1
|
Che J, Wu Y, Dong J, Jiang X, Yang L, Chen Y, Zhang J. Inhibition of histamine receptor 3 alleviates sevoflurane-induced hypomyelination and neurobehavioral deficits. Exp Neurol 2025; 385:115086. [PMID: 39637962 DOI: 10.1016/j.expneurol.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Inhalational anesthetic sevoflurane can cause myelination damage in developing brain. This study examines the effects of histamine receptor 3 (H3) antagonist thioperamide on sevoflurane-induced hypomyelination and neurobehavioral deficits. METHODS Neonatal C57BL/6 mice were exposed to sevoflurane for consecutive three days and treated with H3 receptor antagonist thioperamide. Myelination was assessed in the hippocampus and corpus callosum. The neurobehavioral functions were also examined. Primary oligodendrocyte progenitor cells (OPCs) were used for in vitro experiments and the underlying mechanism. RESULTS Inhibition of H3 receptor with thioperamide significantly alleviated sevoflurane-induced impairments in myelination and neurobehavioral functions. In vitro experiments showed that thioperamide reversed the effects of sevoflurane on OPCs migration, proliferation and differentiation into mature oligodendrocytes. Mechanistically, thioperamide improved sevoflurane-induced hypomyelination may through H3 receptor-mediated GSK-3β/β-catenin pathway. CONCLUSION H3 receptor antogonist thioperamide could protect developing brain against hypomyelination and neurobehavioral deficits after repeated sevoflurane exposure. Therefore H3 receptor is a potential target for preventing anesthetic-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| | - Yuanyuan Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| | - Jing Dong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Xuliang Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Yali Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
2
|
Qing W, Hao X, Xuan S, Zhihui R, Jinzhi G. Wnt1 oversees microglial activation by the Wnt/LRP5/6 receptor signaling pathway during lipopolysaccharide-mediated toxicity. Mol Biol Rep 2025; 52:273. [PMID: 40025242 PMCID: PMC11872766 DOI: 10.1007/s11033-025-10360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The protective effects of autophagy-mediated microglial inflammatory regulation on diseases of the central nervous system (CNS) has been a recent field of interest. The canonical signaling pathway activated by Wnt1, the Wnt/β-catenin signaling cascade, also plays a crucial protective role in neurodegenerative diseases. However, the relationship between Wnt1/β-catenin signaling and microglial activation remains unclear. Our study focused on understanding the impact and mechanism of Wnt1 on microglial activation. METHODS AND RESULTS To simulate neuroinflammatory conditions in vitro, BV2 cells were exposed to 1 μg/mL lipopolysaccharide. CD86- and CD206-positive cells were identified by flow cytometry and immunofluorescence assays. Inflammatory and anti-inflammatory factors were measured using enzyme-linked immunosorbent assays. Autophagy was analyzed by expression of LC3B puncta, LC3, P62, and beclin1 expression. The inflammatory activation suppressed by rhWnt1 was restricted by DKK1, siRNA-β-catenin and siRNA-LKB1, respectively, with concomitant changes in β-catenin expression and phosphorylation of NFκB-p65, LKB1, and AMPK. Although the anti-inflammatory effect of Wnt1/LKB1 pathway was independent of β-catenin, Wnt1/LKB1 regulated β-catenin. The reduced inflammation caused by rhWnt1 is linked to its enhancement of autophagy, a process blocked by siRNA-LKB1 and 3-MA partially. CONCLUSIONS The anti-inflammatory effects of Wnt1 on BV2 cells improved autophagy, a mechanism partly dependent on the β-catenin pathway or the phosphorylation of LKB1. Furthermore, the Wnt1/LKB1 pathway was activated independently of β-catenin and participated in regulating its expression. Our research unveils a previously unknown method through which Wnt1 exerts its anti-inflammatory effects, which may have a potential protective role against CNS diseases.
Collapse
Affiliation(s)
- Wang Qing
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xu Hao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Sun Xuan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Rong Zhihui
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Gao Jinzhi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
3
|
Morin C, Faure F, Mollet J, Guenoun D, Heydari-Olya A, Sautet I, Diao S, Faivre V, Pansiot J, Tabet L, Hua J, Schwendimann L, Mokhtari A, Martin-Rosique R, Chadi S, Laforge M, Demené C, Delahaye-Duriez A, Diaz-Heijtz R, Fleiss B, Matrot B, Auger S, Tanter M, Van Steenwinckel J, Gressens P, Bokobza C. C-section and systemic inflammation synergize to disrupt the neonatal gut microbiota and brain development in a model of prematurity. Brain Behav Immun 2025; 123:824-837. [PMID: 39442636 DOI: 10.1016/j.bbi.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Infants born very preterm (below 28 weeks of gestation) are at high risk of developing neurodevelopmental disorders, such as intellectual deficiency, autism spectrum disorders, and attention deficit. Preterm birth often occurs in the context of perinatal systemic inflammation due to chorioamnionitis and postnatal sepsis. In addition, C-section is often performed for very preterm neonates to avoid hypoxia during a vaginal delivery. We have developed and characterized a mouse model based on intraperitoneal injections of IL-1β between postnatal days one and five to reproduce perinatal systemic inflammation. This model replicates several neuropathological, brain imaging, and behavioral deficits observed in preterm infants. We hypothesized that C-sections could synergize with systemic inflammation to induce more severe brain abnormalities. We observed that C-sections significantly exacerbated the deleterious effects of IL-1β on reduced gut microbial diversity, increased levels of circulating peptidoglycans, abnormal microglia/macrophage reactivity, impaired myelination, and reduced functional connectivity in the brain relative to vaginal delivery plus intraperitoneal saline. These data demonstrate the deleterious synergistic effects of C-section and neonatal systemic inflammation on brain maldevelopment and malfunction, two conditions frequently observed in very preterm infants, who are at high risk of developing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cécile Morin
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Department of Obstetrics and Gynecology, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Flora Faure
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | - Julie Mollet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - David Guenoun
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Department of Pharmacy, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | | | - Irvin Sautet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Fudan University, Department of Neonatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Valérie Faivre
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Julien Pansiot
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Lara Tabet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Jennifer Hua
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | | | - Amazigh Mokhtari
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Rebeca Martin-Rosique
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Sead Chadi
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Mireille Laforge
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Charlie Demené
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | - Andrée Delahaye-Duriez
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; UFR Santé Médecine et Biologie Humaine, Université Sorbonne Paris Nord, 93000 Bobigny, France; Unité Fonctionnelle de Médecine Génomique et Génétique Clinique, Hôpital Jean Verdier, Hôpitaux Universitaires Paris Seine Saint-Denis, Assistance Publique des Hôpitaux de Paris, 93140 Bondy, France
| | | | - Bobbi Fleiss
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Boris Matrot
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Sandrine Auger
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France.
