.102022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous structures that arise from the endosome system or directly detach from the plasma membrane. In recent years, many advances have been made in the understanding of the clinical definition and pathogenesis of neurodegenerative diseases, but translation into effective treatments is hampered by several factors. Current research indicates that EVs are involved in the pathology of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Besides, EVs are also involved in the process of myelin formation, and can also cross the blood-brain barrier to reach the sites of CNS injury. It is suggested that EVs have great potential as a novel therapy for the treatment of neurodegenerative diseases. Here, we reviewed the advances in understanding the role of EVs in neurodegenerative diseases and addressed the critical function of EVs in the CNS. We have also outlined the physiological mechanisms of EVs in myelin regeneration and highlighted the therapeutic potential of EVs in neurodegenerative diseases.
Collapse
|
23
|
Liu P, Wang T, Yang R, Dong W, Wang Q, Guo Z, Ma C, Wang W, Li H, Su X. Preclinical Evaluation of a Novel 99mTc-Labeled CB86 for Rheumatoid Arthritis Imaging. ACS OMEGA 2020; 5:31657-31664. [PMID: 33344817 PMCID: PMC7745438 DOI: 10.1021/acsomega.0c04066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Early diagnosis and therapy are crucial to control disease progression optimally and achieve a good prognosis in rheumatoid arthritis (RA). Previous study showed that a technetium-99m (99mTc)-labeled TSPO ligand (99mTc-CB256 [2-(8-(2-(bis(pyridin-2-yl)methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide] composed of a translocator protein (TSPO) ligand CB86 [[2-(4-chlorophenyl)-8-amino-imidazo[1,2-a]-pyridin-3-yl]-N,N-di-n-propylacetamide] and di-(2-picolyl)amine, a bifunctional chelate agent, was used to image a TSPO-rich cancer cell in vitro; however, few 99mTc-CB256 in vivo evaluation has been reported so far probably due to the cytotoxicity of CB256 (ca. 75 times more than analogous CB86). Herein, we describe a novel TSPO targeting radiopharmaceutical consisting of CB86 and diethylenetriaminepentaacetic acid (DTPA), a conventional bifunctional chelating ligand in clinical trials used to prepare 99mTc-labeled CB86, and its evaluation as a 99mTc-single-photon emission computed tomography (SPECT) probe. The radiosynthesis and characterization of 99mTc-DPTA-CB86 including hydrophilicity and stability tests were determined. Additionally, the binding affinity and specificity of 99mTc-DTPA-CB86 to TSPO were evaluated using RAW264.7 macrophage cells. Biodistribution and 99mTc-SPECT studies were conducted on rheumatoid arthritis (RA) rat models after the injection of 99mTc-DTPA-CB86 with or without co-injection of unlabeled DTPA-CB86. The radiosynthesis of 99mTc-DTPA-CB86 was completed successfully with the labeling yields and radiochemical purity of 95.86 ± 2.45 and 97.45 ± 0.69%, respectively. The probe displayed good stability in vitro and binding specificity to RAW264.7 macrophage cells. In the biodistribution studies, 99mTc-DTPA-CB86 exhibited rapid inflammatory ankle accumulation. At 180 min after administration, 99mTc-DTPA-CB86 uptakes of the left inflammatory ankle were 2.35 ± 0.10 percentage of the injected radioactivity per gram of tissue (% ID/g), significantly higher than those of the normal tissues. 99mTc-SPECT imaging studies revealed that 99mTc-DTPA-CB86 could clearly identify the left inflammatory ankle with good contrast at 30-180 min after injection. Therefore, 99mTc-DTPA-CB86 may be a promising probe for arthritis 99mTc-SPECT imaging.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Tingting Wang
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Rongshui Yang
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Wentao Dong
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Qiang Wang
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Zhide Guo
- Center for Molecular Imaging and Translational
Medicine, Xiamen University, Xiamen 361102, China
| | - Chao Ma
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Weixing Wang
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Huaibo Li
- Department of Health Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Xinhui Su
- Department of Nuclear
Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| |
Collapse
|
24
|
Kim MJ, Lee JH, Juarez Anaya F, Hong J, Miller W, Telu S, Singh P, Cortes MY, Henry K, Tye GL, Frankland MP, Montero Santamaria JA, Liow JS, Zoghbi SS, Fujita M, Pike VW, Innis RB. First-in-human evaluation of [ 11C]PS13, a novel PET radioligand, to quantify cyclooxygenase-1 in the brain. Eur J Nucl Med Mol Imaging 2020; 47:3143-3151. [PMID: 32399622 DOI: 10.1007/s00259-020-04855-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE This study assessed whether the newly developed PET radioligand [11C]PS13, which has shown excellent in vivo selectivity in previous animal studies, could be used to quantify constitutive levels of cyclooxygenase-1 (COX-1) in healthy human brain. METHODS Brain test-retest scans with concurrent arterial blood samples were obtained in 10 healthy individuals. The one- and unconstrained two-tissue compartment models, as well as the Logan graphical analysis were compared, and test-retest reliability and time-stability of total distribution volume (VT) were assessed. Correlation analyses were conducted between brain regional VT and COX-1 transcript levels provided in the Allen Human Brain Atlas. RESULTS In the brain, [11C]PS13 showed highest uptake in the hippocampus and occipital cortex. The pericentral cortex also showed relatively higher uptake compared with adjacent neocortices. The two-tissue compartment model showed the best fit in all the brain regions, and the results from the Logan graphical analysis were consistent with those from the two-tissue compartment model. VT values showed excellent test-retest variability (range 6.0-8.5%) and good reliability (intraclass correlation coefficient range 0.74-0.87). VT values also showed excellent time-stability in all brain regions, confirming that there was no radiometabolite accumulation and that shorter scans were still able to reliably measure VT. Significant correlation was observed between VT and COX-1 transcript levels (r = 0.82, P = 0.007), indicating that [11C]PS13 binding reflects actual COX-1 density in the human brain. CONCLUSIONS These results from the first-in-human evaluation of the ability of [11C]PS13 to image COX-1 in the brain justifies extending the study to disease populations with neuroinflammation. CLINICAL TRIAL REGISTRATION NCT03324646 at https://clinicaltrials.gov/ . Registered October 30, 2017. Retrospectively registered.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA.
| | - Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA.,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Fernanda Juarez Anaya
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - William Miller
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Michelle Y Cortes
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Katharine Henry
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Michael P Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| |
Collapse
|
25
|
Zeineh N, Denora N, Laquintana V, Franco M, Weizman A, Gavish M. Efficaciousness of Low Affinity Compared to High Affinity TSPO Ligands in the Inhibition of Hypoxic Mitochondrial Cellular Damage Induced by Cobalt Chloride in Human Lung H1299 Cells. Biomedicines 2020; 8:biomedicines8050106. [PMID: 32370132 PMCID: PMC7277862 DOI: 10.3390/biomedicines8050106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) plays an important role in apoptotic cell death, including apoptosis induced by the hypoxia mimicking agent cobalt chloride (CoCl2). In this study, the protective effects of a high (CB86; Ki = 1.6 nM) and a low (CB204; Ki = 117.7 nM) affinity TSPO ligands were investigated in H1299 lung cancer cell line exposed to CoCl2. The lung cell line H1299 was chosen in the present study since they express TSPO and able to undergo programmed cell death. The examined cell death markers included: ATP synthase reversal, reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) depolarization, cellular toxicity, and cellular viability. Pretreatment of the cells with the low affinity ligand CB204 at a concentration of 100 µM suppressed significantly (p < 0.05 for all) CoCl2-induced cellular cytotoxicity (100%), ATP synthase reversal (67%), ROS generation (82%), Δψm depolarization (100%), reduction in cellular density (97%), and also increased cell viability (85%). Furthermore, the low affinity TSPO ligand CB204, was harmless when given by itself at 100 µM. In contrast, the high affinity ligand (CB86) was significantly effective only in the prevention of CoCl2–induced ROS generation (39%, p < 0.001), and showed significant cytotoxic effects when given alone at 100 µM, as reflected in alterations in ADP/ATP ratio, oxidative stress, mitochondrial membrane potential depolarization and cell death. It appears that similar to previous studies on brain-derived cells, the relatively low affinity for the TSPO target enhances the potency of TSPO ligands in the protection from hypoxic cell death. Moreover, the high affinity TSPO ligand CB86, but not the low affinity ligand CB204, was lethal to the lung cells at high concentration (100 µM). The low affinity TSPO ligand CB204 may be a candidate for the treatment of pulmonary diseases related to hypoxia, such as pulmonary ischemia and chronic obstructive pulmonary disease COPD.
Collapse
Affiliation(s)
- Nidal Zeineh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel;
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
| | - Massimo Franco
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
| | - Abraham Weizman
- Research Unit at Geha Mental Health Center and Laboratory of Biological Psychiatry at Felsenstein Medical Research Center, Petah Tikva 4910002, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel;
- Correspondence: ; Tel.: +972-4829-5275; Fax: +972-4829-5330
| |
Collapse
|
26
|
Dahoun T, Calcia MA, Veronese M, Bloomfield P, Reis Marques T, Turkheimer F, Howes OD. The association of psychosocial risk factors for mental health with a brain marker altered by inflammation: A translocator protein (TSPO) PET imaging study. Brain Behav Immun 2019; 80:742-750. [PMID: 31112791 DOI: 10.1016/j.bbi.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Psychiatric disorders associated with psychosocial risk factors, including depression and psychosis, have been shown to demonstrate increased microglia activity. Whilst preclinical studies indicate that psychosocial stress leads to increased levels of microglia in the frontal cortex, no study has yet been performed in humans. This study aimed at investigating whether psychosocial risk factors for depression and/or psychosis would be associated with alterations in a brain marker expressed by microglia, the translocator specific protein (TSPO) in humans. We used [11C]-PBR28 Positron Emission Tomography on healthy subjects exposed to childhood and adulthood psychosocial risk factors (high-risk group, N = 12) and age- and sex-matched healthy controls not exposed to childhood and adulthood psychosocial risk factors (low-risk group, N = 12). The [11C]-PBR28 volume of distribution (VT) and Distribution Volume Ratio (DVR) were measured in the total gray matter, and frontal, parietal, temporal, occipital lobes. Levels of childhood trauma, anxiety and depression were measured using respectively the Childhood Trauma Questionnaire, State-anxiety questionnaire and Beck Depression Inventory. Compared to the low-risk group, the high-risk group did not exhibit significant differences in the mean [11C]-PBR28 VT (F(1,20) = 1.619, p = 0.218) or DVR (F(1,22) = 0.952, p = 0.340) on any region. There were no significant correlations between the [11C]-PBR28 VT and DVRs in total gray matter and frontal lobe and measures of childhood trauma, anxiety and depression. Psychosocial risk factors for depression and/or psychosis are unlikely to be associated with alterations in [11C]-PBR28 binding, indicating that alterations in TSPO expression reported in these disorders is unlikely to be caused by psychosocial risk factors alone.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX37 JX, UK
| | - Marilia A Calcia
- Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Peter Bloomfield
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Oliver D Howes
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK.
