1
|
Liu L, Liu H, Lu X, Yin Z, Zhang W, Ye J, Xu Y, Weng Z, Luo J, Wang X. Palladium-Based Nanocomposites Remodel Osteoporotic Microenvironment by Bone-Targeted Hydrogen Enrichment and Zincum Repletion. RESEARCH (WASHINGTON, D.C.) 2024; 7:0540. [PMID: 39691766 PMCID: PMC11651528 DOI: 10.34133/research.0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024]
Abstract
Osteoporosis presents a marked global public health challenge, characterized by deficient osteogenesis and a deteriorating immune microenvironment. Conventional clinical interventions primarily target osteoclast-mediated bone damage, yet lack a comprehensive therapeutic approach that balances bone formation and resorption. Herein, we introduce a bone-targeted nanocomposite, A-Z@Pd(H), designed to address these challenges by integrating diverse functional components. The nanocomposite incorporates internal hydrogen-carrying nanozymes, which effectively scavenge multiple reactive oxygen species (ROS) and synergistically engage the autophagy-lysosome pathway to accelerate endogenous ROS degradation in macrophages. This mechanism disrupts the vicious cycle of autophagic dysfunction-ROS accumulation-macrophage inflammation. In addition, external metal-organic frameworks release zinc ions (Zn2+) in response to the acidic osteoporotic environment, thereby promoting osteogenesis. In a murine model of osteoporosis, intravenous administration of A-Z@Pd(H) leads to preferential accumulation in the femur, thereby remodeling the osteoporotic microenvironment through immune regulation, osteogenesis promotion, and osteoclast inhibition. These findings suggest that this system composed of hydrogen therapy and ion therapy may be a promising candidate for bone-targeted comprehensive therapy in osteoporosis.
Collapse
Affiliation(s)
- Lubing Liu
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Huiying Liu
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
| | - Xiaoya Lu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Zhengshuai Yin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Wei Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Jing Ye
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Yingying Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Zhenzhen Weng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Jun Luo
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| |
Collapse
|
2
|
Tomas-Sanchez C, Blanco-Alvarez VM, Gonzalez-Barrios JA, Martinez-Fong D, Soto-Rodriguez G, Brambila E, Gonzalez-Vazquez A, Aguilar-Peralta AK, Limón DI, Vargas-Castro V, Cebada J, Alatriste-Bueno V, Leon-Chavez BA. Prophylactic zinc and therapeutic selenium administration in adult rats prevents long-term cognitive and behavioral sequelae by a transient ischemic attack. Heliyon 2024; 10:e30017. [PMID: 38707461 PMCID: PMC11068621 DOI: 10.1016/j.heliyon.2024.e30017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
The transient hypoxic-ischemic attack, also known as a minor stroke, can result in long-term neurological issues such as memory loss, depression, and anxiety due to an increase in nitrosative stress. The individual or combined administration of chronic prophylactic zinc and therapeutic selenium is known to reduce nitrosative stress in the first seven days post-reperfusion and, due to an antioxidant effect, prevent cell death. Besides, zinc or selenium, individually administered, also causes antidepressant and anxiolytic effects. Therefore, this work evaluated whether combining zinc and selenium could prevent stroke-elicited cognition and behavior deficits after 30 days post-reperfusion. Accordingly, we assessed the expression of growth factors at 7 days post-reperfusion, a four-time course of memory (from 7 to 28 days post-learning test), and cell proliferation, depression, and anxiety-like behavior at 30 days post-reperfusion. Male Wistar rats with a weight between 190 and 240 g) were treated with chronic prophylactic zinc administration with a concentration of 0.2 mg/kg for 15 days before common carotid artery occlusion (10 min) and then with therapeutic selenium (6 μg/kg) for 7 days post-reperfusion. Compared with individual administrations, the administration combined of prophylactic zinc and therapeutic selenium decreased astrogliosis, increased growth factor expression, and improved cell proliferation and survival in two regions, the hippocampus, and cerebral cortex. These effects prevented memory loss, depression, and anxiety-like behaviors. In conclusion, these results demonstrate that the prophylactic zinc administration combined with therapeutic selenium can reduce the long-term sequelae caused by the transient ischemic attack. Significance statement. A minor stroke caused by a transient ischemic attack can result in psychomotor sequelae that affect not only the living conditions of patients and their families but also the economy. The incidence of these micro-events among young people has increased in the world. Nonetheless, there is no deep understanding of how this population group responds to regular treatments (Ekker and et al., 2018) [1]. On the basis that zinc and selenium have antioxidant, anti-inflammatory, and regenerative properties in stroke animal models, our work explored whether the chronic combined administration of prophylactic zinc and therapeutic selenium could prevent neurological sequelae in the long term in a stroke rat model of unilateral common carotid artery occlusion (CCAO) by 10-min. Our results showed that this combined treatment provided a long-term neuroprotective effect by decreasing astrogliosis, memory loss, anxiety, and depression-like behavior.