| |
Collapse
|
4
|
Ek CJ, Alkmark M, Baburamani AA, Supramaniam VG, Sood S, Melchiotti R, de Rinaldis E, Hagberg H, Mallard C. Novel biomarkers of preterm brain injury from blood transcriptome in sheep model of intrauterine asphyxia. Pediatr Res 2024; 96:1707-1717. [PMID: 38822135 PMCID: PMC11772238 DOI: 10.1038/s41390-024-03224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Infants born preterm have a higher incidence of neurological deficits. A key step in finding effective treatments is to identify biomarkers that reliably predict outcome. METHODS Following umbilical cord occlusion (UCO) in pregnant sheep, whole fetal blood RNA was sequenced pre- and post-UCO, brain injury outcome was determined by battery of neuropathology scoring and the transcriptome signature correlated to the degree of brain injury. Additionally, we developed a novel analytical procedure to deduce cell blood composition over time. RESULTS Sixty-one genes were identified with significant altered expression after UCO. In pre-UCO blood, the level of three mRNAs (Trex2, Znf280b, novel miRNA) and in post-UCO, four mRNAs (Fam184a, Angptl2, novel lincRNA and an unknown protein-coding gene) were associated to brain injury (FDR < 0.01). Several of these mRNAs are related to inflammation and angiogenesis. Pathway analysis highlighted genes playing a role in perinatal death and growth failure. Results also indicate that several leukocyte populations undergo significant changes after UCO. CONCLUSION We have used a whole transcriptomic approach to uncover novel biomarkers in fetal blood that correlate to neuropathology in the preterm sheep brain. The current data forms a basis for future studies to investigate mechanisms of these mRNAs in the injury progression. IMPACT Trend analysis of genes following asphyxia reveal a group of genes associated with perinatal death and growth failure. Several pre-asphyxia transcripts were associated to brain injury severity suggesting genomic susceptibility to injury. Several post-asphyxia transcripts were correlated to brain injury severity, thus, serve as potential novel biomarkers of injury outcome. Successfully adaptation of cell profiling algorithms suggests significant changes in blood cell composition following asphyxia.
Collapse
Affiliation(s)
- C Joakim Ek
- Centre for Perinatal Medicine and Health, Institutes of Neuroscience and Physiology & Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| | - Mårten Alkmark
- Centre for Perinatal Medicine and Health, Institutes of Neuroscience and Physiology & Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Ana A Baburamani
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - Veena G Supramaniam
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - Sanjana Sood
- Department of Cancer Epidemiology and Population Health, King's College London, London, UK
| | - Rossella Melchiotti
- Department of Cancer Epidemiology and Population Health, King's College London, London, UK
| | - Emanuele de Rinaldis
- Department of Cancer Epidemiology and Population Health, King's College London, London, UK
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institutes of Neuroscience and Physiology & Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - Carina Mallard
- Centre for Perinatal Medicine and Health, Institutes of Neuroscience and Physiology & Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
5
|
Luo B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int J Neurosci 2024; 134:1256-1281. [PMID: 37722706 DOI: 10.1080/00207454.2023.2260088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Studies have shown that neurodegenerative diseases such as AD and PD are related to neuroinflammation. Neuroinflammation is a common inflammatory condition that can lead to a variety of dysfunction in the body. At present, it is no medications specifically approved to prevent or cure neuroinflammation, so even though many drugs can temporarily control the neurological symptoms of neuroinflammation, but no one can reverse the progress of neuroinflammation, let al.one completely cure neuroinflammation. Therefore, it is urgent to develop new drug development for neuroinflammation treatment. In this review, we highlight the therapeutic advancement in the field of neurodegenerative disorders, by focusing on the impact of neuroinflammation treatment has on these conditions, and the effective drugs for the treatment of neuroinflammation and neurodegenerative diseases and their latest research progress are reviewed according to the related signaling pathway, as well as the prospect of their clinical application is also discussed. The purpose of this review is to enable specialists to better understand the mechanisms underlying neuroinflammation and anti-inflammatory drugs, promote the development of therapeutic drugs for neuroinflammation and neurodegenerative diseases, and further provide therapeutic references for clinical neurologists.
Collapse
Affiliation(s)
- Bozhi Luo
- School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
6
|
Liu C, Ju R. Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants. Mol Neurobiol 2024; 61:5295-5307. [PMID: 38180617 DOI: 10.1007/s12035-023-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs' health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs' protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function.
Collapse
Affiliation(s)
- Chang Liu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
7
|
Thomas SD, Abdalla S, Eissa N, Akour A, Jha NK, Ojha S, Sadek B. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer's Disease, Parkinson's Disease, and Autism Spectrum Disorder. Pharmaceuticals (Basel) 2024; 17:831. [PMID: 39065682 PMCID: PMC11279978 DOI: 10.3390/ph17070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3β pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Sabna Abdalla
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
8
|
Prathapan V, Eipert P, Wigger N, Kipp M, Appali R, Schmitt O. Modeling and simulation for prediction of multiple sclerosis progression. Comput Biol Med 2024; 175:108416. [PMID: 38657465 DOI: 10.1016/j.compbiomed.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
In light of extensive work that has created a wide range of techniques for predicting the course of multiple sclerosis (MS) disease, this paper attempts to provide an overview of these approaches and put forth an alternative way to predict the disease progression. For this purpose, the existing methods for estimating and predicting the course of the disease have been categorized into clinical, radiological, biological, and computational or artificial intelligence-based markers. Weighing the weaknesses and strengths of these prognostic groups is a profound method that is yet in need and works directly at the level of diseased connectivity. Therefore, we propose using the computational models in combination with established connectomes as a predictive tool for MS disease trajectories. The fundamental conduction-based Hodgkin-Huxley model emerged as promising from examining these studies. The advantage of the Hodgkin-Huxley model is that certain properties of connectomes, such as neuronal connection weights, spatial distances, and adjustments of signal transmission rates, can be taken into account. It is precisely these properties that are particularly altered in MS and that have strong implications for processing, transmission, and interactions of neuronal signaling patterns. The Hodgkin-Huxley (HH) equations as a point-neuron model are used for signal propagation inside a small network. The objective is to change the conduction parameter of the neuron model, replicate the changes in myelin properties in MS and observe the dynamics of the signal propagation across the network. The model is initially validated for different lengths, conduction values, and connection weights through three nodal connections. Later, these individual factors are incorporated into a small network and simulated to mimic the condition of MS. The signal propagation pattern is observed after inducing changes in conduction parameters at certain nodes in the network and compared against a control model pattern obtained before the changes are applied to the network. The signal propagation pattern varies as expected by adapting to the input conditions. Similarly, when the model is applied to a connectome, the pattern changes could give an insight into disease progression. This approach has opened up a new path to explore the progression of the disease in MS. The work is in its preliminary state, but with a future vision to apply this method in a connectome, providing a better clinical tool.