| |
Collapse
|
27
|
Effects of age, BMI and sex on the glial cell marker TSPO - a multicentre [ 11C]PBR28 HRRT PET study. Eur J Nucl Med Mol Imaging 2019; 46:2329-2338. [PMID: 31363804 PMCID: PMC6717599 DOI: 10.1007/s00259-019-04403-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/14/2019] [Indexed: 01/25/2023]
Abstract
Purpose The purpose of this study was to investigate the effects of ageing, sex and body mass index (BMI) on translocator protein (TSPO) availability in healthy subjects using positron emission tomography (PET) and the radioligand [11C]PBR28. Methods [11C]PBR28 data from 140 healthy volunteers (72 males and 68 females; N = 78 with HAB and N = 62 MAB genotype; age range 19–80 years; BMI range 17.6–36.9) were acquired with High Resolution Research Tomograph at three centres: Karolinska Institutet (N = 53), Turku PET centre (N = 62) and Yale University PET Center (N = 25). The total volume of distribution (VT) was estimated in global grey matter, frontal, temporal, occipital and parietal cortices, hippocampus and thalamus using multilinear analysis 1. The effects of age, BMI and sex on TSPO availability were investigated using linear mixed effects model, with TSPO genotype and PET centre specified as random intercepts. Results There were significant positive correlations between age and VT in the frontal and temporal cortex. BMI showed a significant negative correlation with VT in all regions. Additionally, significant differences between males and females were observed in all regions, with females showing higher VT. A subgroup analysis revealed a positive correlation between VT and age in all regions in male subjects, whereas age showed no effect on TSPO levels in female subjects. Conclusion These findings provide evidence that individual biological properties may contribute significantly to the high variation shown in TSPO binding estimates, and suggest that age, BMI and sex can be confounding factors in clinical studies. Electronic supplementary material The online version of this article (10.1007/s00259-019-04403-7) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ, Edison P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain 2019; 141:2740-2754. [PMID: 30052812 DOI: 10.1093/brain/awy188] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is characterized by the histopathological presence of amyloid-β plaques and tau-containing neurofibrillary tangles. Microglial activation is also a recognized pathological component. The relationship between microglial activation and protein aggregation is still debated. We investigated the relationship between amyloid plaques, tau tangles and activated microglia using PET imaging. Fifty-one subjects (19 healthy controls, 16 mild cognitive impairment and 16 Alzheimer's disease subjects) participated in the study. All subjects had neuropsychometric testing, MRI, amyloid (18F-flutemetamol), and microglial (11C-PBR28) PET. All subjects with mild cognitive impairment and Alzheimer's disease and eight of the controls had tau (18F-AV1451) PET. 11C-PBR28 PET was analysed using Logan graphical analysis with an arterial plasma input function, while 18F-flutemetamol and 18F-AV1451 PET were analysed as target:cerebellar ratios to create parametric standardized uptake value ratio maps. Biological parametric mapping in the Statistical Parametric Mapping platform was used to examine correlations between uptake of tracers at a voxel-level. There were significant widespread clusters of positive correlation between levels of microglial activation and tau aggregation in both the mild cognitive impairment (amyloid-positive and amyloid-negative) and Alzheimer's disease subjects. The correlations were stronger in Alzheimer's disease than in mild cognitive impairment, suggesting that these pathologies increase together as disease progresses. Levels of microglial activation and amyloid deposition were also correlated, although in a different spatial distribution; correlations were stronger in mild cognitive impairment than Alzheimer's subjects, in line with a plateauing of amyloid load with disease progression. Clusters of positive correlations between microglial activation and protein aggregation often targeted similar areas of association cortex, indicating that all three processes are present in specific vulnerable brain areas. For the first time using PET imaging, we show that microglial activation can correlate with both tau aggregation and amyloid deposition. This confirms the complex relationship between these processes. These results suggest that preventative treatment for Alzheimer's disease should target all three processes.
Collapse
Affiliation(s)
- Melanie Dani
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Melanie Wood
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Ruth Mizoguchi
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Zhen Fan
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Zuzana Walker
- Division of Psychiatry, University College London, UK.,Essex Partnership University NHS Foundation Trust, UK
| | | | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, UK
| | - Maya Biju
- Gether NHS Foundation Trust, Gloucester, UK
| | | | - David J Brooks
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK.,Department of Nuclear Medicine, Aarhus University, Denmark.,Institute of Neuroscience, University of Newcastle upon Tyne, UK
| | - Paul Edison
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| |
Collapse
|
29
|
Forsberg A, Lampa J, Estelius J, Cervenka S, Farde L, Halldin C, Lekander M, Olgart Höglund C, Kosek E. Disease activity in rheumatoid arthritis is inversely related to cerebral TSPO binding assessed by [ 11C]PBR28 positron emission tomography. J Neuroimmunol 2019; 334:577000. [PMID: 31260948 DOI: 10.1016/j.jneuroim.2019.577000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Reumatoid Arthritis (RA) is an autoimmune disorder characterized by peripheral joint inflammation. Recently, an engagement of the brain immune system has been proposed. The aim with the current investigation was to study the glial cell activation marker translocator protein (TSPO) in a well characterized cohort of RA patients and to relate it to disease activity, peripheral markers of inflammation and autonomic activity. Fifteen RA patients and fifteen healthy controls matched for age, sex and TSPO genotype (rs6971) were included in the study. TSPO was measured using Positron emission tomography (PET) and the radioligand [11C]PBR28. The outcome measure was total distribution volume (VT) estimated using Logan graphical analysis, with grey matter (GM) as the primary region of interest. Additional regions of interest analyses as well as voxel-wise analyses were also performed. Clinical evaluation of disease activity, symptom assessments, serum analyses of cytokines and heart rate variability (HRV) analysis of 24 h ambulatory ECG were performed in all subjects. There were no statistically significant group differences in TSPO binding, either when using the primary outcome VT or when normalizing VT to the lateral occipital cortex (p > 0.05). RA patients had numerically lower VT values than healthy controls (Cohen's D for GM = -0.21). In the RA group, there was a strong negative correlation between [11C]PBR28 VT in GM and disease activity (DAS28)(r = -0.745, p = 0.002, corrected for rs6971 genotype). Higher serum levels of IFNγ and TNF-α were found in RA patients compared to controls (p < 0.05) and several measures of autonomic activity showed significant differences between RA and controls (p < 0.05). However, no associations between markers of systemic inflammation or autonomic activity and cerebral TSPO binding were found. In conclusion, no statistically significant group differences in TSPO binding as measured with [11C]PBR28 PET were detected. Within the RA group, lower cerebral TSPO binding was associated with higher disease activity, suggesting that cerebral TSPO expression may be related to disease modifying mechanisms in RA. In light of the earlier confirmed neuro-immune features of RA, these results warrant further investigations regarding neuro-immune joint-to-CNS signalling to open up for potentially new treatment strategies.
