1
|
Haslam A, Prasad V. Comparability of Control and Comparison Groups in Studies Assessing Long COVID. Am J Med 2025; 138:148-152.e3. [PMID: 36708796 PMCID: PMC9912142 DOI: 10.1016/j.amjmed.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Awareness of long coronavirus disease (COVID) began primarily through media and social media sources, which eventually led to the development of various definitions based on methodologies of varying quality. We sought to characterize comparison groups in long COVID studies and evaluate comparability of the different groups. METHODS We searched Embase, Web of Science, and PubMed for original research articles published in high-impact journals. We included studies on human patients with long COVID outcomes, and we abstracted study-related characteristics, as well as long COVID characteristics. RESULTS Of the 83 studies, 3 were randomized controlled trials testing interventions for long COVID, and 80 (96.4%) were observational studies. Among the 80 observational studies, 76 (95%) were trying to understand the incidence, prevalence, and risk factors for long COVID, 2 (2.5%) examined prevention strategies, and 2 (2.5%) examined treatment strategies. Among those 80 studies, 45 (56.2%) utilized a control or comparison group and 35 (43.8%) did not. Compared with 95% of observational studies that documented symptoms or assessed risk factors, all randomized studies assessed treatment strategies. We found 48.8% of observational studies did any adjustment for covariates, including demographics or health status. Of those that did adjust for covariates, 15 (38.5%) adjusted for 4 or fewer variables. We found that 26.5% of all studies and 45.8% of studies with a control/comparator group matched participants on at least 1 variable. CONCLUSION Long COVID studies in high-impact journals primarily examine symptoms and risk factors of long COVID; often lack an adequate comparison group and often do not control for potential confounders. Our results suggest that standardized definitions for long COVID, which are often based on data from uncontrolled and potentially biased studies, should be reviewed to ensure that they are based on objective data.
Collapse
Affiliation(s)
- Alyson Haslam
- University of California San Francisco, San Francisco.
| | - Vinay Prasad
- University of California San Francisco, San Francisco
| |
Collapse
|
2
|
Wang B, Liu X, Han B, Li X, Zhang J, Fu Y, Zhu Z, Nie Z, Tan Y, Guo J, Yang L, Jiang R. COVID-19 Infection Experience and Depressive Symptoms Among Chinese Medical Staff: The Mediating Role of Professional Burnout. Disaster Med Public Health Prep 2024; 18:e290. [PMID: 39600126 DOI: 10.1017/dmp.2024.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
OBJECTIVES This study aimed to assess the relationship between COVID-19 infection-related conditions and depressive symptoms among medical staff after easing the zero-COVID policy in China, and to further examine the mediating role of professional burnout. METHODS A total of 1716 medical staff from all levels of health care institutions in 16 administrative districts of Beijing, China, were recruited to participate at the end of 2022 in this cross-sectional study. Several multiple linear regressions and mediating effects tests were performed to analyze the data. RESULTS At the beginning of the end of the zero-COVID policy in China, 91.84% of respondents reported infection with COVID-19. After adjusting for potential confounding variables, the severity of infection symptoms was significantly positively associated with high levels of depressive symptoms (β = 0.06, P < 0.001), and this association was partially mediated by professional burnout. Specifically, emotional exhaustion (95% CI, 0.131, 0.251) and depersonalization (95% CI, 0.009, 0.043) significantly mediated the association between the severity of infection symptoms and depressive symptoms. CONCLUSIONS The mental health of medical staff with more severe symptoms of COVID-19 infection should be closely monitored. Also, interventions aimed at reducing emotional exhaustion and depersonalization may effectively reduce their risk of developing depressive symptoms.
Collapse
Affiliation(s)
- Bingqian Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, P.R. China
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Xiaohan Liu
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Bing Han
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, P.R. China
| | - Jiawei Zhang
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Yaqun Fu
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Zheng Zhu
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Zhijie Nie
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Yiyang Tan
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Jing Guo
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Li Yang
- Department of Health Policy and Management, School of Public Health, Peking University Health Science Center, Beijing, P.R. China
| | - Rongmeng Jiang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Loggia ML. "Neuroinflammation": does it have a role in chronic pain? Evidence from human imaging. Pain 2024; 165:S58-S67. [PMID: 39560416 PMCID: PMC11729497 DOI: 10.1097/j.pain.0000000000003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Despite hundreds of studies demonstrating the involvement of neuron-glia-immune interactions in the establishment and/or maintenance of persistent pain behaviors in animals, the role (or even occurrence) of so-called "neuroinflammation" in human pain has been an object of contention for decades. Here, I present the results of multiple positron emission tomography (PET) studies measuring the levels of the 18 kDa translocator protein (TSPO), a putative neuroimmune marker, in individuals with various pain conditions. Overall, these studies suggest that brain TSPO PET signal: (1) is elevated, compared to healthy volunteers, in individuals with chronic low back pain (with additional elevations in spinal cord and neuroforamina), fibromyalgia, migraine and other conditions characterized by persistent pain; (2) has a spatial distribution exhibiting a degree of disorder specificity; (3) is parametrically linked to pain characteristics or comorbid symptoms (eg, nociplastic pain, fatigue, depression), as well as measures of brain function (ie, functional connectivity), in a regionally-specific manner. In this narrative, I also discuss important caveats to consider in the interpretation of this work (eg, regarding the cellular source of the signal and the complexities inherent in its acquisition and analysis). While the biological and clinical significance of these findings awaits further work, this emerging preclinical literature supports a role of neuron-glia-immune interactions as possible pathophysiological underpinnings of human chronic pain. Gaining a deeper understanding of the role of neuroimmune function in human pain would likely have important practical implications, possibly paving the way for novel interventions.