Collapse
Affiliation(s)
- Vishnu Prathapan
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Peter Eipert
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Nicole Wigger
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Markus Kipp
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059, Rostock, Germany; Department of Aging of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Universitätsplatz 1, 18055, Rostock, Germany.
| | - Oliver Schmitt
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany; Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| |
Collapse
|
9
|
Chen G, Li F, Du J. Change of gut microbiome structure in preterm infants with hypoxic ischemic encephalopathy induced by apnea. Pediatr Neonatol 2023:S1875-9572(23)00022-0. [PMID: 36842907 DOI: 10.1016/j.pedneo.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Since a high incidence of mortality and morbidity is induced by preterm birth, it is important to understand how hypoxic ischemic encephalopathy (HIE) in preterm infants alters gut microbiota development. METHODS We analyzed 89 stools from 30 term newborns (NNG), 30 preterm infants without apnea (PG) and 29 preterm infants with definite diagnosis of apnea (PAG) by 16S rRNA gene sequencing in this study. RESULTS The data showed that species richness and diversity in PG and PAG were significantly lower compared with NNG. This study investigated the difference in bacteria and relative abundance between NNG, PG and PAG. The abundance of Klebsiella and Streptococcus strains were markedly increased, while Clostridium was significantly decreased in PAG compared with PG. The most notable exceptions included Klebsiella pneumoniae and Escherichia coli, which were markedly increased in PG and PAG, and these provide the main bacterial source of dopamine and serotonin production. This study also revealed that Lactobacillus and Bifidobacterium were markedly increased in PG and PAG, and these are the main source of GABA production for bacteria. CONCLUSION The present study confirmed that apnea had a uniform effect on species richness and diversity. However, it cannot be established whether the abundance and difference of these bacterial genera and species directly affect the occurrence and development of preterm infants with HIE by secreting intestinal neurotransmitters.
Collapse
Affiliation(s)
- Guang Chen
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China
| | - Fengdan Li
- Nursing Department, Xiang'An Hospital, Xiamen University, Xiamen, 361005, China
| | - Jiwei Du
- Nursing Department, Xiang'An Hospital, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
10
|
Schang AL, Van Steenwinckel J, Ioannidou ZS, Lipecki J, Rich-Griffin C, Woolley-Allen K, Dyer N, Le Charpentier T, Schäfer P, Fleiss B, Ott S, Sabéran-Djoneidi D, Mezger V, Gressens P. Epigenetic priming of immune/inflammatory pathways activation and abnormal activity of cell cycle pathway in a perinatal model of white matter injury. Cell Death Dis 2022; 13:1038. [PMID: 36513635 PMCID: PMC9748018 DOI: 10.1038/s41419-022-05483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Prenatal inflammatory insults accompany prematurity and provoke diffuse white matter injury (DWMI), which is associated with increased risk of neurodevelopmental pathologies, including autism spectrum disorders. DWMI results from maturation arrest of oligodendrocyte precursor cells (OPCs), a process that is poorly understood. Here, by using a validated mouse model of OPC maturation blockade, we provide the genome-wide ID card of the effects of neuroinflammation on OPCs that reveals the architecture of global cell fate issues underlining their maturation blockade. First, we find that, in OPCs, neuroinflammation takes advantage of a primed epigenomic landscape and induces abnormal overexpression of genes of the immune/inflammatory pathways: these genes strikingly exhibit accessible chromatin conformation in uninflamed OPCs, which correlates with their developmental, stage-dependent expression, along their normal maturation trajectory, as well as their abnormal upregulation upon neuroinflammation. Consistently, we observe the positioning on DNA of key transcription factors of the immune/inflammatory pathways (IRFs, NFkB), in both unstressed and inflamed OPCs. Second, we show that, in addition to the general perturbation of the myelination program, neuroinflammation counteracts the physiological downregulation of the cell cycle pathway in maturing OPCs. Neuroinflammation therefore perturbs cell identity in maturing OPCs, in a global manner. Moreover, based on our unraveling of the activity of genes of the immune/inflammatory pathways in prenatal uninflamed OPCs, the mere suppression of these proinflammatory mediators, as currently proposed in the field, may not be considered as a valid neurotherapeutic strategy.
Collapse
Affiliation(s)
- Anne-Laure Schang
- grid.464155.7Université Paris Cité, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France ,grid.513208.dUniversité Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.7429.80000000121866389Present Address: Inserm, UMR1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS) HERA team. Université Paris Cité, Faculté de Santé, Faculté de Pharmacie de Paris, 4 avenue de l’Observatoire, 75006 Paris, France
| | | | - Zoi S. Ioannidou
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Julia Lipecki
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Charlotte Rich-Griffin
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Kate Woolley-Allen
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Nigel Dyer
- grid.7372.10000 0000 8809 1613Bioinformatics Research Technology Platform, Warwick University, Coventry, CV4 7AL UK
| | | | - Patrick Schäfer
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Bobbi Fleiss
- grid.513208.dUniversité Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.1017.70000 0001 2163 3550Present Address: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC Australia
| | - Sascha Ott
- grid.7372.10000 0000 8809 1613Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
| | | | - Valérie Mezger
- grid.464155.7Université Paris Cité, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France
| | - Pierre Gressens
- grid.513208.dUniversité Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
11
|
Wang J, Liu B, Sun F, Xu Y, Luan H, Yang M, Wang C, Zhang T, Zhou Z, Yan H. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation. Int Immunopharmacol 2022; 110:109045. [DOI: 10.1016/j.intimp.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
|
12
|
Alhusaini M, Eissa N, Saad AK, Beiram R, Sadek B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep-Wake Cycle Disorder. Front Pharmacol 2022; 13:861094. [PMID: 35721194 PMCID: PMC9198498 DOI: 10.3389/fphar.2022.861094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.