Collapse
Affiliation(s)
- A Forsberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - J Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Estelius
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - S Cervenka
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - L Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Sweden
| | - C Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - M Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - C Olgart Höglund
- Department of Medicine and Center for Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
The effect of a transient immune activation on subjective health perception in two placebo controlled randomised experiments. PLoS One 2019; 14:e0212313. [PMID: 30840633 PMCID: PMC6402640 DOI: 10.1371/journal.pone.0212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/31/2019] [Indexed: 02/02/2023] Open
Abstract
Background Patient-reported outcomes predict mortality and play increasingly important roles in care, but factors that modify central measures such as health ratings have been little investigated. Building on designated immune-to-brain pathways, we aimed to determine how a short-term induced inflammation response impacts self-reported health status. Methods Lipopolysaccharide injections were used to provoke acute systemic inflammatory responses in healthy men and women and were compared to placebo in two double-blind randomized experiments. In Experiment 1, 8 individuals (mean 24 years; SD = 3.7) received lipopolysaccharide 0.8 ng/kg once and placebo once in a cross-over design, and in Experiment 2, 52 individuals received either lipopolysaccharide 0.6 ng/kg or placebo once (28.6 years; SD = 7.1). Main outcomes were perceived health (general and current), sickness behaviour (like fatigue, pain and negative affect), and plasma interleukin-6, interleukin-8 and tumour necrosis factor-α, before and after injection. Results Compared to placebo, lipopolysaccharide lead to a deterioration in both self-rated general (Experiment 1, b = 1.88 for 0.8 ng/kg) and current health (Experiment 1 b = -3.00; and Experiment 2 b = -1.79) 1.5h after injection (p’s<0.01), effects that remained after 4.5 to 5 hours (p’s<0.05). The effect on current health in Experiment 2 was mediated by increased inflammation and sickness behaviour in response to lipopolysaccharide injection (β = -0.28, p = 0.01). Conclusion Health is drastically re-evaluated during inflammatory activation. The findings are consistent with notions that inflammation forms part of health-relevant interoceptive computations of bodily state, and hint at one mechanism as to why subjective health predicts longevity.
Collapse
|
31
|
Femminella GD, Dani M, Wood M, Fan Z, Calsolaro V, Atkinson R, Edginton T, Hinz R, Brooks DJ, Edison P. Microglial activation in early Alzheimer trajectory is associated with higher gray matter volume. Neurology 2019; 92:e1331-e1343. [PMID: 30796139 PMCID: PMC6511099 DOI: 10.1212/wnl.0000000000007133] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate the influence of microglial activation in the early stages of Alzheimer's disease trajectory, we assessed the relationship between microglial activation and gray matter volume and hippocampal volume in patients with mild cognitive impairment (MCI). Methods In this study, 55 participants (37 with early stages of MCI and 18 controls) underwent [11C]PBR28 PET, a marker of microglial activation; volumetric MRI to evaluate gray matter and hippocampal volumes as well as clinical and neuropsychometric evaluation. [11C]PBR28 VT (volume of distribution) was calculated using arterial input function and Logan graphical analysis. Gray matter volume and hippocampal volumes were calculated from MRI for each participant. Statistical parametric mapping software was used to perform voxel-wise correlations and biological parametric mapping analysis. Amyloid status was assessed using [18F]flutemetamol PET. Results Higher [11C]PBR28 VT in different cortical areas correlated with higher gray matter volume in both amyloid-positive and -negative MCI. In addition, higher hippocampal volume correlated with higher cortical [11C]PBR28 Logan VT. Conclusions In this in vivo study, we have demonstrated that microglial activation quantified using [11C]PBR28 PET was associated with higher gray matter volume and higher hippocampal volume in patients with MCI. This might suggest that microglial activation may not always be associated with neuronal damage, and indeed it may have a beneficial effect in the early stages of the Alzheimer trajectory. While further longitudinal studies are necessary, these findings have significant implications on therapeutic strategies targeting microglial activation.
Collapse
Affiliation(s)
- Grazia Daniela Femminella
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - Melanie Dani
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - Melanie Wood
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - Zhen Fan
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - Valeria Calsolaro
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - Rebecca Atkinson
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - Trudi Edginton
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - Rainer Hinz
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - David J Brooks
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark
| | - Paul Edison
- From the Department of Medicine (G.D.F., M.D., M.W., Z.F., V.C., R.A., D.J.B., P.E.), Imperial College London; Department of Psychology (T.E.), University of London, London; Wolfson Molecular Imaging Centre (R.H.), University of Manchester, UK; and Department of Nuclear Medicine (D.J.B.), Aarhus University, Denmark.
| |
Collapse
|
32
|
Han J, Zhu K, Zhang X, Harris RA. Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia 2019; 67:217-231. [PMID: 30378163 PMCID: PMC6635749 DOI: 10.1002/glia.23529] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
Microglia are prominent immune cells in the central nervous system (CNS) and are critical players in both neurological development and homeostasis, and in neurological diseases when dysfunctional. Our previous understanding of the phenotypes and functions of microglia has been greatly extended by a dearth of recent investigations. Distinct genetically defined subsets of microglia are now recognized to perform their own independent functions in specific conditions. The molecular profiling of single microglial cells indicates extensively heterogeneous reactions in different neurological disorders, resulting in multiple potentials for crosstalk with other kinds of CNS cells such as astrocytes and neurons. In settings of neurological diseases it could thus be prudent to establish effective cell-based therapies by targeting entire microglial networks. Notably, activated microglial depletion through genetic targeting or pharmacological therapies within a suitable time window can stimulate replenishment of the CNS niche with new microglia. Additionally, enforced repopulation through provision of replacement cells also represents a potential means of exchanging dysfunctional with functional microglia. In each setting the newly repopulated microglia might have the potential to resolve ongoing neuroinflammation. In this review, we aim to summarize the most recent knowledge of microglia and to highlight microglial depletion and subsequent repopulation as a promising cell replacement therapy. Although glial cell replacement therapy is still in its infancy and future translational studies are still required, the approach is scientifically sound and provides new optimism for managing the neurotoxicity and neuroinflammation induced by activated microglia.
