1
|
Chang Z, Zhu Y, Wang P, Du L, Wu M, Wang X, Kong C, Huang D, Xie R, Ji G, Wang C, Cheng L, Yan X, Wei Q, Qin H. Multi-omic analyses of the development of obesity-related depression linked to the gut microbe Anaerotruncus colihominis and its metabolite glutamate. Sci Bull (Beijing) 2025:S2095-9273(25)00359-7. [PMID: 40274437 DOI: 10.1016/j.scib.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/06/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Emerging evidence implicates gut microbiota in the pathogenesis of obesity-related depression (OD); however, the underlying molecular mechanisms remain inadequately explored. This study compared the microbial and transcriptional profiles between patients with OD and healthy individuals. The results revealed an enrichment of Anaerotruncus colihominis (A. colihominis) and glutamate metabolism-related genes in the OD group. Fecal microbiota transplantation (FMT) from patients with OD induced weight gain, compromised barrier function, and intensified depression-like behaviors in high-fat diet (HFD) mice. Microbial analysis in the mice feces corroborated the clinical findings. Single-cell RNA sequencing highlighted the pivotal role of the Efnb2-Ephb2 interaction in cell communication among colon epithelial and hippocampal neuron subtypes in OD mice. Notably, A. colihominis correlated with glutamate levels in the OD mice and patients. It produced glutamate through a glutamic acid metabolism-related DNA sequence, verified in an engineered Escherichia coli MG1655 strain. Both A. colihominis and glutamate reduced barrier proteins in colon epithelial cells and modulated cognitive proteins in neurons. Finally, A. colihominis treatment induced the Efnb2-Ephb2 interaction, exacerbating depression-like behaviors in germ-free HFD mice. Collectively, these findings reveal that A. colihominis and glutamate are potential intervention targets for OD treatment.
Collapse
Affiliation(s)
- Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yefei Zhu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Ping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Lei Du
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Minkang Wu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xingchun Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Cheng Kong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dengfeng Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China.
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Yangzhou University, Suining 221200, China.
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| |
Collapse
|
2
|
Zhang Y, Hu T, Wang X, Sun N, Cai Q, Kim HY, Fan Y, Liu D, Guan X. Profiles of gut microbiota and metabolites for high risk of transgenerational depression-like behavior by paternal methamphetamine exposure. FASEB J 2025; 39:e70386. [PMID: 39927989 DOI: 10.1096/fj.202402839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Parental substance abuse increases the risk of neurological and psychiatric disorders in offsprings. However, its underlying mechanism remains elusive. Our previous study demonstrated that long-term exposure to methamphetamine (Meth), a psychostimulant drug with high addiction potential, remarkably alters the gut microbiome and metabolites in male mice, which contribute to Meth-induced anxiety-like behaviors. The current study aimed to investigate whether gut microbiota and metabolism serve as potential peripheral targets for transgenerational mental problems by paternal Meth exposure. We found that paternal Meth exposure induced depression-like behaviors both in the first (F1) and the second (F2) generations of male mice. Further, the depletion of gut bacteria through antibiotic treatments normalized the depression-like behaviors to normal levels in both F1 and F2 male mice. Then, alterations in gut bacterial composition were observed in both F1 and F2 male mice. Specifically, Eubacterium_ruminantium_group, Enterorhabdus, Alloprevotella, and Parabacteroides were the commonly affected bacterial taxa in F1 and F2 male mice. In addition, the results of alterations in gut metabolism showed that LPC 14:1-SN1 emerged as the consistently altered metabolite in the colons of F1 and F2 male mice. Taken together, our findings provide the first evidence that paternal Meth exposure enhances depression-like behaviors in F1 and F2 male mice, potentially mediated by the gut microbiome and metabolism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nongyuan Sun
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Wei H, Zhan L, Lv X, Lin Y, Zheng J, Yang W, Liu J, Sun J, Chen S. Gut commensal Parabacteroides distasonis exerts neuroprotective effects in acute ischemic stroke with hyperuricemia via regulating gut microbiota-gut-brain axis. J Transl Med 2024; 22:999. [PMID: 39501312 PMCID: PMC11539330 DOI: 10.1186/s12967-024-05800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hyperuricemia is considered as an independent risk factor for acute ischemic stroke (AIS), and some AIS patients are accompanied by an increase in serum uric acid. Recent studies have highlighted the important role of gut microbiota in both hyperuricemia and AIS, but there is little available data on the relationship between gut microbiota and the pathogenesis of AIS with hyperuricemia (HAS). METHODS Here we profiled the gut microbiota composition in 63 HAS patients and 269 non-HAS patients through 16s rRNA sequencing. Male rat with hyperuricemia were subjected to middle cerebral artery occlusion (MCAO) to establish HAS model and were then treated with Parabacteroides distasonis. Subsequently, the neurological deficit, pathological damages and blood-brain barrier disruption were evaluated. Moreover, the levels of ROS, inflammatory cytokines, NF-𝜿B pathway related protein, and vascular density markers were determined. RESULTS There were significant differences of gut microbiota composition between HAS patients and non-HAS patients, and a significant decrease in the abundance of Parabacteroides in HAS patients compared to non-HAS patients. Animal experiments showed that supplementation with P. distasonis increased beneficial commensal bacteria, significantly improved neurological deficits, pathological damages and BBB disruption, as well as reduced the level of serum uric acid in HAS rats. We further demonstrated that P. distasonis treatment decreased ROS level and increased SOD2 level, thereby reducing oxidative stress. Meanwhile, P. distasonis effectively inhibited NF-𝜿B signal pathway and reduced the production of inflammatory cytokines, including TNF-α and IL-1β, alleviating the inflammatory response. Notably, P. distasonis treatment increased the levels of vascular density markers including cluster of differentiation 31 (CD31) and alpha-smooth muscle actin (α-SMA), ameliorating vascular damage in HAS rats. CONCLUSIONS Together, these findings highlighted the important role of P. distasonis in the pathogenesis of HAS, and its mechanism was involved in the regulation of gut microbiota-gut-brain axis, which implied a novel strategy against HAS.
Collapse
Affiliation(s)
- Hongming Wei
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lu Zhan
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinhuang Lv
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yan Lin
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Zheng
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenwen Yang
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Songfang Chen
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
5
|
Bodnar TS, Ainsworth-Cruickshank G, Billy V, Wegener Parfrey L, Weinberg J, Raineki C. Alcohol consumption during pregnancy differentially affects the fecal microbiota of dams and offspring. Sci Rep 2024; 14:16121. [PMID: 38997303 PMCID: PMC11245617 DOI: 10.1038/s41598-024-64313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
Microbiota imbalances are linked to inflammation and disease, as well as neurodevelopmental conditions where they may contribute to behavioral, physiological, and central nervous system dysfunction. By contrast, the role of the microbiota in Fetal Alcohol Spectrum Disorder (FASD), the group of neurodevelopmental conditions that can occur following prenatal alcohol exposure (PAE), has not received similar attention. Here we utilized a rodent model of alcohol consumption during pregnancy to characterize the impact of alcohol on the microbiota of dam-offspring dyads. Overall, bacterial diversity decreased in alcohol-consuming dams and community composition differed from that of controls in alcohol-consuming dams and their offspring. Bacterial taxa and predicted biochemical pathway composition were also altered with alcohol consumption/exposure; however, there was minimal overlap between the changes in dams and offspring. These findings illuminate the potential importance of the microbiota in the pathophysiology of FASD and support investigation into novel microbiota-based interventions.
Collapse
Affiliation(s)
- Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | | | - Vincent Billy
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Laura Wegener Parfrey
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
6
|
Chen YZ, Huang ZY, Zhou WW, Li ZY, Li XP, Chen SS, Ma JK. Uncovering the characteristics of the gut microbiota in patients with ischemic stroke and hemorrhagic stroke. Sci Rep 2024; 14:11776. [PMID: 38782999 PMCID: PMC11116394 DOI: 10.1038/s41598-024-62606-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to explore the gut microbiota characteristics of ischemic and hemorrhagic stroke patients. A case-control study was conducted, and high-throughput sequencing of the V4-V5 region of 16S rRNA was used to analyze the differences in gut microbiota. The results showed that Proteobacteria was significantly increased in the ischemic stroke group compared with the healthy control group, while Fusobacteria was significantly increased in the hemorrhagic stroke group. In the ischemic stroke group, Butyricimonas, Alloprevotella, and Escherichia were significantly more abundant than in the healthy control group. In the hemorrhagic stroke group, Atopobium, Hungatella, Eisenbergiella, Butyricimonas, Odonbacter, Lachnociostridium, Alistipes, Parabacteroides, and Fusobacterium were significantly more abundant than in the healthy control group. Additionally, Alloprevotella, Ruminococcus, and Prevotella were significantly more abundant in the ischemic stroke group than in the hemorrhagic stroke group. The gut microbiota of ischemic and hemorrhagic stroke patients has significant diversity characteristics. These results provide new theoretical basis for exploring the prevention and treatment of different types of stroke through gut microbiota research.