Collapse
Affiliation(s)
- Constantino Tomas-Sanchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Victor Manuel Blanco-Alvarez
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, Av 25 Pte 1304, Colonia Volcanes, Puebla, Mexico
| | - Juan Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital regional 1° de Octubre, ISSSTE, Avenida Instituto Politécnico Nacional #1669, 07760, México D. F., Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000, México D.F., Mexico
- Nanoparticle Therapy Institute, 404 Avenida Monte Blanco, Aguascalientes, 20120, Mexico
| | - Guadalupe Soto-Rodriguez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Alejandro Gonzalez-Vazquez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Ana Karina Aguilar-Peralta
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Daniel I. Limón
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Viridiana Vargas-Castro
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Jorge Cebada
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Victorino Alatriste-Bueno
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| |
Collapse
|
3
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
4
|
Liu QR, Shi CN, Wang F, Tong JH. Neuroinflammation-induced parvalbumin interneuron and oscillation deficits might contribute to neurobehavioral abnormities in a two-hit model of depression. Heliyon 2023; 9:e18468. [PMID: 37554823 PMCID: PMC10404944 DOI: 10.1016/j.heliyon.2023.e18468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Depression is a common neuropsychiatric disorder that causes profound disability worldwide, yet the underlying mechanism remains unclear. Thus, the present study aimed to evaluate the effects of a two-hit model of depression on glial activation, parvalbumin (PV) interneuron, oscillation activity, and behavior alternations, and whether chronic fluoxetine treatment can reverse these abnormalities. Male mice were submitted to lipopolysaccharide (LPS) injection, followed by a modified chronic unpredictable stress (CUS) protocol. In our study, we showed that mice exposed to LPS and CUS exhibited reduced body weight, anhedonic-like behavior as well as cognitive and anxiety symptoms. These behavioral alternations were related to enhanced neuroinflammation, as reflected by significantly increased IL-1β and IL-6 levels and microglia activation in the prefrontal cortex (PFC). In addition, mice exposed to LPS and CUS displayed significantly decreased PV expression and disturbance of theta and gamma oscillations in the PFC. However, chronic fluoxetine treatment reversed most of these abnormalities. In conclusion, our study suggests that neuroinflammation-induced PV interneuron and oscillation deficits might contribute to neurobehavioral abnormalities in a two-hit model of depression.
Collapse
Affiliation(s)
- Qing-ren Liu
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi, 214105, China
| | - Cui-na Shi
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jian-hua Tong
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Quan Z, Li H, Quan Z, Qing H. Appropriate Macronutrients or Mineral Elements Are Beneficial to Improve Depression and Reduce the Risk of Depression. Int J Mol Sci 2023; 24:7098. [PMID: 37108261 PMCID: PMC10138658 DOI: 10.3390/ijms24087098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Depression is a common mental disorder that seriously affects the quality of life and leads to an increasing global suicide rate. Macro, micro, and trace elements are the main components that maintain normal physiological functions of the brain. Depression is manifested in abnormal brain functions, which are considered to be tightly related to the imbalance of elements. Elements associated with depression include glucose, fatty acids, amino acids, and mineral elements such as lithium, zinc, magnesium, copper, iron, and selenium. To explore the relationship between these elements and depression, the main literature in the last decade was mainly searched and summarized on PubMed, Google Scholar, Scopus, Web of Science, and other electronic databases with the keywords "depression, sugar, fat, protein, lithium, zinc, magnesium, copper, iron, and selenium". These elements aggravate or alleviate depression by regulating a series of physiological processes, including the transmission of neural signals, inflammation, oxidative stress, neurogenesis, and synaptic plasticity, which thus affect the expression or activity of physiological components such as neurotransmitters, neurotrophic factors, receptors, cytokines, and ion-binding proteins in the body. For example, excessive fat intake can lead to depression, with possible mechanisms including inflammation, increased oxidative stress, reduced synaptic plasticity, and decreased expression of 5-Hydroxytryptamine (5-HT), Brain Derived Neurotrophic Factor (BDNF), Postsynaptic density protein 95(PSD-95), etc. Supplementing mineral elements, such as selenium, zinc, magnesium, or lithium as a psychotropic medication is mostly used as an auxiliary method to improve depression with other antidepressants. In general, appropriate nutritional elements are essential to treat depression and prevent the risk of depression.