Collapse
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Keying Zhu
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Xing‐Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| |
Collapse
|
33
|
Kohno M, Link J, Dennis LE, McCready H, Huckans M, Hoffman WF, Loftis JM. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav 2019; 179:34-42. [PMID: 30695700 DOI: 10.1016/j.pbb.2019.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Addiction is a worldwide public health problem and this article reviews scientific advances in identifying the role of neuroinflammation in the genesis, maintenance, and treatment of substance use disorders. With an emphasis on neuroimaging techniques, this review examines human studies of addiction using positron emission tomography to identify binding of translocator protein (TSPO), which is upregulated in reactive glial cells and activated microglia during pathological states. High TSPO levels have been shown in methamphetamine use but exhibits variable patterns in cocaine use. Alcohol and nicotine use, however, are associated with lower TSPO levels. We discuss how mechanistic differences at the neurotransmitter and circuit level in the neural effects of these agents and subsequent immune response may explain these observations. Finally, we review the potential of anti-inflammatory drugs, including ibudilast, minocycline, and pioglitazone, to ameliorate the behavioral and cognitive consequences of addiction.
Collapse
Affiliation(s)
- Milky Kohno
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Jeanne Link
- Center for Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - Laura E Dennis
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Holly McCready
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Marilyn Huckans
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - William F Hoffman
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
34
|
Albrecht DS, Forsberg A, Sandstrom A, Bergan C, Kadetoff D, Protsenko E, Lampa J, Lee YC, Olgart Höglund C, Catana C, Cervenka S, Akeju O, Lekander M, Cohen G, Halldin C, Taylor N, Kim M, Hooker JM, Edwards RR, Napadow V, Kosek E, Loggia ML. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation. Brain Behav Immun 2019; 75:72-83. [PMID: 30223011 PMCID: PMC6541932 DOI: 10.1016/j.bbi.2018.09.018] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [11C]-L-deprenyl-D2 PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [11C]PBR28 PET. 11 FM patients and 11 HC were scanned using [11C]-L-deprenyl-D2 PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (VT) were computed from the [11C]PBR28 data. [11C]-L-deprenyl-D2 was quantified using λ k3. PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [11C]PBR28 VT and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [11C]-L-deprenyl-D2 signal, including those demonstrating elevated [11C]PBR28 signal in patients (p's ≥ 0.53, uncorrected). The elevations in [11C]PBR28 VT and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [11C]PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [11C]PBR28 signal were not also accompanied by increased [11C]-L-deprenyl-D2 signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [11C]-L-deprenyl-D2 signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.
Collapse
Affiliation(s)
- Daniel S. Albrecht
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anton Forsberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Angelica Sandstrom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Courtney Bergan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Ekaterina Protsenko
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Yvonne C. Lee
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Ciprian Catana
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden.
| | - George Cohen
- Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Norman Taylor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | | | | | | | - Vitaly Napadow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Marco L. Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Plavén-Sigray P, Schain M, Zanderigo F, Rabiner EA, Gunn RN, Ogden RT, Cervenka S. Accuracy and reliability of [ 11C]PBR28 specific binding estimated without the use of a reference region. Neuroimage 2018; 188:102-110. [PMID: 30500425 DOI: 10.1016/j.neuroimage.2018.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
[11C]PBR28 is a positron emission tomography radioligand used to examine the expression of the 18 kDa translocator protein (TSPO). TSPO is located in glial cells and can function as a marker for immune activation. Since TSPO is expressed throughout the brain, no true reference region exists. For this reason, an arterial input function is required for accurate quantification of [11C]PBR28 binding and the most common outcome measure is the total distribution volume (VT). Notably, VT reflects both specific binding and non-displaceable binding. Therefore, estimates of specific binding, such as binding potential (e.g. BPND) and specific distribution volume (VS) should theoretically be more sensitive to underlying differences in TSPO expression. It is unknown, however, if unbiased and accurate estimates of these outcome measures are obtainable for [11C]PBR28. The Simultaneous Estimation (SIME) method uses time-activity-curves from multiple brain regions with the aim to obtain a brain-wide estimate of the non-displaceable distribution volume (VND), which can subsequently be used to improve the estimation of BPND and VS. In this study we evaluated the accuracy of SIME-derived VND, and the reliability of resulting estimates of specific binding for [11C]PBR28, using a combination of simulation experiments and in vivo studies in healthy humans. The simulation experiments, based on data from 54 unique [11C]PBR28 examinations, showed that VND values estimated using SIME were both precise and accurate. Data from a pharmacological competition challenge (n = 5) showed that SIME provided VND values that were on average 19% lower than those obtained using the Lassen plot, but similar to values obtained using the Likelihood-Estimation of Occupancy technique. Test-retest data (n = 11) showed that SIME-derived VS values exhibited good reliability and precision, while larger variability was observed in SIME-derived BPND values. The results support the use of SIME for quantifying specific binding of [11C]PBR28, and suggest that VS can be used in complement to the conventional outcome measure VT. Additional studies in patient cohorts are warranted.