Collapse
Affiliation(s)
- Mera Alhusaini
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ali K Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Siahanidou T, Spiliopoulou C. Pharmacological Neuroprotection of the Preterm Brain: Current Evidence and Perspectives. Am J Perinatol 2022; 39:479-491. [PMID: 32961562 DOI: 10.1055/s-0040-1716710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite improvements in viability, the long-term neurodevelopmental outcomes of preterm babies remain serious concern as a significant percentage of these infants develop neurological and/or intellectual impairment, and they are also at increased risk of psychiatric illnesses later in life. The current challenge is to develop neuroprotective approaches to improve adverse outcomes in preterm survivors. The purpose of this review was to provide an overview of the current evidence on pharmacological agents targeting the neuroprotection of the preterm brain. Among them, magnesium sulfate, given antenatally to pregnant women with imminent preterm birth before 30 to 34 weeks of gestation, as well as caffeine administered to preterm infants after birth, exhibited neuroprotective effects for human preterm brain. Erythropoietin treatment of preterm infants did not result in neuroprotection at 2 years of age in two out of three published large randomized controlled trials; however, long-term follow-up of these infants is needed to come to definite conclusions. Further studies are also required to assess whether melatonin, neurosteroids, inhaled nitric oxide, allopurinol, or dietary supplements (omega-3 fatty acids, choline, curcumin, etc.) could be implemented as neuroprotectants in clinical practice. Furthermore, other pharmacological agents showing promising signs of neuroprotective efficacy in preclinical studies (growth factors, hyaluronidase inhibitors or treatment, antidiabetic drugs, cannabidiol, histamine-H3 receptor antagonists, etc.), as well as stem cell- or exosomal-based therapies and nanomedicine, may prove useful in the future as potential neuroprotective approaches for human preterm brain. KEY POINTS: · Magnesium and caffeine have neuroprotective effects for the preterm brain.. · Follow-up of infants treated with erythropoietin is needed.. · Neuroprotective efficacy of several drugs in animals needs to be shown in humans..
Collapse
Affiliation(s)
- Tania Siahanidou
- Neonatal Unit of the First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
14
|
Abiramalatha T, Ramaswamy VV, Ponnala AK, Kallem VR, Murkunde YV, Punnoose AM, Vivekanandhan A, Pullattayil AK, Amboiram P. Emerging neuroprotective interventions in periventricular leukomalacia: A systematic review of preclinical studies. Expert Opin Investig Drugs 2022; 31:305-330. [PMID: 35143732 DOI: 10.1080/13543784.2022.2040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periventricular leukomalacia (PVL) is a result of various antenatal, intrapartum, or postnatal insults to the developing brain and is an important harbinger of cerebral palsy in preterm neonates. There is no proven therapy for PVL. This calls for appraisal of targeted therapies that have been investigated in animal models to evaluate their relevance in clinical research context. AREAS COVERED This systematic review identifies interventions that were evaluated in preclinical studies for neuroprotective efficacy against PVL. We identified 142 studies evaluating various interventions in PVL animal models. (Search method is detailed in section 2). EXPERT OPINION Interventions that have yielded significant results in preclinical research, and that have been evaluated in a limited number of clinical trials include stem cells, erythropoietin, and melatonin. Many other therapeutic modalities evaluated in preclinical studies have been identified, but more data on their neuroprotective potential in PVL must be garnered before they can be considered for clinical trials. Because most of the tested interventions had only a partial efficacy, a combination of interventions that could be synergistic should be investigated in future preclinical studies. Furthermore, since the nature and pattern of perinatal insults to preterm brain predisposing it to PVL are substantially variable, individualised approaches for the choice of appropriate neuroprotective interventions tailored to different sub-groups of preterm neonates should be explored.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Consultant Neonatologist, Kovai Medical Center and Hospital (KMCH).,Department of Pediatrics and Neonatology, KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Andelsivj Kumar Ponnala
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Yogeshkumar V Murkunde
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Alan Mathew Punnoose
- Department of Stem Cell Research and Regenerative Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
15
|
Abstract
Microglia, a category of glial cells in the central nervous system (CNS), have attracted much attention because of their important role in neuroinflammation. Many translational studies are currently ongoing to discover novel drugs targeting microglia for the treatment of various CNS disorders, such as Alzheimer's disease, Parkinson's disease (PD), and depression. Recent studies have shown that brain histamine, a neurotransmitter essential for the regulation of diverse brain functions, controls glial cells and neurons. In vitro studies using primary microglia and microglial cell lines have reported that histamine receptors are expressed in microglia and control microglial functions, including chemotaxis, migration, cytokine secretion, and autophagy. In vivo studies have demonstrated that histamine-related reagents could ameliorate abnormal symptoms in animal models of human diseases, such as amyotrophic lateral sclerosis (ALS), PD, and brain ischemia. Several human studies have revealed alterations in histamine receptor levels in ALS and PD, emphasizing the importance of the CNS histamine system, including histamine-dependent microglial modulation, as a therapeutic target for these disorders. In this review article, we summarize histamine-related research focusing on microglial functions.