Collapse
Affiliation(s)
- Yu-Zhu Chen
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, Guangxi, China
| | - Zhao-Yong Huang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, Guangxi, China
| | - Wei-Wen Zhou
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, Guangxi, China
| | - Zhong-You Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Peng Li
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, Guangxi, China
| | - Shi-Shi Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| |
Collapse
|
7
|
Ma X, Wen G, Zhao Z, Lu L, Li T, Gao N, Han G. Alternations in the human skin, gut and vaginal microbiomes in perimenopausal or postmenopausal Vulvar lichen sclerosus. Sci Rep 2024; 14:8429. [PMID: 38600101 PMCID: PMC11006835 DOI: 10.1038/s41598-024-58983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Vulvar lichen sclerosus (VLS) is a chronic and progressive dermatologic condition that can cause physical dysfunction, disfigurement, and impaired quality of life. However, the etiology of VLS remains unknown. The vulvar skin, intestinal and vaginal microbiomes have been postulated to play important roles in the pathogenesis of this disease. The aim of this study was to compare the compositional characteristics of the vulvar skin, vagina, and gut microbiota between perimenopausal or postmenopausal VLS patients and healthy controls. The study involved six perimenopausal or postmenopausal VLS patients which were based on characteristic clinical manifestations and histologic confirmation and five healthy controls. The pruritus severity of each patient was evaluated using the NRS scale, and the dermatology-specific health-related quality of life was assessed using the Skindex-16. Metagenomic sequencing was performed, and the results were analyzed for alpha and beta diversity. LEfSe analysis were used to investigate the microbial alterations in vulvar skin, gut and vagina. KEGG databases were used to analyze differences in functional abundance. The study found significant differences in alpha diversity between the two groups in stool and vaginal samples (P < 0.05). Patients with VLS had a higher abundance of Enterobacter cloacae, Flavobacterium_branchiophilum, Mediterranea_sp._An20, Parabacteroides_johnsoniiand Streptococcus_bovimastitidis on the vulvar skin, while Corynebacterium_sp._zg-913 was less abundant compared to the control group. The relative abundance of Sphingomonas_sp._SCN_67_18, Sphingobium_sp._Ant17, and Pontibacter_sp_BT213 was significantly higher in the gut samples of patients with VLS.Paenibacillus_popilliae,Gemella_asaccharolytica, and Coriobacteriales_bacterium_DNF00809 compared to the control group. Additionally, the vaginal samples of patients with VLS exhibited a significantly lower relative abundance of Bacteroidales_bacterium_43_8, Bacteroides_sp._CAG:20, Blautia_sp._AM28-10, Fibrobacter_sp._UWB16, Lachnospiraceae_bacterium_AM25-39, Holdemania_filiformis, Lachnospiraceae_bacterium_GAM79, and Tolumonas_sp. Additionally, the butyrate-producing bacterium SS3/4 showed a significant difference compared to the controls. The study found a negative relationship between Sphingobium_sp._Ant17 in stool and Skindex-16 (P < 0.05), while Mediterranea_sp._An20 had a positive correlation with Skindex-16 (P < 0.05) in the skin. Additionally, our functional analysis revealed alterations in Aminoacyl_tRNA_biosynthesis, Glutathione_metabolism, the pentose phosphate pathway, and Alanine__aspartate_and_glutamate_metabolism in the VLS patient group. The study suggests that perimenopausal or postmenopausal patients with VLS have a modified microbiome in the vulvar skin, gut, and vagina. This modification is linked to abnormal energy metabolism, increased oxidative stress, and abnormal amino acid metabolism.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China.
| | - Guangdong Wen
- Department of Dermatology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Zheng Zhao
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Lulu Lu
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Tianying Li
- Department of Pathology, Peking University International Hospital, Beijing, People's Republic of China
| | - Na Gao
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Gangwen Han
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| |
Collapse
|
8
|
Tian X, Wang G, Teng F, Xue X, Pan J, Mao Q, Guo D, Song X, Ma K. Zhi Zi Chi decoction (Gardeniae fructus and semen Sojae Praeparatum) attenuates anxious depression via modulating microbiota-gut-brain axis in corticosterone combined with chronic restraint stress-induced mice. CNS Neurosci Ther 2024; 30:e14519. [PMID: 37905694 PMCID: PMC11017446 DOI: 10.1111/cns.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays a critical role in neuropsychiatric disorders, particularly anxious depression, and attracts more attention gradually. Zhi Zi Chi decoction (ZZCD) consisting of Gardenia jasminoides J. Ellis and Glycine max (L.) Merr, is a classic formula in clinic and widely applied in anxiety and depression treatment. However, the underlying mechanisms of regulating microbiota-gut-brain axis in the treatment of anxious depression by oral administration of ZZCD remain elusive. MATERIALS AND METHODS In this project, we clarified the origin and preparation methods of the Gardenia jasminoides J. Ellis and Glycine max (L.) Merr and examined the chemical ingredients of ZZCD by liquid chromatograph mass spectrometer. Then, corticosterone combined with chronic restraint stress was applied to establish an anxious depression model. After treated with ZZCD standard decoction, based on enzyme-linked immunosorbent assay (ELISA), 16S rRNA technology, high-throughput sequencing, quantitative RT-PCR and fecal microbiota transplantation (FMT), the multiple associations between nucleus accumbens and intestinal flora in anxious depression mice were determined to clarify the mechanism of ZZCD in the treatment of anxiety and depression disorder. RESULTS We found various substances with antidepressant and antianxiety properties in ZZCD such as rosiridin and oleanolic acid. ZZCD could alleviate depressive and anxiety behaviors in anxious depression mice via regulating the disturbance of gut microbiota. Meanwhile, the bioactive compounds of ZZCD might directly active on neurodevelopment and neuroimmune-related genes. Furthermore, the secretion of prolactin and estrogen, and interfering with mitogen-activated protein kinase (MAPK) and tumor necrosis factor (TNF) signaling pathways were mainly involved in the multi-target therapeutic effects of ZZCD against anxiety and depression. CONCLUSIONS These findings suggested that ZZCD exerts antidepressant effects pleiotropically through modulating the microbiota-gut-brain.
Collapse
Affiliation(s)
- Xuanhe Tian
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Guangyan Wang
- Department of Pharmacy, Women and Children's HospitalQingdao UniversityQingdaoChina
| | - Fei Teng
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Xiaoyan Xue
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Jin Pan
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Qiancheng Mao
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Dongjing Guo
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Xiaobin Song
- Shandong University of Traditional Chinese MedicineJinanChina
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese MedicineJinanChina
| | - Ke Ma
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
9
|
Zhang Z, Li Y, Feng H, Li S, Qin Z, Li J, Chen Y, Zhang Y, Zhao Y, Yin X, Huang B, Gao Y, Shi Y, Shi H. Effects of postweaning cadmium exposure on socioemotional behaviors in adolescent male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116089. [PMID: 38354436 DOI: 10.1016/j.ecoenv.2024.116089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Exposure to cadmium (Cd), a toxic heavy metal classified as an environmental endocrine disruptor, can exert significant toxicity in both animals and humans. However, the potential effects of Cd exposure on socioemotional behaviors are still poorly understood, as are the underlying mechanisms. In the present study, employing a series of behavioral tests as well as 16 S rRNA sequencing analysis, we investigated the long-term effects of Cd exposure on socioemotional behaviors and their associated mechanisms in mice based on the brain-gut interaction theory. The results showed that postweaning exposure to Cd reduced the ability to resist depression, decreased social interaction, subtly altered sexual preference, and changed the composition of the gut microbiota in male mice during adolescence. These findings provided direct evidence for the deleterious effects of exposure to Cd in the postweaning period on socioemotional behaviors later in adolescence, and suggested that these effects of Cd exposure may be linked to changes in the gut microbiota.
Collapse
Affiliation(s)
- Zhengxin Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Shijun Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabo Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yifei Chen
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, China.
| |
Collapse
|
10
|
Yang P, Huang S, Luo Z, Zhou S, Zhang C, Zhu Y, Yang J, Li L. Radix Bupleuri aqueous extract attenuates MK801-induced schizophrenia-like symptoms in mice: Participation of intestinal flora. Biomed Pharmacother 2024; 172:116267. [PMID: 38364739 DOI: 10.1016/j.biopha.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Schizophrenia (SCZ) is a psychotic mental disorder characterized by cognitive, behavioral, and social impairments. However, current pharmacological treatment regimens are subpar in terms of effectiveness. This study aimed to investigate the function of Radix Bupleuri aqueous extract in SCZ in mouse models. The SCZ mouse model was established by MK-801 injection and feeding of Radix Bupleuri aqueous extract or combined antibiotics. Radix Bupleuri aqueous extract significantly improved the aberrant behaviors and neuronal damage in SCZ mice, upregulated SYP and PSD-95 expression and BDNF levels in hippocampal homogenates, down-regulated DA and 5-HT levels, and suppressed microglial activation in SCZ mice. Moreover, Radix Bupleuri aqueous extract improved the integrity of the intestinal tract barrier. The 16 S rRNA sequencing of feces showed that Radix Bupleuri extract modulated the composition of gut flora. Lactobacillus abundance was decreased in SCZ mice and reversed by Radix Bupleuri aqueous extract administration which exhibited a significant negative correlation with IL-6, IL-1β, DA, and 5-HT, and a significant positive correlation with BDNF levels in hippocampal tissues. The abundance of Parabacteroides and Alloprevotella was increased in SCZ mice. It was reversed by Radix Bupleuri aqueous extract administration, which exhibited a positive correlation with IL-6, IL-1β, and 5-HT and a negative correlation with BDNF. In conclusion, Radix Bupleuri aqueous extract attenuates the inflammatory response in hippocampal tissues and modulates neurotransmitter levels, exerting its neuroprotective effect in SCZ. Meanwhile, the alteration of intestinal flora may be involved in this process, which is expected to be an underlying therapeutic option in treating SCZ.