Collapse
Affiliation(s)
- Pontus Plavén-Sigray
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | - Martin Schain
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | | | | | - Roger N Gunn
- Invicro LLC, London, UK; Division of Brain Sciences, Imperial College London, London, UK
| | - R Todd Ogden
- Department of Psychiatry, Columbia University, New York, NY, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
36
|
Shen Z, Bao X, Wang R. Clinical PET Imaging of Microglial Activation: Implications for Microglial Therapeutics in Alzheimer's Disease. Front Aging Neurosci 2018; 10:314. [PMID: 30349474 PMCID: PMC6186779 DOI: 10.3389/fnagi.2018.00314] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
In addition to extracellular β-amyloid plaques and intracellular neurofibrillary tangles, neuroinflammation has been identified as a key pathological characteristic of Alzheimer's disease (AD). Once activated, neuroinflammatory cells called microglia acquire different activation phenotypes. At the early stage of AD, activated microglia are mainly dominated by the neuroprotective and anti-inflammatory M2 phenotype. Conversely, in the later stage of AD, the excessive activation of microglia is considered detrimental and pro-inflammatory, turning into the M1 phenotype. Therapeutic strategies targeting the modulation of microglia may regulate their specific phenotype. Fortunately, with the rapid development of in vivo imaging methodologies, visualization of microglial activation has been well-explored. In this review, we summarize the critical role of activated microglia during the pathogenesis of AD and current studies concerning imaging of microglial activation in AD patients. We explore the possibilities for identifying activated microglial phenotypes with imaging techniques and highlight promising therapies that regulate the microglial phenotype in AD mice.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Kraynak TE, Marsland AL, Wager TD, Gianaros PJ. Functional neuroanatomy of peripheral inflammatory physiology: A meta-analysis of human neuroimaging studies. Neurosci Biobehav Rev 2018; 94:76-92. [PMID: 30067939 DOI: 10.1016/j.neubiorev.2018.07.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 01/18/2023]
Abstract
Communication between the brain and peripheral mediators of systemic inflammation is implicated in numerous psychological, behavioral, and physiological processes. Functional neuroimaging studies have identified brain regions that associate with peripheral inflammation in humans, yet there are open questions about the consistency, specificity, and network characteristics of these findings. The present systematic review provides a meta-analysis to address these questions. Multilevel kernel density analysis of 24 studies (37 statistical maps; 264 coordinates; 457 participants) revealed consistent effects in the amygdala, hippocampus, hypothalamus, striatum, insula, midbrain, and brainstem, as well as prefrontal and temporal cortices. Effects in some regions were specific to particular study designs and tasks. Spatial pattern analysis revealed significant overlap of reported effects with limbic, default mode, ventral attention, and corticostriatal networks, and co-activation analyses revealed functional ensembles encompassing the prefrontal cortex, insula, and midbrain/brainstem. Together, these results characterize brain regions and networks associated with peripheral inflammation in humans, and they provide a functional neuroanatomical reference point for future neuroimaging studies on brain-body interactions.
Collapse
Affiliation(s)
- Thomas E Kraynak
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15260, USA.
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15260, USA
| |
Collapse
|
38
|
Schain M, Zanderigo F, Ogden RT, Kreisl WC. Non-invasive estimation of [11C]PBR28 binding potential. Neuroimage 2018; 169:278-285. [DOI: 10.1016/j.neuroimage.2017.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/01/2017] [Indexed: 01/14/2023] Open
|
39
|
Evidence of fatigue, disordered sleep and peripheral inflammation, but not increased brain TSPO expression, in seasonal allergy: A [ 11C]PBR28 PET study. Brain Behav Immun 2018; 68:146-157. [PMID: 29054675 DOI: 10.1016/j.bbi.2017.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023] Open
Abstract
Allergy is associated with non-specific symptoms such as fatigue, sleep problems and impaired cognition. One explanation could be that the allergic inflammatory state includes activation of immune cells in the brain, but this hypothesis has not been tested in humans. The aim of the present study was therefore to investigate seasonal changes in the glial cell marker translocator protein (TSPO), and to relate this to peripheral inflammation, fatigue and sleep, in allergy. We examined 18 patients with severe seasonal allergy, and 13 healthy subjects in and out-of pollen season using positron emission tomography (n = 15/13) and the TSPO radioligand [11C]PBR28. In addition, TNF-α, IL-5, IL-6, IL-8 and IFN-γ were measured in peripheral blood, and subjective ratings of fatigue and sleepiness as well as objective and subjective sleep were investigated. No difference in levels of TSPO was seen between patients and healthy subjects, nor in relation to pollen season. However, allergic subjects displayed both increased fatigue, sleepiness and increased percentage of deep sleep, as well as increased levels of IL-5 and TNF-α during pollen season, compared to healthy subjects. Allergic subjects also had shorter total sleep time, regardless of season. In conclusion, allergic subjects are indicated to respond to allergen exposure during pollen season with a clear pattern of behavioral disruption and peripheral inflammatory activation, but not with changes in brain TSPO levels. This underscores a need for development and use of more specific markers to understand brain consequences of peripheral inflammation that will be applicable in human subjects.
Collapse
|
40
|
Cumming P, Burgher B, Patkar O, Breakspear M, Vasdev N, Thomas P, Liu GJ, Banati R. Sifting through the surfeit of neuroinflammation tracers. J Cereb Blood Flow Metab 2018; 38:204-224. [PMID: 29256293 PMCID: PMC5951023 DOI: 10.1177/0271678x17748786] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
The first phase of molecular brain imaging of microglial activation in neuroinflammatory conditions began some 20 years ago with the introduction of [11C]-( R)-PK11195, the prototype isoquinoline ligand for translocator protein (18 kDa) (TSPO). Investigations by positron emission tomography (PET) revealed microgliosis in numerous brain diseases, despite the rather low specific binding signal imparted by [11C]-( R)-PK11195. There has since been enormous expansion of the repertoire of TSPO tracers, many with higher specific binding, albeit complicated by allelic dependence of the affinity. However, the specificity of TSPO PET for revealing microglial activation not been fully established, and it has been difficult to judge the relative merits of the competing tracers and analysis methods with respect to their sensitivity for detecting microglial activation. We therefore present a systematic comparison of 13 TSPO PET and single photon computed tomography (SPECT) tracers belonging to five structural classes, each of which has been investigated by compartmental analysis in healthy human brain relative to a metabolite-corrected arterial input. We emphasize the need to establish the non-displaceable binding component for each ligand and conclude with five recommendations for a standard approach to define the cellular distribution of TSPO signals, and to characterize the properties of candidate TSPO tracers.