Collapse
Affiliation(s)
- Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
16
|
Bokobza C, Joshi P, Schang AL, Csaba Z, Faivre V, Montané A, Galland A, Benmamar-Badel A, Bosher E, Lebon S, Schwendimann L, Mani S, Dournaud P, Besson V, Fleiss B, Gressens P, Van Steenwinckel J. miR-146b Protects the Perinatal Brain against Microglia-Induced Hypomyelination. Ann Neurol 2021; 91:48-65. [PMID: 34741343 PMCID: PMC9298799 DOI: 10.1002/ana.26263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
Objectives In the premature newborn, perinatal inflammation mediated by microglia contributes significantly to neurodevelopmental injuries including white matter injury (WMI). Brain inflammation alters development through neuroinflammatory processes mediated by activation of homeostatic microglia toward a pro‐inflammatory and neurotoxic phenotype. Investigating immune regulators of microglial activation is crucial to find effective strategies to prevent and treat WMI. Methods Ex vivo microglial cultures and a mouse model of WMI induced by perinatal inflammation (interleukin‐1‐beta [IL‐1β] and postnatal days 1–5) were used to uncover and elucidate the role of microRNA‐146b‐5p in microglial activation and WMI. Results A specific reduction in vivo in microglia of Dicer, a protein required for microRNAs maturation, reduces pro‐inflammatory activation of microglia and prevents hypomyelination in our model of WMI. Microglial miRNome analysis in the WMI model identified miRNA‐146b‐5p as a candidate modulator of microglial activation. Ex vivo microglial cell culture treated with the pro‐inflammatory stimulus lipopolysaccharide (LPS) led to overexpression of immunomodulatory miRNA‐146b‐5p but its drastic reduction in the microglial extracellular vesicles (EVs). To increase miRNA‐146b‐5p expression, we used a 3DNA nanocarrier to deliver synthetic miRNA‐146b‐5p specifically to microglia. Enhancing microglial miRNA‐146b‐5p overexpression significantly decreased LPS‐induced activation, downregulated IRAK1, and restored miRNA‐146b‐5p levels in EVs. In our WMI model, 3DNA miRNA‐146b‐5p treatment significantly prevented microglial activation, hypomyelination, and cognitive defect induced by perinatal inflammation. Interpretations These findings support that miRNA‐146b‐5p is a major regulator of microglia phenotype and could be targeted to reduce the incidence and the severity of perinatal brain injuries and their long‐term consequences. ANN NEUROL 2022;91:48–65
Collapse
Affiliation(s)
- Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pooja Joshi
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Anne-Laure Schang
- Université de Paris, Centre de recherche en Epidémiologie et Statistiques, Inserm, Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Valérie Faivre
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Anne Galland
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | | | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Shyamala Mani
- Université de Paris, NeuroDiderot, Inserm, Paris, France.,Curadev Pharma, Pvt. Ltd, Noida, India
| | | | - Valerie Besson
- Université de Paris, Faculté de Pharmacie de Paris, UMR-S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, Paris, France.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | | |
Collapse
|
17
|
Wang J, Liu B, Xu Y, Luan H, Wang C, Yang M, Zhao R, Song M, Liu J, Sun L, You J, Wang W, Sun F, Yan H. Thioperamide attenuates neuroinflammation and cognitive impairments in Alzheimer's disease via inhibiting gliosis. Exp Neurol 2021; 347:113870. [PMID: 34563511 DOI: 10.1016/j.expneurol.2021.113870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease, which characterized by deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, neuronal loss, and accompanied by neuroinflammation. Neuroinflammatory processes are well acknowledged to contribute to the progression of AD pathology. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia and astrocytes. H3R antagonist has been reported to have anti-inflammatory efficacy. However, whether inhibition of H3R is responsible for the anti-neuroinflammation in glial cells and neuroprotection on APPswe, PSEN1dE9 (APP/PS1 Tg) mice remain unclear. In this study, we found that inhibition of H3R by thioperamide reduced the gliosis and induced a phenotypical switch from A1 to A2 in astrocytes, and ultimately attenuated neuroinflammation in APP/PS1 Tg mice. Additionally, thioperamide rescued the decrease of cyclic AMP response element-binding protein (CREB) phosphorylation and suppressed the phosphorylated P65 nuclear factor kappa B (p-P65 NF-κB) in APP/PS1 Tg mice. H89, an inhibitor of CREB signaling, abolished these effects of thioperamide to suppress gliosis and proinflammatory cytokine release. Lastly, thioperamide alleviated the deposition of amyloid-β (Aβ) and cognitive dysfunction in APP/PS1 mice, which were both reversed by administration of H89. Taken together, these results suggested the H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated gliosis and inflammation inhibiting, which contributed to Aβ clearance. This study uncovered a novel mechanism involving inflammatory regulating behind the therapeutic effect of thioperamide in AD.
Collapse
Affiliation(s)
- Jiangong Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yong Xu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Haiyun Luan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Chaoyun Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Runming Zhao
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mengmeng Song
- Department of Thyroid Breast Surgery, Dongying People's Hospital, Dongying, China
| | - Jing Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Linshan Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing You
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Wentao Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Fengjiao Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China.
| |
Collapse
|
18
|
Schwendimann L, Sivaprakasam I, Buvaneshwari S, Gurumurthy GP, Mishra S, Ruiz L, Sekhar M, Fleiss B, Riotte J, Mani S, Gressens P. Agricultural groundwater with high nitrates and dissolved salts given to pregnant mice alters brain development in the offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112635. [PMID: 34418854 DOI: 10.1016/j.ecoenv.2021.112635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Groundwater is the main source of drinking water for a significant portion of the human population. In many agricultural areas, diffuse pollution such as high levels of total dissolved salts including nitrate, puts the quality of this resource at risk. However, the effect of exposure to these water contaminants on brain development is currently poorly understood. Here we characterised water from a borewell located in an intensely cultivated area (agricultural) or water from a borewell located in a nearby pristine forest. The agricultural borewell water was rich in nitrates with high total dissolved salts. We then studied the consequence of drinking the agricultural water on mouse brain development. For this, the agricultural borewell water or forest water was given to mice for 6 weeks before and during pregnancy and lactation. The brains of the offspring born to these dams were analysed at postnatal day (P)5 and P21 and compared using immunohistochemistry for changes in glial cells, neurons, myelin, and cell death across many brain regions. Brains from offspring born to dams who had been given agricultural water (versus forest control water) were significantly smaller, and at P21 had a significant degeneration of neurons and increased numbers of microglia in the motor cortex, had fewer white matter astrocytes and an increase in cell death, particularly in the dentate gyrus. This study shows that brain development is sensitive to water composition. It points to the importance of assessing neurodevelopmental delays when considering the effect of water contaminated with agricultural run offs on human health. MAIN FINDING: Pregnant and lactating mice were given borewell water from intensely cultivated land. Offspring brains reveal degeneration of neurons and a loss of astrocytes, increase in microglial cells and cell death, pointing to neurodevelopmental problems.