Collapse
Affiliation(s)
- Ping Yang
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Sheng Huang
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Jiuzhitang Co., Ltd., Changsha, Hunan 410208, PR China
| | - Zhihong Luo
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Shaoming Zhou
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Changjuan Zhang
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Yong Zhu
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jingjing Yang
- Community Health Service Center of Dongtang Street, Yuhua District, Changsha, Hunan 410004, China
| | - Liang Li
- School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
11
|
Cheng L, Wu H, Cai X, Zhang Y, Yu S, Hou Y, Yin Z, Yan Q, Wang Q, Sun T, Wang G, Yuan Y, Zhang X, Hao H, Zheng X. A Gpr35-tuned gut microbe-brain metabolic axis regulates depressive-like behavior. Cell Host Microbe 2024; 32:227-243.e6. [PMID: 38198925 DOI: 10.1016/j.chom.2023.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/29/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Gene-environment interactions shape behavior and susceptibility to depression. However, little is known about the signaling pathways integrating genetic and environmental inputs to impact neurobehavioral outcomes. We report that gut G-protein-coupled receptor, Gpr35, engages a microbe-to-brain metabolic pathway to modulate neuronal plasticity and depressive behavior in mice. Psychological stress decreases intestinal epithelial Gpr35, genetic deletion of which induces depressive-like behavior in a microbiome-dependent manner. Gpr35-/- mice and individuals with depression have increased Parabacteroides distasonis, and its colonization to wild-type mice induces depression. Gpr35-/- and Parabacteroides distasonis-colonized mice show reduced indole-3-carboxaldehyde (IAld) and increased indole-3-lactate (ILA), which are produced from opposing branches along the bacterial catabolic pathway of tryptophan. IAld and ILA counteractively modulate neuroplasticity in the nucleus accumbens, a brain region linked to depression. IAld supplementation produces anti-depressant effects in mice with stress or gut epithelial Gpr35 deficiency. Together, these findings elucidate a gut microbe-brain signaling mechanism that underlies susceptibility to depression.
Collapse
Affiliation(s)
- Lingsha Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haoqian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Siqi Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhe Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingyuan Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiong Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Taipeng Sun
- Department of Psychosomatics and Psychiatry, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China.
| | - Xueli Zhang
- Department of Pharmacy, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Gao S, Zhao X, Leng Y, Xia Z. Dietary supplementation with inulin improves burn-induced skeletal muscle atrophy by regulating gut microbiota disorders. Sci Rep 2024; 14:2328. [PMID: 38282163 PMCID: PMC10822858 DOI: 10.1038/s41598-024-52066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
Inulin, as a prebiotic, could modulate the gut microbiota. Burn injury leads to gut microbiota disorders and skeletal muscle catabolism. Therefore, whether inulin can improve burn-induced muscle atrophy by regulating microbiota disorders remains unknown. This study aimed to clarify that inulin intake alleviates gut microbiota disorders and skeletal muscle atrophy in burned rats. Rats were divided into the sham group, burn group, prebiotic inulin intervention group, and pseudo-aseptic validation group. A 30% total body surface area (TBSA) third-degree burn wound on dorsal skin was evaluated in all groups except the sham group. Animals in the intervention group received 7 g/L inulin. Animals in the validation group received antibiotic cocktail and inulin treatment. In our study inulin intervention could significantly alleviate the burn-induced skeletal muscle mass decrease and skeletal myoblast cell apoptosis. Inulin intake increased the abundances of Firmicutes and Actinobacteria but decreased the abundance of Proteobacteria. The biosynthesis of amino acids was the most meaningful metabolic pathway distinguishing the inulin intervention group from the burn group, and further mechanistic studies have shown that inulin can promote the phosphorylation of the myogenesis-related proteins PI3K, AKT and P70S6K and activate PI3K/AKT signaling for protein synthesis. In conclusion, inulin alleviated burn induced muscle atrophy through PI3K/AKT signaling and regulated gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Shan Gao
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuai Zhao
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Leng
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Hu J, Li P, Zhao H, Ji P, Yang Y, Ma J, Zhao X. Alterations of gut microbiota and its correlation with the liver metabolome in the process of ameliorating Parkinson's disease with Buyang Huanwu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116893. [PMID: 37423520 DOI: 10.1016/j.jep.2023.116893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu decoction (BHD), a famous traditional Chinese medicine (TCM) formula, was first recorded in Qing Dynasty physician Qingren Wang's Yi Lin Gai Cuo. BHD has been widely utilized in the treatment of patients with neurological disorders, including Parkinson's disease (PD). However, the underlying mechanism has not been fully elucidated. In particular, little is known about the role of gut microbiota. AIM OF THE STUDY We aimed to reveal the alterations and functions of gut microbiota and its correlation with the liver metabolome in the process of improving PD with BHD. MATERIALS AND METHODS The cecal contents were collected from PD mice treated with or without BHD. 16S rRNA gene sequencing was performed on an Illumina MiSeq-PE250 platform, and the ecological structure, dominant taxa, co-occurrence patterns, and function prediction of the gut microbial community were analyzed by multivariate statistical methods. The correlation between differential microbial communities in the gut and differentially accumulated metabolites in the liver was analyzed using Spearman's correlation analysis. RESULTS The abundance of Butyricimonas, Christensenellaceae, Coprococcus, Peptococcaceae, Odoribacteraceae, and Roseburia was altered significantly in the model group, which was by BHD. Ten genera, namely Dorea, unclassified_Lachnospiraceae, Oscillospira, unidentified_Ruminococcaceae, unclassified_Clostridiales, unidentified_Clostridiales, Bacteroides, unclassified_Prevotellaceae, unidentified_Rikenellaceae, and unidentified_S24-7, were identified as key bacterial communities. According to the function prediction of differential genera, the mRNA surveillance pathway might be a target of BHD. Integrated analysis of gut microbiota and the liver metabolome revealed that several gut microbiota genera such as Parabacteroides, Ochrobactrum, Acinetobacter, Clostridium, and Halomonas, were positively or negatively correlated with some nervous system-related metabolites, such as L-carnitine, L-pyroglutamic acid, oleic acid, and taurine. CONCLUSIONS Gut microbiota might be a target of BHD in the process of ameliorating PD. Our findings provide novel insight into the mechanisms underlying the effects of BHD on PD and contribute to the development of TCM.
Collapse
Affiliation(s)
- Jianran Hu
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Ping Li
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China.
| | - Hongmei Zhao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Pengyu Ji
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Yanjun Yang
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Jianhua Ma
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Xin Zhao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
14
|
Bian LH, Wang SQ, Li WJ, Li J, Yin Y, Ye FF, Guo JY. Cryptotanshinone regulates gut microbiota and PI3K-AKT pathway in rats to alleviate CUMS induced depressive symptoms. Biomed Pharmacother 2023; 169:115921. [PMID: 38011787 DOI: 10.1016/j.biopha.2023.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Cryptotanshinone (CPT), a bioactive compound derived from the traditional Chinese herb Salvia miltiorrhiza, exhibits promising antidepressant properties. Employing a rat model subjected to Chronic Unpredictable Mild Stress (CUMS), behavioral analyses (open field experiment, elevated cross maze experiment, sugar water preference experiment, forced swimming experiment) and inflammatory factor assessments were conducted to assess the efficacy of CPT in alleviating depressive symptoms and inflammatory responses induced by CUMS. Moreover, 16 S rDNA analysis revealed alterations in the gut microbiota of rats exposed to both CUMS and CPT administration. Notably, CPT administration was found to mitigate harmful bacterial shifts associated with depression. Preliminary exploration of the molecular mechanism underlying CPT's antidepressant effects via transcriptomics analysis and molecular docking indicated that CPT might exert its influence by regulating the PI3K-AKT pathway. This study sheds light on the potential therapeutic role of CPT in managing depressive disorders, offering a comprehensive understanding of its impact on behavior, inflammation, gut microbiota, and molecular pathways.