Collapse
Affiliation(s)
- Paul Cumming
- School of Psychology and Counselling and IHBI, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- QIMR Berghofer Institute, Brisbane, Australia
| | - Bjorn Burgher
- QIMR Berghofer Institute, Brisbane, Australia
- Metro North Mental Health Service, Brisbane, Australia
| | - Omkar Patkar
- School of Psychology and Counselling and IHBI, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- QIMR Berghofer Institute, Brisbane, Australia
| | - Michael Breakspear
- QIMR Berghofer Institute, Brisbane, Australia
- Metro North Mental Health Service, Brisbane, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Thomas
- Herston Imaging Research Facility, Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
- National Imaging Facility, Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Camperdown, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
- National Imaging Facility, Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Camperdown, Australia
| |
Collapse
|
41
|
Ottoy J, De Picker L, Verhaeghe J, Deleye S, Wyffels L, Kosten L, Sabbe B, Coppens V, Timmers M, van Nueten L, Ceyssens S, Stroobants S, Morrens M, Staelens S. 18F-PBR111 PET Imaging in Healthy Controls and Schizophrenia: Test-Retest Reproducibility and Quantification of Neuroinflammation. J Nucl Med 2018; 59:1267-1274. [PMID: 29326362 DOI: 10.2967/jnumed.117.203315] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/13/2017] [Indexed: 01/03/2023] Open
Abstract
Activated microglia express the translocator protein (TSPO) on the outer mitochondrial membrane. 18F-PBR111 is a second-generation PET ligand that specifically binds the TSPO, allowing in vivo visualization and quantification of neuroinflammation. The aim of this study was to evaluate whether the test-retest variability of 18F-PBR111 in healthy controls is acceptable to detect a psychosis-associated neuroinflammatory signal in schizophrenia. Methods: Dynamic 90-min 18F-PBR111 scans were obtained in 17 healthy male controls (HCs) and 11 male schizophrenia patients (SPs) during a psychotic episode. Prior genotyping for the rs6917 polymorphism distinguished high-affinity binders (HABs) and mixed-affinity binders (MABs). Total volume of distribution (VT) was determined from 2-tissue-compartment modeling with vascular trapping and a metabolite-corrected plasma input function. A subgroup of HCs (n = 12; 4 HABs and 8 MABs) was scanned twice to assess absolute test-retest variability and intraclass correlation coefficients of the regional VT values. Differences in TSPO binding between HC and SP were assessed using mixed model analysis adjusting for age, genotype, and age*cohort. The effect of using different scan durations (VT-60 min versus VT-90 min) was determined based on Pearson r. Data were mean ± SD. Results: Mean absolute variability in VT ranged from 16% ± 14% (19% ± 20% HAB; 15% ± 11% MAB) in the cortical gray matter to 22% ± 15% (23% ± 15% HAB; 22% ± 16% MAB) in the hippocampus. Intraclass correlation coefficients were consistently between 0.64 and 0.82 for all tested regions. TSPO binding in SP compared with HC depended on age (cohort*age: P < 0.05) and was increased by +14% ± 4% over the regions. There was a significant effect of genotype on TSPO binding, and VT of HABs was 31% ± 8% (HC: 17% ± 5%, SP: 61% ± 14%) higher than MABs. Across all clinical groups, VT-60 min and VT-90 min were strongly correlated (r > 0.7, P < 0.0001). Conclusion:18F-PBR111 can be used for monitoring of TSPO binding, as shown by medium test-retest variability and reliability of VT in HCs. Microglial activation is present in SPs depending on age and needs to be adjusted for genotype.
Collapse
Affiliation(s)
- Julie Ottoy
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Steven Deleye
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Lauren Kosten
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| | - Maarten Timmers
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium; and.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Luc van Nueten
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium; and
| | - Sarah Ceyssens
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
42
|
Kreisl WC, Henter ID, Innis RB. Imaging Translocator Protein as a Biomarker of Neuroinflammation in Dementia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:163-185. [PMID: 29413519 PMCID: PMC6190574 DOI: 10.1016/bs.apha.2017.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroinflammation has long been considered a potential contributor to neurodegenerative disorders that result in dementia. Accumulation of abnormal protein aggregates in Alzheimer's disease, frontotemporal dementia, and dementia with Lewy bodies is associated with the activation of microglia and astrocytes into proinflammatory states, and chronic low-level activation of glial cells likely contributes to the pathological changes observed in these and other neurodegenerative diseases. The 18kDa translocator protein (TSPO) is a key biomarker for measuring inflammation in the brain via positron emission tomography (PET). Increased TSPO density has been observed in brain tissue from patients with neurodegenerative diseases and colocalizes to activated microglia and reactive astrocytes. Several radioligands have been developed to measure TSPO density in vivo with PET, and these have been used in clinical studies of different dementia syndromes. However, TSPO radioligands have limitations, including low specific-to-nonspecific signal and differential affinity to a polymorphism on the TSPO gene, which must be taken into consideration in designing and interpreting human PET studies. Nonetheless, most PET studies have shown that increased TSPO binding is associated with various dementias, suggesting that TSPO has potential as a biomarker to further explore the role of neuroinflammation in dementia pathogenesis and may prove useful in monitoring disease progression.
Collapse
Affiliation(s)
- William C Kreisl
- Taub Institute, Columbia University Medical Center, New York, NY, United States.
