1
|
Ahmadi H, Aghebati-Maleki L, Rashidiani S, Csabai T, Nnaemeka OB, Szekeres-Bartho J. Long-Term Effects of ART on the Health of the Offspring. Int J Mol Sci 2023; 24:13564. [PMID: 37686370 PMCID: PMC10487905 DOI: 10.3390/ijms241713564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Assisted reproductive technologies (ART) significantly increase the chance of successful pregnancy and live birth in infertile couples. The different procedures for ART, including in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), intrauterine insemination (IUI), and gamete intrafallopian tube transfer (GIFT), are widely used to overcome infertility-related problems. In spite of its inarguable usefulness, concerns about the health consequences of ART-conceived babies have been raised. There are reports about the association of ART with birth defects and health complications, e.g., malignancies, high blood pressure, generalized vascular functional disorders, asthma and metabolic disorders in later life. It has been suggested that hormonal treatment of the mother, and the artificial environment during the manipulation of gametes and embryos may cause genomic and epigenetic alterations and subsequent complications in the health status of ART-conceived babies. In the current study, we aimed to review the possible long-term consequences of different ART procedures on the subsequent health status of ART-conceived offspring, considering the confounding factors that might account for/contribute to the long-term consequences.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
| | - Leili Aghebati-Maleki
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Shima Rashidiani
- Department of Medical Biochemistry, Medical School, Pécs University, 7624 Pécs, Hungary;
| | - Timea Csabai
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
| | - Obodo Basil Nnaemeka
- Department of Laboratory Diagnostics, Faculty of Health Sciences, Pécs University, 7621 Pécs, Hungary;
| | - Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
- MTA—PTE Human Reproduction Research Group, 7624 Pecs, Hungary
| |
Collapse
|
2
|
Smith BL. Improving translational relevance: The need for combined exposure models for studying prenatal adversity. Brain Behav Immun Health 2021; 16:100294. [PMID: 34589787 PMCID: PMC8474200 DOI: 10.1016/j.bbih.2021.100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Prenatal environmental adversity is a risk factor for neurodevelopmental disorders (NDDs), with the neuroimmune environment proposed to play a role in this risk. Adverse maternal exposures are associated with cognitive consequences in the offspring that are characteristics of NDDs and simultaneous neuroimmune changes that may underlie NDD risk. In both animal models and human studies the association between prenatal environmental exposure and NDD risk has been shown to be complex. Maternal overnutrition/obesity and opioid use are two different examples of complex exposure epidemics, each with their own unique comorbidities. This review will examine maternal obesity and maternal opioid use separately, illustrating the pervasive comorbidities with each exposure to argue a need for animal models of compound prenatal exposures. Many of these comorbidities can impact neuroimmune function, warranting systematic investigation of combined exposures to begin to understand this complexity. While traditional approaches in animal models have focused on modeling a single prenatal exposure or second exposure later in life, a translational approach would begin to incorporate the most prevalent co-occurring prenatal exposures. Long term follow-up in humans is extremely challenging, so animal models can provide timely insight into neurodevelopmental consequences of complex prenatal exposures. Animal models that represent this translational context of comorbid exposures behind maternal obesity or comorbid exposures behind maternal opioid use may reveal potential synergistic neuroimmune interactions that contribute to cognitive consequences and NDD risk. Finally, translational co-exposure models can identify concerning exposure combinations to guide treatment in complex cases, and identify high risk children starting in the prenatal period where early interventions improve prognosis.