Collapse
Affiliation(s)
| | | | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Medeiros LDS, Rodrigues PDS, Santos DNL, Silva-Sampaio AC, Kirsten TB, Suffredini IB, Coque ADC, da Silva RA, Bernardi MM. Prenatal restraint stress downregulates the hypothalamic kisspeptidergic system transcripts genes, reduces the estrogen plasma levels, delayed the onset of puberty, and reduced the sexual behavior intensity in female rats. Physiol Behav 2023; 260:114055. [PMID: 36563733 DOI: 10.1016/j.physbeh.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
AIMS This study investigated the possible relationships between the expression of the Kiss1 and Gpr54 gene expressions and the pituitary-gonadal hormones with the female onset of puberty and sexual behavior. The Kiss1 and Gpr54 gene expressions were examined because they are critical to controlling the hypothalamic activation of GnRH neurons and, in turn, the pituitary-gonadal hormones related to the early onset of puberty and sexual behavior. Further, it was evaluated that the pituitary and gonadal hormones involved in the vaginal opening and the expression of sexual behavior. METHODS Pregnant rats exposed to PRS from gestation days 17 to 20 were evaluated for maternal and open-field behaviors. The maternal behavior was analyzed because it may alter brain sexual organization affecting the pups development. It was observed in female pups the physical and development and, in adult age, the open-field behavior, the anxiety-like behavior, the estrous cycle, the sexual behavior, the serum FSH, LH, estrogen, progesterone, and testosterone levels, and the gene expression of kisspeptin protein (Kiss1) and Gpr54 in the hypothalamus. RESULTS the maternal and open-field behaviors were unaffected. In the F1 generation, PRS reduced weight at weaning, delayed the day of the vaginal opening and reduced the intensity of lordosis, the estrogen levels, and the Kiss1 and Gpr54 gene expression. These effects were attributed to hypothalamic kisspeptidergic system downregulation of transcripts genes and the reduced estrogen levels affected by the PRS.
Collapse
Affiliation(s)
- Loren da Silva Medeiros
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Paula da Silva Rodrigues
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Daniel Nascimento Lago Santos
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ana Claudia Silva-Sampaio
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago Berti Kirsten
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ivana Barbosa Suffredini
- Núcleo de Pesquisas em Biodiversidade, Laboratório de Extração, Universidade Paulista - UNIP, Av. Paulista, 900, São Paulo, SP 01310-100, Brazil
| | - Alex de Camargo Coque
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Rodrigo Augusto da Silva
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil; School of Dentistry, Graduate Program in Health Sciences, University of Taubaté, Rua dos Operários, 9, Taubaté, SP 12020-340, Brazil
| | - Maria Martha Bernardi
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
7
|
Wu T, Liu R, Zhang L, Rifky M, Sui W, Zhu Q, Zhang J, Yin J, Zhang M. Dietary intervention in depression - a review. Food Funct 2022; 13:12475-12486. [PMID: 36408608 DOI: 10.1039/d2fo02795j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a mental illness that affects the normal lives of over 300 million people. Unfortunately, about 30% to 40% of patients do not adequately respond to pharmacotherapy and other therapies. This review focuses on exploring the relationship between dietary nutrition and depression, aiming to find safer and efficient ingredients to alleviate depression. Diet can affect depression in numerous ways. These pathways include the regulation of tryptophan metabolism, inflammation, hypothalamic-pituitary-adrenal (HPA) axis, microbe-gut-brain axis, brain-derived neurotrophic factor (BDNF) and epigenetics. Furthermore, probiotics, micronutrients, and other active substances exhibit significant antidepressant effects by regulating the above pathways. These provide insights for developing antidepressant foods.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ling Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Mohamed Rifky
- Eastern University of Sri Lanka, Chenkalady 999011, Sri Lanka
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60100, Italy
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China. .,Tianjin Agricultural University, and China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
8
|
Kirsten TB, Silva EP, Biondi TF, Rodrigues PS, Cardoso CV, Massironi SMG, Mori CMC, Bondan EF, Bernardi MM. Bate palmas mutant mice as a model of Kabuki syndrome: Higher susceptibility to infections and vocalization impairments? J Neurosci Res 2022; 100:1438-1451. [PMID: 35362120 DOI: 10.1002/jnr.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ericka P Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thalles F Biondi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula S Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Carolina V Cardoso