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
43
|
Vomacka L, Albert NL, Lindner S, Unterrainer M, Mahler C, Brendel M, Ermoschkin L, Gosewisch A, Brunegraf A, Buckley C, Kümpfel T, Rupprecht R, Ziegler S, Kerschensteiner M, Bartenstein P, Böning G. TSPO imaging using the novel PET ligand [ 18F]GE-180: quantification approaches in patients with multiple sclerosis. EJNMMI Res 2017; 7:89. [PMID: 29150726 PMCID: PMC5693838 DOI: 10.1186/s13550-017-0340-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
Background PET ligands targeting the translocator protein (TSPO) represent promising tools to visualise neuroinflammation. Here, we analysed parameters obtained in dynamic and static PET images using the novel TSPO ligand [18F]GE-180 in patients with relapsing remitting multiple sclerosis (RRMS) and an approach for semi-quantitative assessment of this disease in clinical routine. Seventeen dynamic [18F]GE-180 PET scans of RRMS patients were evaluated (90 min). A pseudo-reference region (PRR) was defined after identification of the least disease-affected brain area by voxel-based comparison with six healthy controls (HC) and upon exclusion of voxels suspected of being affected in static 60–90 min p.i. images. Standardised uptake value ratios (SUVR) obtained from static images normalised to PRR were correlated to the distribution volume ratios (DVR) derived from dynamic data with Logan reference tissue model. Results Group comparison with HC revealed white matter and thalamus as most affected regions. Fewest differences were found in grey matter, and normalisation to frontal cortex (FC) yielded the greatest reduction in variability of healthy grey and white matter. Hence, FC corrected for affected voxels was chosen as PRR, leading to time-activity curves of FC which were congruent to HC data (SUV60–90 0.37, U test P = 0.42). SUVR showed a very strong correlation with DVR (Pearson ρ > 0.9). Focal MS lesions exhibited a high SUVR (range, 1.3–3.2). Conclusions This comparison with parameters from dynamic data suggests that SUVR normalised to corrected frontal cortex as PRR is suitable for the quantification of [18F]GE-180 uptake in lesions and different brain regions of RRMS patients. This efficient diagnostic protocol based on static [18F]GE-180 PET scans acquired 60–90 min p.i. allows the semi-quantitative assessment of neuroinflammation in RRMS patients in clinical routine.
Collapse
Affiliation(s)
- Lena Vomacka
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Nathalie Lisa Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christoph Mahler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Larissa Ermoschkin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Anika Brunegraf
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
44
|
Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [ 11C]PBR28. Mol Psychiatry 2017; 22:850-856. [PMID: 28194003 DOI: 10.1038/mp.2016.247] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022]
Abstract
Several lines of evidence are indicative of a role for immune activation in the pathophysiology of schizophrenia. Nevertheless, studies using positron emission tomography (PET) and radioligands for the translocator protein (TSPO), a marker for glial activation, have yielded inconsistent results. Whereas early studies using a radioligand with low signal-to-noise in small samples showed increases in patients, more recent studies with improved methodology have shown no differences or trend-level decreases. Importantly, all patients investigated thus far have been on antipsychotic medication, and as these compounds may dampen immune cell activity, this factor limits the conclusions that can be drawn. Here, we examined 16 drug-naive, first-episode psychosis patients and 16 healthy controls using PET and the TSPO radioligand [11C]PBR28. Gray matter (GM) volume of distribution (VT) derived from a two-tissue compartmental analysis with arterial input function was the main outcome measure. Statistical analyses were performed controlling for both TSPO genotype, which is known to affect [11C]PBR28 binding, and gender. There was a significant reduction of [11C]PBR28 VT in patients compared with healthy controls in GM as well as in secondary regions of interest. No correlation was observed between GM VT and clinical or cognitive measures after correction for multiple comparisons. The observed decrease in TSPO binding suggests reduced numbers or altered function of immune cells in brain in early-stage schizophrenia.
Collapse
|
45
|
Forsberg A, Cervenka S, Jonsson Fagerlund M, Rasmussen LS, Zetterberg H, Erlandsson Harris H, Stridh P, Christensson E, Granström A, Schening A, Dymmel K, Knave N, Terrando N, Maze M, Borg J, Varrone A, Halldin C, Blennow K, Farde L, Eriksson LI. The immune response of the human brain to abdominal surgery. Ann Neurol 2017; 81:572-582. [DOI: 10.1002/ana.24909] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Anton Forsberg
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Malin Jonsson Fagerlund
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Lars S. Rasmussen
- Department of Anesthesia; Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen; Copenhagen Denmark
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital of Gothenburg; Mölndal Sweden
- Department of Molecular Neuroscience; University College London Institute of Neurology; London United Kingdom
| | - Helena Erlandsson Harris
- Center for Molecular Medicine; Department of Medicine, Karolinska Institutet; Stockholm Sweden
- Rheumatology Unit; Karolinska University Hospital; Stockholm Sweden
| | - Pernilla Stridh
- Center for Molecular Medicine; Department of Clinical Neuroscience, Karolinska Institutet; Stockholm Sweden
| | - Eva Christensson
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Anna Granström
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Anna Schening
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Karin Dymmel
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Nina Knave
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Niccolò Terrando
- Department of Anesthesiology; Basic Science Division, Duke University Medical Center; Durham NC
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care and Center for Cerebrovascular Research; University of California; San Francisco, San Francisco CA
| | - Jacqueline Borg
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital of Gothenburg; Mölndal Sweden
| | - Lars Farde
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
- Personalized Healthcare and Biomarkers; AstraZeneca, PET Science Center, Karolinska Institutet, Karolinska University Hospital; Stockholm Sweden
| | - Lars I. Eriksson
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
46
|
Schain M, Kreisl WC. Neuroinflammation in Neurodegenerative Disorders—a Review. Curr Neurol Neurosci Rep 2017; 17:25. [DOI: 10.1007/s11910-017-0733-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Feng L, Jensen P, Thomsen G, Dyssegaard A, Svarer C, Knudsen LV, Møller K, Thomsen C, Mikkelsen JD, Guilloteau D, Knudsen GM, Pinborg LH. The Variability of Translocator Protein Signal in Brain and Blood of Genotyped Healthy Humans Using In Vivo 123I-CLINDE SPECT Imaging: A Test–Retest Study. J Nucl Med 2016; 58:989-995. [DOI: 10.2967/jnumed.116.183202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022] Open
|
48
|
Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands. Int J Mol Sci 2016; 17:ijms17060880. [PMID: 27271616 PMCID: PMC4926414 DOI: 10.3390/ijms17060880] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships.
Collapse
|