Collapse
Affiliation(s)
| | | | | | - Gundiga P Gurumurthy
- Birbal Sahni Institute of Palaeosciences (BSIP), Lucknow 226007, Uttar Pradesh, India
| | - Saumya Mishra
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Laurent Ruiz
- Indo-French Cell for Water Sciences, Indian Institute of Science, Bengaluru 560012, India; GET, Université de Toulouse, CNRS, IRD, UPS, CNES, 31400 Toulouse, France; INRAE, Institut Agro, UMR SAS, Rennes, France
| | - Muddu Sekhar
- Indian Institute of Science, Bengaluru 560012, India; Indo-French Cell for Water Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Bobbi Fleiss
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019 Paris, France; RMIT University, STEM College, Melbourne, Australia
| | - Jean Riotte
- Indo-French Cell for Water Sciences, Indian Institute of Science, Bengaluru 560012, India; GET, Université de Toulouse, CNRS, IRD, UPS, CNES, 31400 Toulouse, France.
| | - Shyamala Mani
- Indian Institute of Science, Bengaluru 560012, India
| | - Pierre Gressens
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019 Paris, France.
| |
Collapse
|
19
|
Sutiwisesak R, Burns TC, Rodriguez M, Warrington AE. Remyelination therapies for multiple sclerosis: optimizing translation from animal models into clinical trials. Expert Opin Investig Drugs 2021; 30:857-876. [PMID: 34126015 DOI: 10.1080/13543784.2021.1942840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS). Demyelination, the main pathology in MS, contributes to clinical symptoms and long-term neurological deficits if left untreated. Remyelination, the natural repair of damaged myelin by cells of the oligodendrocyte lineage, occurs in MS, but eventually fails in most patients as they age. Encouraging timely remyelination can restore axon conduction and minimize deficits.Areas covered: We discuss and correlate human MS pathology with animal models, propose methods to deplete resident oligodendrocyte progenitor cells (OPCs) to determine whether mature oligodendrocytes support remyelination, and review remyelinating agents, mechanisms of action, and available clinical trial data.Expert opinion: The heterogeneity of human MS may limit successful translation of many candidate remyelinating agents; some patients lack the biological targets necessary to leverage current approaches. Development of therapeutics for remyelination has concentrated almost exclusively on mobilization of innate OPCs. However, mature oligodendrocytes appear an important contributor to remyelination in humans. Limiting the contribution of OPC mediated repair in models of MS would allow the evaluation of remyelination-promoting agents on mature oligodendrocytes. Among remyelinating reagents reviewed, only rHIgM22 targets both OPCs and mature oligodendrocytes.
Collapse
Affiliation(s)
- Rujapope Sutiwisesak
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Terry C Burns
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Moses Rodriguez
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Boccazzi M, Van Steenwinckel J, Schang AL, Faivre V, Le Charpentier T, Bokobza C, Csaba Z, Verderio C, Fumagalli M, Mani S, Gressens P. The immune-inflammatory response of oligodendrocytes in a murine model of preterm white matter injury: the role of TLR3 activation. Cell Death Dis 2021; 12:166. [PMID: 33558485 PMCID: PMC7870670 DOI: 10.1038/s41419-021-03446-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/13/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
A leading cause of preterm birth is the exposure to systemic inflammation (maternal/fetal infection), which leads to neuroinflammation and white matter injury (WMI). A wide range of cytokines and chemokines are expressed and upregulated in oligodendrocytes (OLs) in response to inflammation and numerous reports show that OLs express several receptors for immune related molecules, which enable them to sense inflammation and to react. However, the role of OL immune response in WMI is unclear. Here, we focus our study on toll-like receptor-3 (TLR3) that is activated by double-strand RNA (dsRNA) and promotes neuroinflammation. Despite its importance, its expression and role in OLs remain unclear. We used an in vivo mouse model, which mimics inflammation-mediated WMI of preterm born infants consisting of intraperitoneal injection of IL-1β from P1 to P5. In the IL-1β-treated animals, we observed the upregulation of Tlr3, IL-1β, IFN-β, Ccl2, and Cxcl10 in both PDGFRα+ and O4+ sorted cells. This upregulation was higher in O4+ immature OLs (immOLs) as compared to PDGFRα+ OL precursor cells (OPCs), suggesting a different sensitivity to neuroinflammation. These observations were confirmed in OL primary cultures: cells treated with TLR3 agonist Poly(I:C) during differentiation showed a stronger upregulation of Ccl2 and Cxcl10 compared to cells treated during proliferation and led to decreased expression of myelin genes. Finally, OLs were able to modulate microglia phenotype and function depending on their maturation state as assessed by qPCR using validated markers for immunomodulatory, proinflammatory, and anti-inflammatory phenotypes and by phagocytosis and morphological analysis. These results show that during inflammation the response of OLs can play an autonomous role in blocking their own differentiation: in addition, the immune activation of OLs may play an important role in shaping the response of microglia during inflammation.