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
9
|
Janach GMS, Böhm M, Döhne N, Kim HR, Rosário M, Strauss U. Interferon-γ enhances neocortical synaptic inhibition by promoting membrane association and phosphorylation of GABA A receptors in a protein kinase C-dependent manner. Brain Behav Immun 2022; 101:153-164. [PMID: 34998939 DOI: 10.1016/j.bbi.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Interferon-γ (IFN-γ), an important mediator of the antiviral immune response, can also act as a neuromodulator. CNS IFN-γ levels rise acutely in response to infection and therapeutically applied IFN-γ provokes CNS related side effects. Moreover, IFN-γ plays a key role in neurophysiological processes and a variety of chronic neurological and neuropsychiatric conditions. To close the gap between basic research, behavioral implications and clinical applicability, knowledge of the mechanism behind IFN-γ related changes in brain function is crucial. Here, we studied the underlying mechanism of acutely augmented neocortical inhibition by IFN-γ (1.000 IU ml-1) in layer 5 pyramidal neurons of male Wistar rats. We demonstrate postsynaptic mediation of IFN-γ augmented inhibition by pressure application of GABA and analysis of paired pulse ratios. IFN-γ increases membrane presence of GABAAR γ2, as quantified by cell surface biotinylation and functional synaptic GABAAR number, as determined by peak-scaled non-stationary noise analysis. The increase in functional receptor number was comparable to the increase in underlying miniature inhibitory postsynaptic current (mIPSC) amplitudes. Blockage of putative intracellular mediators, namely phosphoinositide 3-kinase and protein kinase C (PKC) by Wortmannin and Calphostin C, respectively, revealed PKC-dependency of the pro-inhibitory IFN-γ effect. This was corroborated by increased serine phosphorylation of P-serine PKC motifs on GABAAR γ2 upon IFN-γ application. GABAAR single channel conductance, intracellular chloride levels and GABAAR driving force are unlikely to contribute to the effect, as shown by single channel recordings and chloride imaging. The effect of IFN-γ on mIPSC amplitudes was similar in female and male rats, suggesting a gender-independent mechanism of action. Collectively, these results indicate a novel mechanism for the regulation of inhibition by IFN-γ, which could impact on neocortical function and therewith behavior.
Collapse
Affiliation(s)
- Gabriel M S Janach
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Maximilian Böhm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Noah Döhne
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ha-Rang Kim
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France
| | - Marta Rosário
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
10
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
11
|
Rocha-Gomes A, Teixeira AE, de Oliveira DG, Santiago CMO, da Silva AA, Riul TR, Lacerda ACR, Mendonça VA, Rocha-Vieira E, Leite HR. LPS tolerance prevents anxiety-like behavior and amygdala inflammation of high-fat-fed dams' adolescent offspring. Behav Brain Res 2021; 411:113371. [PMID: 34019914 DOI: 10.1016/j.bbr.2021.113371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023]
Abstract
Maternal high-fat diets (HFD) can generate inflammation in the offspring's amygdala, which can lead to anxiety-like behaviors. Conversely, lipopolysaccharide (LPS) tolerance can reduce neuroinflammation in the offspring caused by maternal high-fat diets. This study evaluated the combination of LPS tolerance and high-fat maternal diet on amygdala's inflammatory parameters and the anxiety-like behavior in adolescent offspring. Female pregnant Wistar rats received randomly a standard diet or a high-fat diet during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitonially injected with LPS (0.1 mg.kg-1). After weaning, the male offspring (n = 96) were placed in individual boxes in standard conditions, and when 6 weeks-old, the animals underwent: Open-Field, Light/Dark Box, Elevated Plus-Maze, and Rotarod tests. When 50 days-old the offspring were euthanized and the amygdala removed for cytokine and redox status analysis. The offspring in the HFD group showed lower amygdala IL-10 levels, high IL-6/IL-10 ratio, and anxiety-like behaviors. These effects were attenuated in the HFD offspring submitted to LPS tolerance, which showed an anti-inflammatory compensatory response in the amygdala. Also, this group showed a higher activity of the enzyme catalase in the amygdala. In addition, receiving the combination of LPS tolerance and maternal HFD did not lead to anxiety-like behavior in the offspring. The results suggest that LPS tolerance attenuated amygdala inflammation through an anti-inflammatory compensatory response besides preventing anxiety-like behavior caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Faculdade de Medicina do Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais, Diamantina, MG, Brazil.