Collapse
Affiliation(s)
- Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
VanElzakker MB, Bues HF, Brusaferri L, Kim M, Saadi D, Ratai EM, Dougherty DD, Loggia ML. Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [ 11C]PBR28 PET correlates with vascular disease measures. Brain Behav Immun 2024; 119:713-723. [PMID: 38642615 PMCID: PMC11225883 DOI: 10.1016/j.bbi.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction. In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls. We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction. These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.
Collapse
Affiliation(s)
- Michael B VanElzakker
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; PolyBio Research Foundation, Medford, MA, USA.
| | - Hannah F Bues
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Computer Science And Informatics, School of Engineering, London South Bank University, London, UK
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deena Saadi
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Khalil M, Lau HC, Thackeray JT, Mikail N, Gebhard C, Quyyumi AA, Bengel FM, Bremner JD, Vaccarino V, Tawakol A, Osborne MT. Heart-brain axis: Pushing the boundaries of cardiovascular molecular imaging. J Nucl Cardiol 2024; 36:101870. [PMID: 38685398 PMCID: PMC11180568 DOI: 10.1016/j.nuclcard.2024.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Despite decades of research, the heart-brain axis continues to challenge investigators seeking to unravel its complex pathobiology. Strong epidemiologic evidence supports a link by which insult or injury to one of the organs increases the risk of pathology in the other. The putative pathways have important differences between sexes and include alterations in autonomic function, metabolism, inflammation, and neurohormonal mechanisms that participate in crosstalk between the heart and brain and contribute to vascular changes, the development of shared risk factors, and oxidative stress. Recently, given its unique ability to characterize biological processes in multiple tissues simultaneously, molecular imaging has yielded important insights into the interplay of these organ systems under conditions of stress and disease. Yet, additional research is needed to probe further into the mechanisms underlying the heart-brain axis and to evaluate the impact of targeted interventions.
Collapse
Affiliation(s)
- Maria Khalil
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hui Chong Lau
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; Center for Molecular Cardiology, University Hospital Zurich, Schlieren, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; Center for Molecular Cardiology, University Hospital Zurich, Schlieren, Switzerland; Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arshed A Quyyumi
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - J Douglas Bremner
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA; Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Ibrahim W, An J, Yang Y, Cosgrove KP, Matuskey D. Does seasonal variation affect the neuroimmune system? A retrospective [ 11C]PBR28 PET study in healthy individuals. Neurosci Lett 2024; 828:137766. [PMID: 38583505 PMCID: PMC11073647 DOI: 10.1016/j.neulet.2024.137766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION The neuroimmune system performs a wide range of functions in the brain and the central nervous system. The microglial translocator protein (TSPO) has an established role as a cell marker in identification of the neuroimmune system. Previously, human studies have shown TSPO differences in neuropsychiatric disorders. Seasonal variability has also been demonstrated in multiple systems of healthy individuals. Therefore, in this study, we attempt to understand whether seasonal changes affect brain TSPO levels using [11C]PBR28 positron emission tomography (PET) imaging. METHODS 46 healthy subjects (mean age ± SD = 32.5 ± 10); sex (M/F) = 32/14)) underwent PET imaging with [11C]PBR28 in a retrospectively conducted analysis. All PET scans were performed on the HRRT scanner. Volume of distribution (VT) values were generated for cortical and subcortical regions and the cerebellum. Spring/summer months were defined as March to August while fall/winter months were defined as September to February and were compared through 2-tailed t-tests (SciPy library v.1.10.1 and Pinguoin library on Python v.3.8.8). Average daylight hours and temperature in New Haven, CT were obtained online (www.wunderground.com) and compared to VT with Spearman's correlations. RESULTS There were no significant differences observed between the TSPO levels of spring/summer and fall/winter months in the brain (t = 0.52, p = 0.61). Additional analysis on all individual brain regions also indicated non-significance. Likewise, no significant correlations were found between TSPO levels in the whole brain and brain regions against daylight hours (ρ= 0.05, p = 0.74), temperature (ρ = 0.04, p = 0.81), or month (ρ = 0.08, p = 0.60). Controlling TSPO gene polymorphisms and other variables had no significant effect on the outcome. CONCLUSION To the best of our knowledge, this is the first human study to investigate seasonal changes in TSPO expression. Our results can be interpreted as the lack of seasonal variability in the neuroimmune system, but important limitations include high interindividual variability, test-retest variability, specificity of the tracer, and a limited sample size. Limitations notwithstanding, our results conclude that TSPO levels in the brain are not impacted by light and temperature changes in different seasons.