Collapse
Affiliation(s)
- Li-Hua Bian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Qi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 4A DatunRoad, Chaoyang District, Beijing 100101, China
| | - Wen-Jing Li
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 4A DatunRoad, Chaoyang District, Beijing 100101, China
| | - Jie Li
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 4A DatunRoad, Chaoyang District, Beijing 100101, China
| | - Yi Yin
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 4A DatunRoad, Chaoyang District, Beijing 100101, China
| | - Fang-Fu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-You Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 4A DatunRoad, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
15
|
Huang K, Duan J, Wang R, Ying H, Feng Q, Zhu B, Yang C, Yang L. Landscape of gut microbiota and metabolites and their interaction in comorbid heart failure and depressive symptoms: a random forest analysis study. mSystems 2023; 8:e0051523. [PMID: 37882579 PMCID: PMC10734515 DOI: 10.1128/msystems.00515-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE There is increasing evidence that alterations in gut microbial composition and function are associated with cardiovascular or psychiatric disease. Therefore, it is meaningful to investigate the taxonomic and functional characterization of the microbiota in HF patients who also have depressive symptoms. In this cross-sectional study, Cloacibacillus and alpha-tocopherol were determined as new diagnostic markers. Furthermore, intestinal microecosystem disorders are closely linked to depressive symptoms in HF patients, providing a new reference viewpoint for understanding the gut-heart/brain axis.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hangfeng Ying
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qinwen Feng
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
16
|
Zheng C, Zhong Y, Xie J, Wang Z, Zhang W, Pi Y, Zhang W, Liu L, Luo J, Xu W. Bacteroides acidifaciens and its derived extracellular vesicles improve DSS-induced colitis. Front Microbiol 2023; 14:1304232. [PMID: 38098663 PMCID: PMC10720640 DOI: 10.3389/fmicb.2023.1304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction "Probiotic therapy" to regulate gut microbiota and intervene in intestinal diseases such as inflammatory bowel disease (IBD) has become a research hotspot. Bacteroides acidifaciens, as a new generation of probiotics, has shown beneficial effects on various diseases. Methods In this study, we utilized a mouse colitis model induced by dextran sodium sulfate (DSS) to investigate how B. acidifaciens positively affects IBD. We evaluated the effects ofB. acidifaciens, fecal microbiota transplantation, and bacterial extracellular vesicles (EVs) on DSS-induced colitis in mice. We monitored the phenotype of mouse colitis, detected serum inflammatory factors using ELISA, evaluated intestinal mucosal barrier function using Western blotting and tissue staining, evaluated gut microbiota using 16S rRNA sequencing, and analyzed differences in EVs protein composition derived from B. acidifaciens using proteomics to explore how B. acidifaciens has a positive impact on mouse colitis. Results We confirmed that B. acidifaciens has a protective effect on colitis, including alleviating the colitis phenotype, reducing inflammatory response, and improving intestinal barrier function, accompanied by an increase in the relative abundance of B. acidifaciens and Ruminococcus callidus but a decrease in the relative abundance of B. fragilis. Further fecal bacterial transplantation or fecal filtrate transplantation confirmed the protective effect of eosinophil-regulated gut microbiota and metabolites on DSS-induced colitis. Finally, we validated that EVs derived from B. acidifaciens contain rich functional proteins that can contribute to the relief of colitis. Conclusion Therefore, B. acidifaciens and its derived EVs can alleviate DSS-induced colitis by reducing mucosal damage to colon tissue, reducing inflammatory response, promoting mucosal barrier repair, restoring gut microbiota diversity, and restoring gut microbiota balance in mice. The results of this study provide a theoretical basis for the preclinical application of the new generation of probiotics.
Collapse
Affiliation(s)
- Cihua Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiming Pi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Xu Z, Man SS, Gong BY, Li ZD, Zhou HF, Peng YF, Zhao SW, Hou YL, Wang L, Bian YH. Bazi Bushen maintains intestinal homeostasis through inhibiting TLR4/NFκB signaling pathway and regulating gut microbiota in SAMP6 mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7273-7283. [PMID: 37450639 DOI: 10.1002/jsfa.12812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Bazi Bushen is a Chinese patented medicine with multiple health benefits and geroprotective effects, yet, no research has explored its effects on intestinal homeostasis. In this study, we aimed to investigate the effect of Bazi Bushen on intestinal inflammation and the potential mechanism of gut microbiota dysbiosis and intestinal homeostasis in senescence-accelerated mouse prone 6 (SAMP6). The hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to assess the function of the intestinal mucosal barrier. The enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to determine the level of intestinal inflammation. The aging-related β-galactosidase (SA-β-gal) staining and Western blotting were used to measure the extent of intestinal aging. The 16S ribosomal RNA (16S rRNA) was performed to analyze the change in gut microbiota composition and distribution. RESULTS Bazi Bushen exerted remarkable protective effects in SAMP6, showing a regulated mucosal barrier and increased barrier integrity. It also suppressed intestinal inflammation through down-regulating pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and inhibiting TLR4/NFκB signaling pathway (MYD88, p-p65, and TLR4). Bazi Bushen improved intestinal aging by reducing the area of SA-β-gal-positive cells and the expression of senescence markers p16, p21, and p53. In addition, Bazi Bushen effectively rebuilt the gut microbiota ecosystem by decreasing the abundance of Bacteroides and Klebsiella, whiles increasing the ratio of Lactobacillus/Bacteroides and the abundance of Akkermansia. CONCLUSION Our study shows that Bazi Bushen could serve as a potential therapy for maintaining intestinal homeostasis. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan-Shan Man
- Pharmaceutical Department, Tianjin Second People's Hospital, Tianjin, China
| | - Bo-Yang Gong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao-Dong Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui-Fang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Fei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shu-Wu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Long Hou
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| | - Li Wang
- Pharmaceutical Department, Tianjin Second People's Hospital, Tianjin, China
| | - Yu-Hong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
19
|
Affiliation(s)
- William Ka Kei Wu
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
20
|
Wu K, Liu YY, Shao S, Song W, Chen XH, Dong YT, Zhang YM. The microglial innate immune receptors TREM-1 and TREM-2 in the anterior cingulate cortex (ACC) drive visceral hypersensitivity and depressive-like behaviors following DSS-induced colitis. Brain Behav Immun 2023:S0889-1591(23)00141-1. [PMID: 37286175 DOI: 10.1016/j.bbi.2023.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition with a high recurrence rate. To date, the clinical treatment of IBD mainly focuses on inflammation and gastrointestinal symptoms while ignoring the accompanying visceral pain, anxiety, depression, and other emotional symptoms. Evidence is accumulating that bi-directional communication between the gut and the brain is indispensable in the pathophysiology of IBD and its comorbidities. Increasing efforts have been focused on elucidating the central immune mechanisms in visceral hypersensitivity and depression following colitis. The triggering receptors expressed on myeloid cells-1/2 (TREM-1/2) are newly identified receptors that can be expressed on microglia. In particular, TREM-1 acts as an immune and inflammatory response amplifier, while TREM-2 may function as a molecule with a putative antagonist role to TREM-1. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we found that peripheral inflammation induced microglial and glutamatergic neuronal activation in the anterior cingulate cortex (ACC). Microglial ablation mitigated visceral hypersensitivity in the inflammation phase rather than in the remission phase, subsequently preventing the emergence of depressive-like behaviors in the remission phase. Moreover, a further mechanistic study revealed that overexpression of TREM-1 and TREM-2 remarkably aggravated DSS-induced neuropathology. The improved outcome was achieved by modifying the balance of TREM-1 and TREM-2 via genetic and pharmacological means. Specifically, a deficiency of TREM-1 attenuated visceral hyperpathia in the inflammatory phase, and a TREM-2 deficiency improved depression-like symptoms in the remission phase. Taken together, our findings provide insights into mechanism-based therapy for inflammatory disorders and establish that microglial innate immune receptors TREM-1 and TREM-2 may represent a therapeutic target for the treatment of pain and psychological comorbidities associated with chronic inflammatory diseases by modulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Wei Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
21
|
Zhu J, Zhu Y, Song G. Effect of Probiotic Yogurt Supplementation( Bifidobacterium animalis ssp. lactis BB-12) on Gut Microbiota of Female Taekwondo Athletes and Its Relationship with Exercise-Related Psychological Fatigue. Microorganisms 2023; 11:1403. [PMID: 37374905 DOI: 10.3390/microorganisms11061403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE The gut microbiota plays a critical role in regulating human health and athletic performance. Probiotic supplementation has been shown to modulate gut microbiota composition and improve exercise performance. This study aimed to investigate the effect of probiotic yogurt supplementation on gut microbiota and its relationship with exercise-related psychological fatigue in female taekwondo athletes. METHODS Twenty female taekwondo athletes were randomly assigned to either a dietary intervention group (DK) or a control group (CK). The athletes' exercise-related psychological fatigue was measured using the Athlete Burnout Questionnaire (ABQ) before and after an 8-week intervention. High-throughput sequencing was used to profile the gut microbiota, and functional prediction of the microbial community was performed. The effect of the dietary intervention on the athletes' exercise-related psychological fatigue clearance rate and its relationship with the gut microbiota were explored. RESULTS (1) The probiotic supplementation of Bifidobacterium animalis ssp. lactis BB-12 for 8 weeks significantly increased the ABQ scores of the DK group compared to the CK group (p < 0.05). (2) The abundances of Bifidobacterium, Bacteroides, Lachnospiraceae, family _Lactobacillaceae, and genus _Lactobacillus were significantly higher in the DK group than in the CK group after probiotic supplementation, while Escherichia coli was significantly lower in the DK group than in the CK group. (3) The ABQa scores were positively correlated with Proteus; ABQb scores were positively correlated with Streptococcus and Enterococcus; and ABQc scores were positively correlated with Klebsiella, Bacteroides, and Streptomyces. (4) The DK group had significantly higher levels of L-arginine biosynthesis I (via L-ornithine), fatty acid biosynthesis and oxidation, and L-isoleucine biosynthesis III pathways compared to the CK group. Tyrosine degradation I (via 2,3-dihydroxyphenylpropionate) was significantly lower in the DK group than in the CK group. CONCLUSIONS Probiotic yogurt supplementation of Bifidobacterium animalis ssp. lactis can promote the clearance of exercise-related psychological fatigue in female taekwondo athletes by upregulating beneficial gut microbiota, inhibiting harmful gut microbiota, and regulating relevant metabolic pathways.