Collapse
Affiliation(s)
- Marta Boccazzi
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.,PremUP, F-75006, Paris, France.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133, Milan, Italy
| | - Juliette Van Steenwinckel
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.,PremUP, F-75006, Paris, France
| | - Anne-Laure Schang
- Université de Paris, Inserm UMR 1153, Centre de recherche en Epidémiologie et Statistiques (CRESS), Equipe HERA, Paris, France
| | - Valérie Faivre
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.,PremUP, F-75006, Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.,PremUP, F-75006, Paris, France
| | - Cindy Bokobza
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.,PremUP, F-75006, Paris, France
| | - Zsolt Csaba
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.,PremUP, F-75006, Paris, France
| | - Claudia Verderio
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133, Milan, Italy
| | - Shyamala Mani
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France.,PremUP, F-75006, Paris, France.,Curadev Pharma Pvt. Ltd, Noida, India
| | - Pierre Gressens
- Université de Paris, Inserm UMR 1141 NeuroDiderot, F-75019, Paris, France. .,PremUP, F-75006, Paris, France. .,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
21
|
Novel compounds with dual S1P receptor agonist and histamine H 3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology 2021; 186:108464. [PMID: 33460688 DOI: 10.1016/j.neuropharm.2021.108464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/08/2023]
Abstract
The sphingosine 1-phosphate (S1P) receptor 1 (S1P1) has emerged as a therapeutic target for the treatment of multiple sclerosis (MS). Fingolimod (FTY720) is the first functional antagonist of S1P1 that has been approved for oral treatment of MS. Previously, we have developed novel butterfly derivatives of FTY720 that acted similar to FTY720 in reducing disease symptoms in a mouse model of experimental autoimmune encephalomyelitis (EAE). In this study, we have synthesized a piperidine derivative of the oxazolo-oxazole compounds, denoted ST-1505, and its ring-opened analogue ST-1478, and characterised their in-vitro and in-vivo functions. Notably, the 3-piperidinopropyloxy moiety resembles a structural motif of pitolisant, a drug with histamine H3R antagonistic/inverse agonist activity approved for the treatment of narcolepsy. Both novel compounds exerted H3R affinities, and in addition, ST-1505 was characterised as a dual S1P1+3 agonist, whereas ST-1478 was a dual S1P1+5 agonist. Both multitargeting compounds were also active in mice and reduced the lymphocyte numbers as well as diminished disease symptoms in the mouse model of MS. The effect of ST-1478 was dependent on SK-2 activity suggesting that it is a prodrug like FTY720, but with a more selective S1P receptor activation profile, whereas ST-1505 is a fully active drug even in the absence of SK-2. In summary, these data suggest that the well soluble piperidine derivatives ST-1505 and ST-1478 hold promise as novel drugs for the treatment of MS and other autoimmune or inflammatory diseases, and by their H3R antagonist potency, they might additionally improve cognitive impairment during disease.
Collapse
|
22
|
Huang P, Chen X, Hu X, Zhou Q, Lin L, Jiang S, Fu H, Xiong Y, Zeng H, Fang M, Chen C, Deng Y. Experimentally Induced Sepsis Causes Extensive Hypomyelination in the Prefrontal Cortex and Hippocampus in Neonatal Rats. Neuromolecular Med 2020; 22:420-436. [PMID: 32638208 DOI: 10.1007/s12017-020-08602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Neonatal sepsis is associated with cognitive deficit in the later life. Axonal myelination plays a pivotal role in neurotransmission and formation of learning and memory. This study aimed to explore if systemic lipopolysaccharide (LPS) injection would induce hypomyelination in the prefrontal cortex and hippocampus in developing septic neonatal rats. Sprague-Dawley rats (1-day old) were injected with LPS (1 mg/kg) intraperitoneally. By electron microscopy, axonal hypomyelination was evident in the subcortical white matter and hippocampus. The expression of myelin proteins including CNPase, MBP, PLP and MAG was downregulated in both areas of the brain at 7, 14 and 28 days after LPS injection. The frequency of MBP and PLP-positive oligodendrocyte was significantly reduced using in situ hybridization in the cerebral cortex and hippocampus at the corresponding time points after LPS injection, whereas the expression of NG2 and PDGFRα was noticeably increased. In tandem with this was reduction of Olig1 and Olig2 expressions which are involved in differentiation/maturation of OPCs. Expression of NFL, NFM, and NFH was significantly downregulated, indicating that axon development was disrupted after LPS injection. Morris Water Maze behavioral test, Open field test, Rotarod test, and Pole test were used to evaluate neurological behaviors of 28 days rats. The rats in the LPS group showed the impairment of motor coordination, balance, memory, and learning ability and represented bradykinesia and anxiety-like behavior. The present results suggest that following systemic LPS injection, differentiation/maturation of OPCs was affected which may be attributed to the inhibition of transcription factors Olig1 and Olig2 expression resulting in impairment to axonal development. It is suggested that this would ultimately lead to axonal hypomyelination in the prefrontal cortex and hippocampus, which may be associated with neurological deficits in later life.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xuan Chen
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China
| | - Qiuping Zhou
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Lanfen Lin
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Shuqi Jiang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Hui Fu
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Yajie Xiong
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Hongke Zeng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Ming Fang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
23
|
Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, Csaba Z, Verdonk F, Montané A, Sigaut S, Hennebert O, Lebon S, Schwendimann L, Le Charpentier T, Hassan-Abdi R, Ball G, Aljabar P, Saxena A, Holloway RK, Birchmeier W, Baud O, Rowitch D, Miron V, Chretien F, Leconte C, Besson VC, Petretto EG, Edwards AD, Hagberg H, Soussi-Yanicostas N, Fleiss B, Gressens P. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 2020; 142:3806-3833. [PMID: 31665242 DOI: 10.1093/brain/awz319] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.
Collapse
Affiliation(s)
| | - Anne-Laure Schang
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Michelle L Krishnan
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Vincent Degos
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris France
| | - Andrée Delahaye-Duriez
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France
| | - Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, F-75006 Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Stéphanie Sigaut
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Olivier Hennebert
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Leslie Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Rahma Hassan-Abdi
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine in the Helmholtz Society, Berlin-Buch, Germany
| | - Olivier Baud
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fabrice Chretien
- UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France.,Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, F-75014 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Valérie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | | | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,Perinatal Center, Institute of Clinical Sciences and Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, 41390 Gothenburg, Sweden
| | - Nadia Soussi-Yanicostas
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
24
|
Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int J Mol Sci 2020; 21:ijms21051663. [PMID: 32121306 PMCID: PMC7084497 DOI: 10.3390/ijms21051663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium ions are vital for maintaining the physiological and biochemical processes inside cells. The central nervous system (CNS) is particularly dependent on calcium homeostasis and its dysregulation has been associated with several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD), as well as with multiple sclerosis (MS). Hence, the modulation of calcium influx into the cells and the targeting of calcium-mediated signaling pathways may present a promising therapeutic approach for these diseases. This review provides an overview on calcium channels in neurons and glial cells. Special emphasis is put on MS, a chronic autoimmune disease of the CNS. While the initial relapsing-remitting stage of MS can be treated effectively with immune modulatory and immunosuppressive drugs, the subsequent progressive stage has remained largely untreatable. Here we summarize several approaches that have been and are currently being tested for their neuroprotective capacities in MS and we discuss which role calcium could play in this regard.