| |
Collapse
|
12
|
Post-inflammatory behavioural despair in male mice is associated with reduced cortical glutamate-glutamine ratios, and circulating lipid and energy metabolites. Sci Rep 2020; 10:16857. [PMID: 33033375 PMCID: PMC7545201 DOI: 10.1038/s41598-020-74008-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Post-inflammatory behaviours in rodents are widely used to model human depression and to test the efficacy of novel anti-depressants. Mice injected with lipopolysaccharide (LPS) display a depressive-like phenotype twenty-four hours after endotoxin administration. Despite the widespread use of this model, the mechanisms that underlie the persistent behavioural changes after the transient peripheral inflammatory response remain elusive. The study of the metabolome, the collection of all the small molecule metabolites in a sample, combined with multivariate statistical techniques provides a way of studying biochemical pathways influenced by an LPS challenge. Adult male CD-1 mice received an intraperitoneal injection of either LPS (0.83 mg/kg) or saline, and were assessed for depressive-like behaviour 24 h later. In a separate mouse cohort, pro-inflammatory cytokine gene expression and 1H nuclear magnetic resonance (NMR) metabolomics measurements were made in brain tissue and blood. Statistical analyses included Independent Sample t-tests for gene expression data, and supervised multi-variate analysis using orthogonal partial least squares discriminant analysis for metabolomics. Both plasma and brain metabolites in male mice were altered following a single peripheral LPS challenge that led to depressive-like behaviour in the forced swim test. The plasma metabolites altered by LPS are involved in energy metabolism, including lipoproteins, glucose, creatine, and isoleucine. In the brain, glutamate, serine, and N-acetylaspartate (NAA) were reduced after LPS, whereas glutamine was increased. Serine-modulated glutamatergic signalling and changes in bioenergetics may mediate the behavioural phenotype induced by LPS. In light of other data supporting a central imbalance of glutamate-glutamine cycling in depression, our results suggest that aberrant central glutaminergic signalling may underpin the depressive-like behaviours that result from both inflammation and non-immune pathophysiology. Normalising glutaminergic signalling, rather than seeking to increase serotonergic signalling, might prove to be a more coherent approach to the development of new treatments for mood disorder.
Collapse
|
13
|
Fritz M, Klawonn AM, Zhao Q, Sullivan EV, Zahr NM, Pfefferbaum A. Structural and biochemical imaging reveals systemic LPS-induced changes in the rat brain. J Neuroimmunol 2020; 348:577367. [PMID: 32866714 DOI: 10.1016/j.jneuroim.2020.577367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Despite mounting evidence for the role of inflammation in Major Depressive Disorder (MDD), in vivo preclinical investigations of inflammation-induced negative affect using whole brain imaging modalities are scarce, precluding a valid model within which to evaluate pharmacological interventions. Here we used an E. coli lipopolysaccharide (LPS)-based model of inflammation-induced depressive signs in rats to explore brain changes using multimodal neuroimaging methods. During the acute phase of the LPS response (2 h post injection), prior to the emergence of a task-quantifiable depressive phenotype, striatal glutamine levels and splenial, retrosplenial, and peri-callosal hippocampal cortex volumes were greater than at baseline. LPS-induced depressive behaviors observed at 24 h, however, occurred concurrently with lower than control levels of striatal glutamine and a reversibility of volume expansion (i.e., shrinkage of splenial, retrosplenial, and peri-callosal hippocampal cortex to baseline volumes). In both striatum and hippocampus at 24 h, mRNA expression in LPS relative to control animals demonstrated alterations in enzymes and transporters regulating glutamine homeostasis. Collectively, the observed behavioral, in vivo structural and metabolic, and mRNA expression alterations suggest a critical role for astrocytic regulation of inflammation-induced depressive behaviors.
Collapse
Affiliation(s)
- Michael Fritz
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Anna M Klawonn
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| | - Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America.
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| |
Collapse
|