Collapse
Affiliation(s)
- Brittany L. Smith
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
3
|
Strzelewicz AR, Vecchiarelli HA, Rondón-Ortiz AN, Raneri A, Hill MN, Kentner AC. Interactive effects of compounding multidimensional stressors on maternal and male and female rat offspring outcomes. Horm Behav 2021; 134:105013. [PMID: 34171577 PMCID: PMC8403628 DOI: 10.1016/j.yhbeh.2021.105013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Exposure to adverse childhood experiences (ACEs) is a risk factor for the development of psychiatric disorders in addition to cardiovascular associated diseases. This risk is elevated when the cumulative burden of ACEs is increased. Laboratory animals can be used to model the changes (as well as the underlying mechanisms) that result in response to adverse events. In this study, using male and female Sprague Dawley rats, we examined the impact of increasing stress burden, utilizing both two adverse early life experiences (parental/offspring high fat diet + limited bedding exposure) and three adverse early life experiences (parental/offspring high fat diet + limited bedding exposure + neonatal inflammation), on maternal care quality and offspring behavior. Additionally, we measured hormones and hippocampal gene expression related to stress. We found that the adverse perinatal environment led to a compensatory increase in maternal care. Moreover, these dams had reduced maternal expression of oxytocin receptor, compared to standard housed dams, in response to acute stress on postnatal day (P)22. In offspring, the two-hit and three-hit models resulted in a hyperlocomotor phenotype and increased body weights. Plasma leptin and hippocampal gene expression of corticotropin releasing hormone (Chrh)1 and Crhr2 were elevated (males) while expression of oxytocin was reduced (females) following acute stress. On some measures (e.g., hyperlocomotion, leptin), the magnitude of change was lower in the three-hit compared to the two-hit model. This suggests that multiple early adverse events can have interactive, and often unpredictable, impacts, highlighting the importance of modeling complex interactions amongst stressors during development.
Collapse
Affiliation(s)
- Arielle R Strzelewicz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Haley A Vecchiarelli
- Divisions of Medical Sciences, University of Victoria, BC V8P 5C2, Canada; Neuroscience Graduate Program, Hotchkiss Brain Institute, Mathison Centre for Mental Health, Research and Education, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Alejandro N Rondón-Ortiz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Anthony Raneri
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Matthew N Hill
- Neuroscience Graduate Program, Hotchkiss Brain Institute, Mathison Centre for Mental Health, Research and Education, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Amanda C Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States.
| |
Collapse
|
4
|
Ortiz-Valladares M, Pedraza-Medina R, Pinto-González MF, Muñiz JG, Gonzalez-Perez O, Moy-López NA. Neurobiological approaches of high-fat diet intake in early development and their impact on mood disorders in adulthood: A systematic review. Neurosci Biobehav Rev 2021; 129:218-230. [PMID: 34324919 DOI: 10.1016/j.neubiorev.2021.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
The early stage of development is a vulnerable period for progeny neurodevelopment, altering cytogenetic and correct cerebral functionality. The exposure High-Fat Diet (HFD) is a factor that impacts the future mental health of individuals. This review analyzes possible mechanisms involved in the development of mood disorders in adulthood because of maternal HFD intake during gestation and lactation, considering previously reported findings in the last five years, both in humans and animal models. Maternal HFD could induce alterations in mood regulation, reported as increased stress response, anxiety-like behavior, and depressive-like behavior. These changes were mostly related to HPA axis dysregulations and neuroinflammatory responses. In conclusion, there could be a relationship between HFD consumption during the early stages of life and the development of psychopathologies during adulthood. These findings provide guidelines for the understanding of possible mechanisms involved in mood disorders, however, there is still a need for more human clinical studies that provide evidence to improve the understanding of maternal nutrition and future mental health outcomes in the offspring.