Collapse
Affiliation(s)
- Jiang Zhu
- Southwest University Hospital, Chongqing, 400715, China
| | - Yuping Zhu
- College of Physical Education, Southwest University, Chongqing 200715, China
| | - Gang Song
- College of Physical Education, Southwest University, Chongqing 200715, China
| |
Collapse
|
22
|
Feng S, Meng C, Liu Y, Yi Y, Liang A, Zhang Y, Hao Z. Bacillus licheniformis prevents and reduces anxiety-like and depression-like behaviours. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12580-7. [PMID: 37209162 DOI: 10.1007/s00253-023-12580-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
As common mental disorders, depression and anxiety impact people all around the world. Recent studies have found that the gut microbiome plays an important role in mental health. It is becoming possible to treat mental disorders by regulating the composition of the gut microbiota. Bacillus licheniformis is a probiotic used to treat gut diseases through balancing the gut microbiome during lasting years. Considering the role of gut microbiota in the gut-brain axis, this study used chronic unpredictable mild stress (CUMS) model rats to explore whether Bacillus licheniformis can prevent and treat depression and anxiety. We found that B. licheniformis reduced the depressive-like and anxiety-like behaviours of the rats during the CUMS process. Meanwhile, B. licheniformis changed the gut microbiota composition; increased the short chain fatty acids (SCFAs) in the colon, decreased kynurenine, norepinephrine, and glutamate levels; and increased the tryptophan, dopamine, epinephrine, and γ-aminobutyric acid (GABA) in the brain. After correlation analysis, we found Parabacteroides, Anaerostipes, Ruminococcus-2, and Blautia showed significant correlation with neurotransmitters and SCFAs, indicating the gut microbiome plays an important role in B. licheniformis reducing depressive-like behaviours. Therefore, this study suggested B. licheniformis may prevent depressive-like and anxiety-like behaviours while regulating the gut microbiota composition and increasing the SCFA levels in the colon to alter the levels of the neurotransmitters in the brain. KEY POINTS: • B. licheniformis reduced depressive-like and anxiety-like behaviours induced by the chronic unpredictable mild stress. • GABA levels in the brain are assonated with B. licheniformis regulating depressive-like and anxiety-like behaviours. • Gut microbiota composition alteration followed by metabolic changes may play a role in the GABA levels increase.
Collapse
Affiliation(s)
- Siyuan Feng
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chen Meng
- Beijing Institute of Otolaryngology, Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Yiyuan Liu
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
23
|
Reyes-Martínez S, Segura-Real L, Gómez-García AP, Tesoro-Cruz E, Constantino-Jonapa LA, Amedei A, Aguirre-García MM. Neuroinflammation, Microbiota-Gut-Brain Axis, and Depression: The Vicious Circle. J Integr Neurosci 2023; 22:65. [PMID: 37258450 DOI: 10.31083/j.jin2203065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/02/2023] Open
Abstract
Depression is the leading cause of disability worldwide, contributing to the global disease burden. From above, it is a priority to investigate models that fully explain its physiopathology to develop new treatments. In the last decade, many studies have shown that gut microbiota (GM) dysbiosis influences brain functions and participate, in association with immunity, in the pathogenesis of depression. Thereby, GM modulation could be a novel therapeutic target for depression. This review aims to evidence how the GM and the immune system influence mental illness, particularly depression. Here, we focus on the communication mechanisms between the intestine and the brain and the impact on the development of neuroinflammation contributing to the development of Major Depressive Disorder (MDD). However, most of the current findings are in animal models, suggesting the need for studies in humans. In addition, more analysis of metabolites and cytokines are needed to identify new pathophysiological mechanisms improving anti-depression treatments.
Collapse
Affiliation(s)
- Sandy Reyes-Martínez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| | - Lorena Segura-Real
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| | - Ana Pamela Gómez-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Infectología e Inmunología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Col. La Raza, 02990 Ciudad de México, Mexico
| | - Luis A Constantino-Jonapa
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - María M Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| |
Collapse
|
24
|
Zhao Q, Dai MY, Huang RY, Duan JY, Zhang T, Bao WM, Zhang JY, Gui SQ, Xia SM, Dai CT, Tang YM, Gonzalez FJ, Li F. Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nat Commun 2023; 14:1829. [PMID: 37005411 PMCID: PMC10067939 DOI: 10.1038/s41467-023-37459-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Parabacteroides distasonis (P. distasonis) plays an important role in human health, including diabetes, colorectal cancer and inflammatory bowel disease. Here, we show that P. distasonis is decreased in patients with hepatic fibrosis, and that administration of P. distasonis to male mice improves thioacetamide (TAA)- and methionine and choline-deficient (MCD) diet-induced hepatic fibrosis. Administration of P. distasonis also leads to increased bile salt hydrolase (BSH) activity, inhibition of intestinal farnesoid X receptor (FXR) signaling and decreased taurochenodeoxycholic acid (TCDCA) levels in liver. TCDCA produces toxicity in mouse primary hepatic cells (HSCs) and induces mitochondrial permeability transition (MPT) and Caspase-11 pyroptosis in mice. The decrease of TCDCA by P. distasonis improves activation of HSCs through decreasing MPT-Caspase-11 pyroptosis in hepatocytes. Celastrol, a compound reported to increase P. distasonis abundance in mice, promotes the growth of P. distasonis with concomitant enhancement of bile acid excretion and improvement of hepatic fibrosis in male mice. These data suggest that supplementation of P. distasonis may be a promising means to ameliorate hepatic fibrosis.
Collapse
Affiliation(s)
- Qi Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man-Yun Dai
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruo-Yue Huang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing-Yi Duan
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Zhang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Min Bao
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, 650101, China
| | - Jing-Yi Zhang
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Shao-Qiang Gui
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Shu-Min Xia
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Cong-Ting Dai
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Ying-Mei Tang
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fei Li
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Xu H, Wang S, Jiang Y, Wu J, Chen L, Ding Y, Zhou Y, Deng L, Chen X. Poria cocos Polysaccharide Ameliorated Antibiotic-Associated Diarrhea in Mice via Regulating the Homeostasis of the Gut Microbiota and Intestinal Mucosal Barrier. Int J Mol Sci 2023; 24:1423. [PMID: 36674937 PMCID: PMC9862632 DOI: 10.3390/ijms24021423] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Poria cocos polysaccharides (PCP) have been validated for several biological activities, including antitumor, anti-inflammatory, antioxidant, immunomodulatory, hepatoprotective and modulation on gut microbiota. In this research, we aim to demonstrate the potential prebiotic effects and the therapeutic efficacies of PCP in the treatment of antibiotic-associated diarrhea (AAD), and confirm the beneficial effects of PCP on gut dysbiosis. Antibiotic-associated diarrhea mice models were established by treating them with broad-spectrum antibiotics in drinking water for seven days. Mice in two groups treated with probiotics and polysaccharide were given Bifico capsules (4.2 g/kg/d) and PCP (250 mg/kg/d) for seven days using intragastric gavage, respectively. To observe the regulatory effects of PCP on gut microbiota and intestinal mucosal barrier, we conducted the following experiments: intestinal flora analysis (16S rDNA sequencing), histology (H&E staining) and tight junction proteins (immunofluorescence staining). The levels of mRNA expression of receptors associated with inflammation and gut metabolism were assessed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The study revealed that PCP can comprehensively improve the clinical symptoms of AAD mice, including fecal traits, mental state, hair quality, etc., similar to the effect of probiotics. Based on histology observation, PCP significantly improved the substantial structure of the intestine of AAD mice by increasing the expression levels of colonic tight junction protein zonula-occludens 1 (ZO-1) and its mRNA. Moreover, PCP not only increased the abundance of gut microbiota, but also increased the diversity of gut microbiota in AAD mice, including alpha diversity and beta diversity. Further analysis found that PCP can modulate seven characteristic species of intestinal flora in AAD mice, including Parabacteroides_distasonis, Akkermansia_muciniphila, Clostridium_saccharolyticum, Ruminoc-occus_gnavus, Lactobacillus_salivarius, Salmonella_enterica and Mucispirillum_schaedleri. Finally, enrichment analysis predicted that PCP may affect intestinal mucosal barrier function, host immune response and metabolic function by regulating the microbiota. RT-PCR experiments showed that PCP can participate in immunomodulatory and modulation on metabolic by regulating the mRNA expression of forkhead-box protein 3 (FOXP3) and G protein-coupled receptor 41 (GPR41). These results indicated that Poria cocos polysaccharide may ameliorate antibiotic-associated diarrhea in mice by regulating the homeostasis of the gut microbiota and intestinal mucosal barrier. In addition, polysaccharide-derived changes in intestinal microbiota were involved in the immunomodulatory activities and modulation of the metabolism.