Collapse
|
25
|
Yao M, Mao SS. [Research advances in the biomarkers of brain damage in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:1138-1143. [PMID: 31753098 PMCID: PMC7389299 DOI: 10.7499/j.issn.1008-8830.2019.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
While the survival rate of preterm infants has continually increased with the development of perinatal and neonatal monitoring techniques, the incidence of brain injury in preterm infants has been increasing, resulting in varying degrees of cognitive impairment and movement disorders. Measuring the biomarkers of brain damage is an important means to diagnose brain injury. The biomarkers can be divided into neuroglial damage markers, neuronal damage markers and other markers according to the features of injured cells. The biomarkers widely used in clinical practice include S100B protein, myelin basic protein and neuron-specific enolase. Recent studies have newly discovered a collection of markers that can suggest potential brain injury in preterm infants, such as glial fibrillary acidic protein, neurofilament light chain protein, α-II spectrin breakdown products, chemokines, melatonin and urinary metabolomics. These biomarkers can contribute to the early diagnosis and treatment of preterm brain injury, essential for improving neural development and prognosis. This article reviews the latest research advances in the biomarkers of preterm brain injury, in order to provide evidence for the early diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Mei Yao
- Department of Neurology, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | | |
Collapse
|
26
|
Stolp HB, Fleiss B, Arai Y, Supramaniam V, Vontell R, Birtles S, Yates AG, Baburamani AA, Thornton C, Rutherford M, Edwards AD, Gressens P. Interneuron Development Is Disrupted in Preterm Brains With Diffuse White Matter Injury: Observations in Mouse and Human. Front Physiol 2019; 10:955. [PMID: 31417418 PMCID: PMC6683859 DOI: 10.3389/fphys.2019.00955] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
Preterm brain injury, occurring in approximately 30% of infants born <32 weeks gestational age, is associated with an increased risk of neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The mechanism of gray matter injury in preterm born children is unclear and likely to be multifactorial; however, inflammation, a high predictor of poor outcome in preterm infants, has been associated with disrupted interneuron maturation in a number of animal models. Interneurons are important for regulating normal brain development, and disruption in interneuron development, and the downstream effects of this, has been implicated in the etiology of neurodevelopmental disorders. Here, we utilize postmortem tissue from human preterm cases with or without diffuse white matter injury (WMI; PMA range: 23+2 to 28+1 for non-WMI group, 26+6 to 30+0 for WMI group, p = 0.002) and a model of inflammation-induced preterm diffuse white matter injury (i.p. IL-1β, b.d., 10 μg/kg/injection in male CD1 mice from P1–5). Data from human preterm infants show deficits in interneuron numbers in the cortex and delayed growth of neuronal arbors at this early stage of development. In the mouse, significant reduction in the number of parvalbumin-positive interneurons was observed from postnatal day (P) 10. This decrease in parvalbumin neuron number was largely rectified by P40, though there was a significantly smaller number of parvalbumin positive cells associated with perineuronal nets in the upper cortical layers. Together, these data suggest that inflammation in the preterm brain may be a contributor to injury of specific interneuron in the cortical gray matter. This may represent a potential target for postnatal therapy to reduce the incidence and/or severity of neurodevelopmental disorders in preterm infants.
Collapse
Affiliation(s)
- Helen B Stolp
- Department for Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom.,Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Bobbi Fleiss
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Université de Paris, NeuroDiderot, Inserm, Paris, France.,School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Yoko Arai
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Veena Supramaniam
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Regina Vontell
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Sebastian Birtles
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Abi G Yates
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ana A Baburamani
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Claire Thornton
- Department for Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom.,Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Mary Rutherford
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - A David Edwards
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Pierre Gressens
- Department of Perinatal Imaging & Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
27
|
Hortensius LM, van Elburg RM, Nijboer CH, Benders MJNL, de Theije CGM. Postnatal Nutrition to Improve Brain Development in the Preterm Infant: A Systematic Review From Bench to Bedside. Front Physiol 2019; 10:961. [PMID: 31404162 PMCID: PMC6677108 DOI: 10.3389/fphys.2019.00961] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Preterm infants are at high risk for Encephalopathy of Prematurity and successive adverse neurodevelopmental outcome. Adequate nutrition is crucial for healthy brain development. Maternal breast milk is first choice of post-natal enteral nutrition for preterm infants. However, breast milk contains insufficient nutrient quantities to meet the greater nutritional needs of preterm infants, meaning that supplementation is recommended. Aim: To provide an overview of current literature on potential nutritional interventions for improvement of neurodevelopmental outcome in preterm infants, by taking a bench to bedside approach from pre-clinical models of neonatal brain injury to randomized controlled clinical trials (RCTs) in preterm infants. Methods: Separate clinical and pre-clinical searches were performed in Medline and Embase for English written papers published between 08/2008 and 08/2018 that studied a single nutritional component. Papers were included if one of the following components was studied: lipids, carbohydrates, proteins, vitamins, minerals, probiotics, prebiotics, oligosaccharides, fatty acids, or amino acids, with brain injury, brain development or neurodevelopmental outcome as outcome measure in preterm infants (gestational age <32 weeks and/or birth weight <1,500 g) or in animal models of neonatal brain injury. Results: In total, 2,671 pre-clinical studies and 852 RCTs were screened, of which 24 pre-clinical and 22 RCTs were included in this review. In these trials supplementation with amino acids and protein, lipids, probiotics (only clinical), prebiotics (only clinical), vitamins, and minerals was studied. All included pre-clinical studies show positive effect of supplementation on brain injury and/or neurodevelopment. Although some nutrients, such as glutamine, show promising short term outcome in clinical studies, no evident long term effect of any supplemented nutrient was found. Main limitations were inclusion of studies no older than 10 years at time of search and studies that focused on single nutritional components only. Conclusion: Even though many pre-clinical trials demonstrate promising effects of different nutritional interventions on reducing brain injury and/or improving neurodevelopmental outcome, these positive effects have so far not evidently been demonstrated in RCTs. More clinically relevant animal models and long term follow up after clinical trials are needed to move novel nutritional therapies from bench to bedside of preterm infants.
Collapse
Affiliation(s)
- Lisa M. Hortensius
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ruurd M. van Elburg
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Cora H. Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Caroline G. M. de Theije
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|