Collapse
Affiliation(s)
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima, Mexico
| | | | - Jorge Guzmán Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | | |
Collapse
|
5
|
Salameh E, Jarbeau M, Morel FB, Zeilani M, Aziz M, Déchelotte P, Marion-Letellier R. Modeling undernutrition with enteropathy in mice. Sci Rep 2020; 10:15581. [PMID: 32973261 PMCID: PMC7518247 DOI: 10.1038/s41598-020-72705-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023] Open
Abstract
Undernutrition is a global health issue leading to 1 out 5 all deaths in children under 5 years. Undernutrition is often associated with environmental enteric dysfunction (EED), a syndrome associated with increased intestinal permeability and gut inflammation. We aimed to develop a novel murine model of undernutrition with these EED features. Post-weaning mice were fed with low-protein diet (LP) alone or combined with a gastrointestinal insult trigger (indomethacin or liposaccharides). Growth, intestinal permeability and inflammation were assessed. LP diet induced stunting and wasting in post-weaning mice but did not impact gut barrier. We therefore combined LP diet with a single administration of indomethacin or liposaccharides (LPS). Indomethacin increased fecal calprotectin production while LPS did not. To amplify indomethacin effects, we investigated its repeated administration in addition to LP diet and mice exhibited stunting and wasting with intestinal hyperpermeability and gut inflammation. The combination of 3-weeks LP diet with repeated oral indomethacin administration induced wasting, stunting and gut barrier dysfunction as observed in undernourished children with EED. As noninvasive methods for investigating gut function in undernourished children are scarce, the present pre-clinical model provides an affordable tool to attempt to elucidate pathophysiological processes involved in EED and to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Emmeline Salameh
- Normandie Univ, INSERM Unit 1073, University of Rouen, 22 Boulevard Gambetta, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France.,Nutrition Department, Nutriset S.A.S, Malaunay, France
| | - Marine Jarbeau
- Normandie Univ, INSERM Unit 1073, University of Rouen, 22 Boulevard Gambetta, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Fanny B Morel
- Nutrition Department, Nutriset S.A.S, Malaunay, France
| | | | - Moutaz Aziz
- Anatomopathology, Rouen University Hospital, Rouen, France
| | - Pierre Déchelotte
- Normandie Univ, INSERM Unit 1073, University of Rouen, 22 Boulevard Gambetta, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France.,Nutrition Unit, Rouen University Hospital, Rouen, France
| | - Rachel Marion-Letellier
- Normandie Univ, INSERM Unit 1073, University of Rouen, 22 Boulevard Gambetta, 76000, Rouen, France. .,Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France.
| |
Collapse
|
6
|
The role of neuroglia in autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:301-330. [PMID: 32711814 DOI: 10.1016/bs.pmbts.2020.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroglia are a large class of neural cells of ectodermal (astroglia, oligodendroglia, and peripheral glial cells) and mesodermal (microglia) origin. Neuroglial cells provide homeostatic support, protection, and defense to the nervous tissue. Pathological potential of neuroglia has been acknowledged since their discovery. Research of the recent decade has shown the key role of all classes of glial cells in autism spectrum disorders (ASD), although molecular mechanisms defining glial contribution to ASD are yet to be fully characterized. This narrative conceptualizes recent findings of the broader roles of glial cells, including their active participation in the control of cerebral environment and regulation of synaptic development and scaling, highlighting their putative involvement in the etiopathogenesis of ASD.
Collapse
|
7
|
Sinha S, Patro N, Patro IK. Amelioration of neurobehavioral and cognitive abilities of F1 progeny following dietary supplementation with Spirulina to protein malnourished mothers. Brain Behav Immun 2020; 85:69-87. [PMID: 31425827 DOI: 10.1016/j.bbi.2019.08.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023] Open
Abstract
Early life adversities (stress, infection and mal/undernutrition) can affect neurocognitive, hippocampal and immunological functioning of the brain throughout life. Substantial evidence suggests that maternal protein malnutrition contributes to the progression of neurocognitive abnormalities and psychopathologies in adolescence and adulthood in offspring. Maternal malnutrition is prevalent in low and middle resource populations. The present study was therefore undertaken to evaluate the effects of dietary Spirulina supplementation of protein malnourished mothers during pregnancy and lactation on their offspring's reflex, neurobehavioral and cognitive development. Spirulina is a Cyanobacterium and a major source of protein and is being used extensively as a dynamic nutraceutical against aging and neurodegeneration. Sprague Dawley rats were switched to low protein (8% protein) or normal protein (20% protein) diet for 15 days before conception. Spirulina was orally administered (400 mg/kg/b.wt.) to subgroups of pregnant females from the day of conception throughout the lactational period. We examined several parameters including reproductive performance of dams, physical development, postnatal reflex ontogeny, locomotor behavior, neuromuscular strength, anxiety, anhedonic behavior, cognitive abilities and microglia populations in the F1 progeny. The study showed improved reproductive performance of Spirulina supplemented protein malnourished dams, accelerated acquisition of neurological reflexes, better physical appearance, enhanced neuromuscular strength, improved spatial learning and memory and partly normalized PMN induced hyperactivity, anxiolytic and anhedonic behavior in offspring. These beneficial effects of Spirulina consumption were also accompanied by reduced microglial activation which might assist in restoring the behavioral and cognitive skills in protein malnourished F1 rats. Maternal Spirulina supplementation is therefore proposed as an economical nutraceutical/supplement to combat malnutrition associated behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