Collapse
Affiliation(s)
- Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| | - Shiqi Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yawen Jiang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jialin Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lili Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yujia Ding
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yingtong Zhou
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| |
Collapse
|
26
|
Kong CY, Yang YQ, Han B, Chen HL, Mao YQ, Huang JT, Wang LS, Li ZM. Fecal microbiome transplant from patients with lactation mastitis promotes mastitis in conventional lactating mice. Front Microbiol 2023; 14:1123444. [PMID: 37125159 PMCID: PMC10140588 DOI: 10.3389/fmicb.2023.1123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Lactation mastitis seriously severely affects the health of lactating females and their infants, yet the underlying causes of clinical lactation mastitis remain unclear. Methods In this study, we used microbiota-humanized mice as a model to investigate the role of gut microbiota in lactation mastitis. We compared the fecal microbiota of lactation mastitis patients and healthy individuals and conducted fecal microbiota transplantation (FMT) experiments in an antibiotic-pretreated mouse model to test whether gut microbes contribute to human lactation mastitis. Results Our results showed that gut microbiota diversity was reduced and dysbiosis was present in lactating mastitis patients. FMT from lactation mastitis patients (M-FMT), but not from healthy individuals (H-FMT), to antibiotic-treated mice resulted in lactation mastitis. The inflammation in mice caused by gut microbiota from lactating mastitis patients appears to be pervasive, as hepatocytes from mice that received feces from lactating mastitis patients showed marked swelling. In addition, serum pro-inflammatory factors, including IL-4, IL-17, MPO, IL-6, IL-1β, and TNF-α, were significantly increased in the M-FMT group. The Firmicutes/Bacteroidetes ratio (F/B), a biomarker of gut dysbiosis, was significantly increased in the M-FMT group. At the phylum level, Actinobacteria were significantly increased, and Verrucomicrobia were significantly decreased in the M-FMT group. At the genus level, Ruminococcus and Faecalibacterium were significantly reduced, while Parabacteroides were significantly increased in the feces of both patients with lactation mastitis and M-FMT mice. Moreover, our study revealed an "amplification effect" on microbiota differences and mastitis disease following human-to-mouse FMT. Conclusion Collectively, our findings demonstrate that the gut microbiota in lactating mastitis patients is dysbiotic and contributes to the pathogenesis of mastitis.
Collapse
Affiliation(s)
- Chao-Yue Kong
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi-Qin Yang
- Traditional Chinese Medicine Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Hui-Ling Chen
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yu-Qin Mao
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jia-Ting Huang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Li-Shun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhan-Ming Li
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhan-Ming Li,
| |
Collapse
|
27
|
Shim JA, Ryu JH, Jo Y, Hong C. The role of gut microbiota in T cell immunity and immune mediated disorders. Int J Biol Sci 2023; 19:1178-1191. [PMID: 36923929 PMCID: PMC10008692 DOI: 10.7150/ijbs.79430] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies revealed that the microbiome play a critical role in both physiological and pathological immune system. The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic inflammations. We also discuss the limitations of current experimental animal models, cutting-edge developments and current challenges to overcome in the field, and the possibility of considering gut microbiome in the development of new drug.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Ha Ryu
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
28
|
Shi S, Zhang Q, Sang Y, Ge S, Wang Q, Wang R, He J. Probiotic Bifidobacterium longum BB68S Improves Cognitive Functions in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2022; 15:51. [PMID: 36615708 PMCID: PMC9824790 DOI: 10.3390/nu15010051] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Probiotics could improve cognitive functions in patients with neurological disorders such as Alzheimer’s disease, but the effects on cognitive function in healthy older adults without cognitive impairment need further study. The purpose of this study was to investigate the effect of Bifidobacterium longum BB68S (BB68S) on cognitive functions among healthy older adults without cognitive impairment. A randomized, double-blind, placebo-controlled trial was conducted with 60 healthy older adults without cognitive impairment who were divided into probiotic or placebo groups and required to consume either a sachet of probiotic (BB68S, 5 × 1010 CFU/sachet) or placebo once daily for 8 weeks. The Montreal Cognitive Assessment (MoCA) was used as an inclusion screening tool to screen elderly participants with healthy cognitive function in our study, and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used to assess cognitive function in subjects before and after intervention as an assessment tool. BB68S significantly improved subjects’ cognitive functions (total RBANS score increased by 18.89 points after intervention, p < 0.0001), especially immediate memory, visuospatial/constructional, attention, and delayed memory domains. BB68S intervention increased the relative abundances of beneficial bacteria Lachnospira, Bifidobacterium, Dorea, and Cellulosilyticum, while decreasing those of bacteria related to cognition impairment, such as Collinsella, Parabacteroides, Tyzzerella, Bilophila, unclassified_c_Negativicutes, Epulopiscium, Porphyromonas, and Granulicatella. In conclusion, BB68S could improve cognitive functions in healthy elderly adults without cognitive impairment, along with having beneficial regulatory effects on their gut microbiota. This study supports probiotics as a strategy to promote healthy aging and advances cognitive aging research.
Collapse
Affiliation(s)
- Shaoqi Shi
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yue Sang
- Hebei Engineering Research Center of Animal Product, Langfang 065200, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Langfang 065200, China
| | - Qi Wang
- Xinjiang Golden Camel Investment Co., Ltd., Wulumuqi 830039, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jingjing He
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
29
|
Liang S, Sin ZY, Yu J, Zhao S, Xi Z, Bruzzone R, Tun HM. Multi-cohort analysis of depression-associated gut bacteria sheds insight on bacterial biomarkers across populations. Cell Mol Life Sci 2022; 80:9. [PMID: 36495344 PMCID: PMC11072413 DOI: 10.1007/s00018-022-04650-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Gut microbes are associated with the development of depression based on extensive evidence. However, previous studies have led to conflicting reports on this association, posing challenges to the application of gut bacteria in the diagnostics and treatment of depression. To minimise heterogenicity in data analysis, the present meta-analysis adopted a standardised bioinformatics and statistical pipeline to analyse 16S rRNA sequences of 1827 samples from eight different cohorts. Although changes in the overall bacterial community were identified by our meta-analysis, depressive-correlated changes in alpha-diversity were absent. Enrichment of Bacteroidetes, Parabacteroides, Barnesiella, Bacteroides, and Bacteroides vulgatus, along with depletion in Firmicutes, Dialister, Oscillospiraceae UCG 003 and UCG 002, and Bacteroides plebeius, were observed in depressive-associated bacteria. By contrast, elevated L-glutamine degradation, and reduced L-glutamate and L-isoleucine biosynthesis were identified in depressive-associated microbiomes. After systemically reviewing the data of these collected cohorts, we have established a bacterial classifier to identify depressive symptoms with AUC 0.834 and 0.685 in the training and external validation dataset, respectively. Moreover, a low-risk bacterial cluster for depressive symptoms was identified, which was represented by a lower abundance of Escherichia-Shigella, and a higher abundance of Faecalibacterium, Oscillospiraceae UCG 002, Ruminococcus, and Christensenellaceae R.7 group.
Collapse
Affiliation(s)
- Suisha Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhen Ye Sin
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Juelei Yu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shilin Zhao
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhang Xi
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Microbiota I-Center (MagIC), Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
30
|
Deng L, Zhou X, Tao G, Hao W, Wang L, Lan Z, Song Y, Wu M, Huang JQ. Ferulic acid and feruloylated oligosaccharides alleviate anxiety and depression symptom via regulating gut microbiome and microbial metabolism. Food Res Int 2022; 162:111887. [DOI: 10.1016/j.foodres.2022.111887] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|
31
|
Deledda A, Palmas V, Heidrich V, Fosci M, Lombardo M, Cambarau G, Lai A, Melis M, Loi E, Loviselli A, Manzin A, Velluzzi F. Dynamics of Gut Microbiota and Clinical Variables after Ketogenic and Mediterranean Diets in Drug-Naïve Patients with Type 2 Diabetes Mellitus and Obesity. Metabolites 2022; 12:1092. [PMID: 36355175 PMCID: PMC9693465 DOI: 10.3390/metabo12111092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is a progressive chronic metabolic disease that has increasingly spread worldwide, enhancing the mortality rate, particularly from cardiovascular diseases (CVD). Lifestyle improvement through diet and physical activity is, together with drug treatment, the cornerstone of T2DM management. The Mediterranean diet (MD), which favors a prevalence of unprocessed vegetable foods and a reduction in red meats and industrial foods, without excluding any food category, is usually recommended. Recently, scientific societies have promoted a very low-calorie ketogenic diet (VLCKD), a multiphasic protocol that limits carbohydrates and then gradually re-introduces them, with a favorable outcome on body weight and metabolic parameters. Indeed, gut microbiota (GM) modifications have been linked to overweight/obesity and metabolic alterations typical of T2DM. Diet is known to affect GM largely, but only a few studies have investigated the effects of VLCKD on GM, especially in T2DM. In this study, we have compared anthropometric, biochemical, lifestyle parameters, the quality of life, and the GM of eleven patients with recently diagnosed T2DM and overweight or obesity, randomly assigned to two groups of six and five patients who followed the VLCKD (KETO) or hypocaloric MD (MEDI) respectively; parameters were recorded at baseline (T0) and after two (T2) and three months (T3). The results showed that VLCKD had more significant beneficial effects than MD on anthropometric parameters, while biochemical improvements did not statistically differ. As for the GM, despite the lack of significant results regarding the alpha and beta diversity, and the Firmicutes/Bacteroidota ratio between the two groups, in the KETO group, a significant increase in beneficial microbial taxa such as Verrucomicrobiota phylum with its members Verrucomicrobiae, Verrucomicrobiales, Akkermansiaceae, and Akkermansia, Christensenellaceae family, Eubacterium spp., and a reduction in microbial taxa previously associated with obesity (Firmicutes and Actinobacteriota) or other diseases (Alistipes) was observed both at T2 and T3. With regards to the MEDI group, variations were limited to a significant increase in Actinobacteroidota phylum at T2 and T3 and Firmicutes phylum at T3. Moreover, a metagenomic alteration linked to some metabolic pathways was found exclusively in the KETO group. In conclusion, both dietary approaches allowed patients to improve their state of health, but VLCKD has shown better results on body composition as well as on GM profile.
Collapse
Affiliation(s)
- Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Vitor Heidrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Michele Fosci
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giulia Cambarau
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alessio Lai
- Diabetologia, P.O. Binaghi, ASSL Cagliari, 09126 Cagliari, Italy
| | - Marietta Melis
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Elisabetta Loi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Andrea Loviselli
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
32
|
Ma C, Yuan D, Renaud SJ, Zhou T, Yang F, Liou Y, Qiu X, Zhou L, Guo Y. Chaihu-shugan-san alleviates depression-like behavior in mice exposed to chronic unpredictable stress by altering the gut microbiota and levels of the bile acids hyocholic acid and 7-ketoDCA. Front Pharmacol 2022; 13:1040591. [PMID: 36339629 PMCID: PMC9627339 DOI: 10.3389/fphar.2022.1040591] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Chaihu-Shugan-San (CSS) is a traditional botanical drug formula often prescribed to treat depression in oriental countries, but its pharmacotherapeutic mechanism remains unknown. It was recently reported that CSS alters the composition of intestinal microflora and related metabolites such as bile acids (BAs). Since the intestinal microflora affects physiological functions of the brain through the gut-microbiota-brain axis, herein we investigated whether CSS altered BA levels, gut microflora, and depression-like symptoms in chronic unpredictable mild stress (CUMS) mice, a well-established mouse model of depression. Furthermore, we determined whether BA manipulation and fecal microbiota transplantation altered CSS antidepressant actions. We found that the BA chelator cholestyramine impaired the antidepressant effects of CSS, which was partially rescued by dietary cholic acid. CSS increased the relative abundance of Parabacteroides distasonis in the colon of CUMS mice, and increased serum levels of various BAs including hyocholic acid (HCA) and 7-ketodeoxycholic acid (7-ketoDCA). Furthermore, gut bacteria transplantation from CSS-treated mice into untreated or cholestyramine-treated CUMS mice restored serum levels of HCA and 7-ketoDCA, alleviating depression-like symptoms. In the hippocampus, CSS-treated mice had decreased expression of genes associated with BA transport (Bsep and Fxr) and increased expression of brain-derived neurotrophic factor and its receptor, TrkB. Overall, CSS increases intestinal P. distasonis abundance, leading to elevated levels of secondary BAs in the circulation and altered expression of hippocampal genes implicated in BA transport and neurotrophic signaling. Our data strongly suggest that the gut microbiota-brain axis contributes to the potent antidepressant action of CSS by modulating BA metabolism.
Collapse
Affiliation(s)
- Chong Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Ting Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuligh Liou
- China Xiangya Medical Laboratory, Central South University, Changsha, China
| | - Xinjian Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Gomez-Nguyen A, Gupta N, Sanaka H, Gruszka D, Pizarro A, DiMartino L, Basson A, Menghini P, Osme A, DeSalvo C, Pizarro T, Cominelli F. Chronic stress induces colonic tertiary lymphoid organ formation and protection against secondary injury through IL-23/IL-22 signaling. Proc Natl Acad Sci U S A 2022; 119:e2208160119. [PMID: 36161939 PMCID: PMC9546604 DOI: 10.1073/pnas.2208160119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Psychological stress has been previously reported to worsen symptoms of inflammatory bowel disease (IBD). Similarly, intestinal tertiary lymphoid organs (TLOs) are associated with more severe inflammation. While there is active debate about the role of TLOs and stress in IBD pathogenesis, there are no studies investigating TLO formation in the context of psychological stress. Our mouse model of Crohn's disease-like ileitis, the SAMP1/YitFc (SAMP) mouse, was subjected to 56 consecutive days of restraint stress (RS). Stressed mice had significantly increased colonic TLO formation. However, stress did not significantly increase small or large intestinal inflammation in the SAMP mice. Additionally, 16S analysis of the stressed SAMP microbiome revealed no genus-level changes. Fecal microbiome transplantation into germ-free SAMP mice using stool from unstressed and stressed mice replicated the behavioral phenotype seen in donor mice. However, there was no difference in TLO formation between recipient mice. Stress increased the TLO formation cytokines interleukin-23 (IL-23) and IL-22 followed by up-regulation of antimicrobial peptides. SAMP × IL-23r-/- (knockout [KO]) mice subjected to chronic RS did not have increased TLO formation. Furthermore, IL-23, but not IL-22, production was increased in KO mice, and administration of recombinant IL-22 rescued TLO formation. Following secondary colonic insult with dextran sodium sulfate, stressed mice had reduced colitis on both histology and colonoscopy. Our findings demonstrate that psychological stress induces colonic TLOs through intrinsic alterations in IL-23 signaling, not through extrinsic influence from the microbiome. Furthermore, chronic stress is protective against secondary insult from colitis, suggesting that TLOs may function to improve the mucosal barrier.
Collapse
Affiliation(s)
- Adrian Gomez-Nguyen
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Nikhilesh Gupta
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Harsha Sanaka
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Dennis Gruszka
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Alaina Pizarro
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Luca DiMartino
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Paola Menghini
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Abdullah Osme
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Carlo DeSalvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Theresa Pizarro
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
34
|
Inhibition of GABAAR or Application of Lactobacillus casei Zhang Alleviates Ulcerative Colitis in Mice: GABAAR as a Potential Target for Intestinal Epithelial Renewal and Repair. Int J Mol Sci 2022; 23:ijms231911210. [PMID: 36232509 PMCID: PMC9570049 DOI: 10.3390/ijms231911210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that the gamma−aminobutyric acid type A receptor (GABAAR) and Lactobacillus casei Zhang regulate colitis in a variety of ways, such as by participating in host immune and inflammatory responses, altering the gut microbiota, and influencing intestinal barrier function. However, not much is known about the mechanisms by which GABAAR and L. casei affect colon epithelial cell renewal and the interaction between GABAAR and L. casei during this process. To elucidate this, we established a dextran sulfate sodium (DSS)−induced model and measured the mouse body weights, colon length, the disease activity index (DAI), and histological scores. Our results indicated that inhibition of GABAAR alleviated the DSS−induced colitis symptoms, resulting in less weight loss and more intact colon tissue. Moreover, treatment with bicuculline (Bic, a GABAAR inhibitor) increased the levels of PCNA, β−catenin, and TCF4 in mice with colitis. Interestingly, open field test performances showed that inhibition of GABAAR also attenuated colitis−related anxiety−like behavior. By 16S RNA gene sequencing analysis, we showed that inhibition of GABAAR partially reversed the gut dysbacteriosis of DSS−induced mice and increased the abundance of beneficial bacteria. Additionally, L. casei Zhang supplementation inhibited the expression of GABAAR in mice with colitis, promoted the proliferation and renewal of colon epithelial cells, and alleviated anxiety−like behavior and intestinal microflora disorder in mice. Thus, GABAAR plays a key role in the beneficial effects of L. casei on DSS−induced colitis in mice.