8
|
Krzeczkowski JE, Boylan K, Arbuckle TE, Muckle G, Poliakova N, Séguin JR, Favotto LA, Savoy C, Amani B, Mortaji N, Van Lieshout RJ. Maternal Pregnancy Diet Quality Is Directly Associated with Autonomic Nervous System Function in 6-Month-Old Offspring. J Nutr 2020; 150:267-275. [PMID: 31573610 DOI: 10.1093/jn/nxz228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Many pregnant women are consuming diets of poor overall quality. Although many studies have linked poor prenatal diet quality to an increased risk of specific diseases in offspring, it is not known if exposure to poor prenatal diet affects core neurophysiological regulatory systems in offspring known to lie upstream of multiple diseases. OBJECTIVE We aimed to examine the association between prenatal diet quality and autonomic nervous system (ANS) function in infants at 6 mo of age. METHODS Data from 400 women (aged >18 y, with uncomplicated pregnancies) and their infants participating in the Maternal-Infant Research on Environmental Chemicals-Infant Development cohort were used to investigate links between prenatal diet quality and infant ANS function at 6 mo of age. Prenatal diet quality was assessed using the Healthy Eating Index (2010), calculated from a validated FFQ completed by women during the first trimester. Infant ANS function was measured using 2 assessments of heart rate variability (HRV) including root mean square of successive differences (RMSSD) and SD of N-N intervals (SDNN). Associations were analyzed before and after adjustment for socioeconomic status, maternal depression symptoms, maternal cardiometabolic dysfunction, breastfeeding, and prenatal smoking. RESULTS Poorer prenatal diet quality was associated with lower infant HRV assessed using RMSSD (B: 0.07; 95% CI: 0.01, 0.13; R2 = 0.013) and SDNN (B: 0.18; 95% CI: 0.02, 0.35; R2 = 0.011). These associations remained significant after adjustment for confounding variables [RMSSD: B: 0.09; 95% CI: 0.003, 0.18; squared semipartial correlation (sp2) = 0.14 and SDNN B: 0.24; 95% CI: 0.0, 0.49; sp2 = 0.13]. CONCLUSIONS In a large cohort study, poorer prenatal diet quality was associated with lower offspring HRV, a marker of decreased capacity of the ANS to respond adaptively to challenge. Therefore, poor prenatal diet may play a significant role in the programming of multiple organ systems and could increase general susceptibility to disease in offspring.
Collapse
Affiliation(s)
- John E Krzeczkowski
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Khrista Boylan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Tye E Arbuckle
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Quebec City, Quebec, Canada.,Research Centre of CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Natalia Poliakova
- Population Health and Optimal Health Practices Research Branch, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - Jean R Séguin
- Department of Psychiatry and Addiction, CHU Ste-Justine Research Centre, Montreal, Quebec, Canada
| | - Lindsay A Favotto
- Department of Health Research Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Calan Savoy
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Bahar Amani
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Neda Mortaji
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Ryan J Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Brenhouse HC, Bath KG. Bundling the haystack to find the needle: Challenges and opportunities in modeling risk and resilience following early life stress. Front Neuroendocrinol 2019; 54:100768. [PMID: 31175880 PMCID: PMC6708473 DOI: 10.1016/j.yfrne.2019.100768] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Various forms of early life adversity (ELA) have been linked with increased risk for negative health outcomes, including neuropsychiatric disorders. Understanding how the complex interplay between types, timing, duration, and severity of ELA, together with individual differences in genetic, socio-cultural, and physiological differences can mediate risk and resilience has proven difficult in population based studies. Use of animal models provides a powerful toolset to isolate key variables underlying risk for altered neural and behavioral maturational trajectories. However, a lack of clarity regarding the unique features of differing forms of adversity, lab differences in the implementation and reporting of methods, and the ability compare across labs and types of ELA has led to some confusion. Here, we highlight the diversity of approaches available, current challenges, and a possible ways forward to increase clarity and drive more meaningful and fruitful implementation and comparison of these approaches.