Collapse
|
35
|
Xie YC, Jing XB, Chen X, Chen LZ, Zhang SH, Cai XB. Fecal microbiota transplantation treatment for type 1 diabetes mellitus with malnutrition: a case report. Ther Adv Chronic Dis 2022; 13:1–8. [PMID: 36003287 PMCID: PMC9393929 DOI: 10.1177/20406223221117449] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease. Not only genetics, but the intestinal environment affected by gut microbiota is also the key to pathogenesis. Besides the occurrence of diabetes, gut microbiota dysbiosis may also contribute to the development of diabetes-related complications. Fecal microbiota transplantation (FMT) is an emerging technique that had shown its potential as a treatment for metabolic disease. Here, we report the first case of T1DM with malnutrition and gastrointestinal symptoms treated with FMT. A 24-year-old T1DM patient suffered from poor blood glucose control, recurrent nausea and vomiting, severe malnutrition, and intractable constipation after insulin treatment. The clinical response of the patients after FMT was well, especially nausea and vomiting were significantly relieved. In addition, constipation, nutritional status, and blood glucose control (fasting blood glucose, HbA1c) gradually improved. A degree of similarity was found in gut microbiota composition between the patient and healthy donor after FMT while it was totally different before the treatment. Furthermore, pathway function analysis of MetaCYC database implies that the potential mechanism of the response of FMT may be driven by specific bacteria involved in several metabolic pathways that need further exploration. To sum up, we believe that the reconstruction of intestinal flora by FMT may be a new choice for the treatment of T1DM patients with malnutrition.
Collapse
Affiliation(s)
- Yan-Chun Xie
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Xu-Bin Jing
- Yan-Chun Xie, Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Xiang Chen
- Departments of Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Ling-Zi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Shao-Hui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Xian-Bin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, Guangdong, P.R. China
| |
Collapse
|
36
|
Fan Y, Xu C, Xie L, Wang Y, Zhu S, An J, Li Y, Tian Z, Yan Y, Yu S, Liu H, Jia B, Wang Y, Wang L, Yang L, Bian Y. Abnormal bile acid metabolism is an important feature of gut microbiota and fecal metabolites in patients with slow transit constipation. Front Cell Infect Microbiol 2022; 12:956528. [PMID: 35967856 PMCID: PMC9366892 DOI: 10.3389/fcimb.2022.956528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Destructions in the intestinal ecosystem are implicated with changes in slow transit constipation (STC), which is a kind of intractable constipation characterized by colonic motility disorder. In order to deepen the understanding of the structure of the STC gut microbiota and the relationship between the gut microbiota and fecal metabolites, we first used 16S rRNA amplicon sequencing to evaluate the gut microbiota in 30 STC patients and 30 healthy subjects. The α-diversity of the STC group was changed to a certain degree, and the β-diversity was significantly different, which indicated that the composition of the gut microbiota of STC patients was inconsistent with healthy subjects. Among them, Bacteroides, Parabacteroides, Desulfovibrionaceae, and Ruminiclostridium were significantly upregulated, while Subdoligranulum was significantly downregulated. The metabolomics showed that different metabolites between the STC and the control group were involved in the process of bile acids and lipid metabolism, including taurocholate, taurochenodeoxycholate, taurine, deoxycholic acid, cyclohexylsulfamate, cholic acid, chenodeoxycholate, arachidonic acid, and 4-pyridoxic acid. We found that the colon histomorphology of STC patients was significantly disrupted, and TGR5 and FXR were significantly downregulated. The differences in metabolites were related to changes in the abundance of specific bacteria and patients’ intestinal dysfunction. Analysis of the fecal genomics and metabolomics enabled separation of the STC from controls based on random forest model prediction [STC vs. control (14 gut microbiota and metabolite biomarkers)—Sensitivity: 1, Specificity: 0.877]. This study provided a perspective for the diagnosis and intervention of STC related with abnormal bile acid metabolism.
Collapse
Affiliation(s)
- Yadong Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lulu Xie
- School of Medicine, Nankai University, Tianjin, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Zhu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiren An
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhikui Tian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haizhao Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Wang
- The Pharmacy Department, Tianjin Second People's Hospital, Tianjin, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Long Yang, ; Yuhong Bian,
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Long Yang, ; Yuhong Bian,
| |
Collapse
|
37
|
Bowers SJ, Summa KC, Thompson RS, González A, Vargas F, Olker C, Jiang P, Lowry CA, Dorrestein PC, Knight R, Wright KP, Fleshner M, Turek FW, Vitaterna MH. A Prebiotic Diet Alters the Fecal Microbiome and Improves Sleep in Response to Sleep Disruption in Rats. Front Neurosci 2022; 16:889211. [PMID: 35685770 PMCID: PMC9172596 DOI: 10.3389/fnins.2022.889211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Sleep disruption is a challenging and exceedingly common physiological state that contributes to a wide range of biochemical and molecular perturbations and has been linked to numerous adverse health outcomes. Modern society exerts significant pressure on the sleep/wake cycle via myriad factors, including exposure to electric light, psychological stressors, technological interconnection, jet travel, shift work, and widespread use of sleep-affecting compounds. Interestingly, recent research has identified a link between the microbiome and the regulation of sleep, suggesting that interventions targeting the microbiome may offer unique therapeutic approaches to challenges posed by sleep disruption. In this study, we test the hypothesis that administration of a prebiotic diet containing galactooligosaccharides (GOS) and polydextrose (PDX) in adult male rats improves sleep in response to repeated sleep disruption and during recovery sleep. We found that animals fed the GOS/PDX prebiotic diet for 4 weeks exhibit increased non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during 5 days of sleep disruption and increased total sleep time during 24 h of recovery from sleep disruption compared to animals fed a control diet, despite similar baseline sleep characteristics. Further, the GOS/PDX prebiotic diet led to significant changes in the fecal microbiome. Consistent with previous reports, the prebiotic diet increased the relative abundance of the species Parabacteroides distasonis, which positively correlated with sleep parameters during recovery sleep. Taken together, these findings suggest that the GOS/PDX prebiotic diet may offer an approach to improve resilience to the physiologic challenge of sleep disruption, in part through impacts on the microbiome.
Collapse
Affiliation(s)
- Samuel J. Bowers
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
| | - Keith C. Summa
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Division of Gastroenterology & Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Robert S. Thompson
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
| | - Antonio González
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, United States
| | - Fernando Vargas
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, CO, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Martha H. Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
| |
Collapse
|
38
|
Parabacteroides distasonis in depression: Triggers or outcomes. Brain Behav Immun 2022; 102:86-87. [PMID: 35176441 DOI: 10.1016/j.bbi.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022] Open
|
39
|
Response to "Parabacteroides distasonis in depression: Triggers or outcomes.". Brain Behav Immun 2022; 102:324. [PMID: 35176444 DOI: 10.1016/j.bbi.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
|
40
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
41
|
Šik Novak K, Bogataj Jontez N, Kenig S, Hladnik M, Baruca Arbeiter A, Bandelj D, Černelič Bizjak M, Petelin A, Mohorko N, Jenko Pražnikar Z. The effect of COVID-19 lockdown on mental health, gut microbiota composition and serum cortisol levels. Stress 2022; 25:246-257. [PMID: 35713539 DOI: 10.1080/10253890.2022.2082280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The aim of this study was to assess changes in mental health, gut microbiota composition, and stress marker serum cortisol due to COVID-19 lockdown in asymptomatic individuals. Healthy adults participated in anthropometric measurements, blood and stool sample collection pre-lockdown and post-lockdown (n = 38, 63.2% females), lifestyle and psychological questionnaires were included in pre-lockdown measurement and lockdown survey (n = 46, 67.4% females). Subjects reported significantly higher body dissatisfaction (p = 0.007) and anxiety (p = 0.002), and significantly lower positive affect (p = 0.001) during lockdown compared with pre-lockdown. According to perceived stress, 51.6% of females and 20% of males experienced moderate to high stress. This was reflected in serum cortisol levels that significantly increased only in females (p = 0.006) post-lockdown and correlated with perceived stress (p = 0.037) and anxiety (p = 0.031). In addition to psychological measures, changes in gut microbiota composition were observed. Gut microbial alpha diversity significantly decreased (p = 0.033), whereas relative abundance of Proteobacteria significantly increased (p = 0.043) post-lockdown. Depression during lockdown was moderately positively correlated with changes in Bacteroidetes abundance (p = 0.015) and negatively with changes in Firmicutes abundance (p = 0.008). Alistipes abundance post-lockdown was moderately positively correlated with anxiety (p = 0.004) and negative affect (p = 0.005) during lockdown. Despite a small sample size and not being able to perform objective measurements during lockdown, the results confirm the effect of lockdown on mental health and gut microbiota composition that could have a great impact on our health (ClinicalTrials identifier: NCT04347213).
Collapse
Affiliation(s)
- Karin Šik Novak
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | | - Saša Kenig
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | | | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Nina Mohorko
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | |
Collapse
|