Collapse
Affiliation(s)
- Heather C Brenhouse
- Psychology Department, Northeastern University, 125 Nightingale Hall, Boston, MA 02115, United States.
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer St. Box 1821, Providence, RI 02912, United States
| |
Collapse
|
10
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
11
|
Janthakhin Y, Rincel M, Costa AM, Darnaudéry M, Ferreira G. Maternal high-fat diet leads to hippocampal and amygdala dendritic remodeling in adult male offspring. Psychoneuroendocrinology 2017; 83:49-57. [PMID: 28595087 DOI: 10.1016/j.psyneuen.2017.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Early-life exposure to calorie-dense food, rich in fat and sugar, contributes to the increasing prevalence of obesity and its associated adverse cognitive and emotional outcomes at adulthood. It is thus critical to determine the impact of such nutritional environment on neurobehavioral development. In animals, maternal high-fat diet (HFD) consumption impairs hippocampal function in adult offspring, but its impact on hippocampal neuronal morphology is unknown. Moreover, the consequences of perinatal HFD exposure on the amygdala, another important structure for emotional and cognitive processes, remain to be established. In rats, we show that adult offspring from dams fed with HFD (45% from fat, throughout gestation and lactation) exhibit atrophy of pyramidal neuron dendrites in both the CA1 of the hippocampus and the basolateral amygdala (BLA). Perinatal HFD exposure also impairs conditioned odor aversion, a task highly dependent on BLA function, without affecting olfactory or malaise processing. Neuronal morphology and behavioral alterations elicited by perinatal HFD are not associated with body weight changes but with higher plasma leptin levels at postnatal day 15 and at adulthood. Taken together, our results suggest that perinatal HFD exposure alters hippocampal and amygdala neuronal morphology which could participate to memory alterations at adulthood.
Collapse
Affiliation(s)
- Yoottana Janthakhin
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Marion Rincel
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Anna-Maria Costa
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Muriel Darnaudéry
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France.
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France.
| |
Collapse
|
12
|
Mazarati AM, Lewis ML, Pittman QJ. Neurobehavioral comorbidities of epilepsy: Role of inflammation. Epilepsia 2017; 58 Suppl 3:48-56. [DOI: 10.1111/epi.13786] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Andrey M. Mazarati
- Neurology Division; Department of Pediatrics; David Geffen School of Medicine; University of California Los Angeles; Los Angeles California U.S.A
| | - Megan L. Lewis
- Department of Physiology & Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| | - Quentin J. Pittman
- Department of Physiology & Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
13
|
Spencer SJ, Meyer U. Perinatal programming by inflammation. Brain Behav Immun 2017; 63:1-7. [PMID: 28196717 DOI: 10.1016/j.bbi.2017.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Since Levine and then Barker's seminal work mid to late last century demonstrating the importance of early life environment, intensive research has revealed the plasticity, vulnerability and resilience of the developing brain to environmental challenges. In particular, early exposure to infectious pathogens and inflammatory stimuli has a lasting impact on brain and behavior. These data establish clear effects on vulnerability to later disease and neuroinflammatory injury, cognitive function and emotionality, and even responses to pain and susceptibility to metabolic disorders. They also highlight the issues with defining rodent models of complex diseases like autism spectrum disorders and schizophrenia, as well as the complexity of experimental design, for instance when deciding the appropriate allocation of subjects to experimental groups when dealing with whole-litter manipulations in rodents. The studies presented in this special issue of Brain Behavior and Immunity are a collection of the very latest advances in the science of perinatal inflammation and its implications for perinatal programming of brain and behavior.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|