Collapse
Affiliation(s)
- Waleed Ibrahim
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jeonghyun An
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly P. Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Pillay SS, Candela P, Croghan IT, Hurt RT, Bonnes SL, Ganesh R, Bauer BA. Leveraging the Metaverse for Enhanced Longevity as a Component of Health 4.0. MAYO CLINIC PROCEEDINGS. DIGITAL HEALTH 2024; 2:139-151. [PMID: 40206687 PMCID: PMC11975822 DOI: 10.1016/j.mcpdig.2024.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
In this review, we describe evidence that supports building a metaverse to promote healthy longevity. We propose that the metaverse offers several physical advantages (architecture, music, and nature), social (accessibility, affordability, community-building, and relief of social anxiety), and therapeutic (immersive, anti-inflammatory, and adjunctive use in complementary and integrative medicine). Lifelogging by patients may help clinicians personalize interventions by matching data to therapeutic outcomes. Although the metaverse cannot entirely replace our current model of care, a strategic approach will ensure adequate resource allocation and value assessment. In a collaborative effort between Reulay, Inc and Mayo Clinic, we are building a platform for the delivery of personalized and idiographic interventions to promote healthy longevity. To this end, we are using specific science-informed art design to reduce stress and anxiety for patients, with the progressive addition of integrated care elements that connect to this framework and connect treatment response to biomarkers that are relevant to healthy longevity. This review is a commentary on the thought process behind this effort.
Collapse
Affiliation(s)
| | - Patrick Candela
- Research and Development Laboratory, Reulay, Inc, Long Island, NY
| | - Ivana T. Croghan
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan T. Hurt
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Sara L. Bonnes
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Brent A. Bauer
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
8
|
Zhang W, Gorelik AJ, Wang Q, Norton SA, Hershey T, Agrawal A, Bijsterbosch JD, Bogdan R. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. Brain Behav Immun Health 2024; 36:100722. [PMID: 38298902 PMCID: PMC10825665 DOI: 10.1016/j.bbih.2023.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
COVID-19 remains a significant international public health concern. Yet, the mechanisms through which symptomatology emerges remain poorly understood. While SARS-CoV-2 infection may induce prolonged inflammation within the central nervous system, the evidence primarily stems from limited small-scale case investigations. To address this gap, our study capitalized on longitudinal UK Biobank neuroimaging data acquired prior to and following COVID-19 testing (N = 416 including n = 224 COVID-19 cases; Mage = 58.6). Putative neuroinflammation was assessed in gray matter structures and white matter tracts using non-invasive Diffusion Basis Spectrum Imaging (DBSI), which estimates inflammation-related cellularity (DBSI-restricted fraction; DBSI-RF) and vasogenic edema (DBSI-hindered fraction; DBSI-HF). We hypothesized that COVID-19 case status would be associated with increases in DBSI markers after accounting for potential confound (age, sex, race, body mass index, smoking frequency, and data acquisition interval) and multiple testing. COVID-19 case status was not significantly associated with DBSI-RF (|β|'s < 0.28, pFDR >0.05), but with greater DBSI-HF in left pre- and post-central gyri and right middle frontal gyrus (β's > 0.3, all pFDR = 0.03). Intriguingly, the brain areas exhibiting increased putative vasogenic edema had previously been linked to COVID-19-related functional and structural alterations, whereas brain regions displaying subtle differences in cellularity between COVID-19 cases and controls included regions within or functionally connected to the olfactory network, which has been implicated in COVID-19 psychopathology. Nevertheless, our study might not have captured acute and transitory neuroinflammatory effects linked to SARS-CoV-2 infection, possibly due to symptom resolution before the imaging scan. Future research is warranted to explore the potential time- and symptom-dependent neuroinflammatory relationship with COVID-19.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sara A. Norton
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Janine D. Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| |
Collapse
|
9
|
Takizawa T, Ihara K, Uno S, Ohtani S, Watanabe N, Imai N, Nakahara J, Hori S, Garcia-Azorin D, Martelletti P. Metabolic and toxicological considerations regarding CGRP mAbs and CGRP antagonists to treat migraine in COVID-19 patients: a narrative review. Expert Opin Drug Metab Toxicol 2023; 19:951-967. [PMID: 37925645 DOI: 10.1080/17425255.2023.2280221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Migraine pharmacological therapies targeting calcitonin gene-related peptide (CGRP), including monoclonal antibodies and gepants, have shown clinical effect and optimal tolerability. Interactions between treatments of COVID-19 and CGRP-related drugs have not been reviewed. AREAS COVERED An overview of CGRP, a description of the characteristics of each CGRP-related drug and its response predictors, COVID-19 and its treatment, the interactions between CGRP-related drugs and COVID-19 treatment, COVID-19 and vaccination-induced headache, and the neurological consequences of Covid-19. EXPERT OPINION Clinicians should be careful about using gepants for COVID-19 patients, due to the potential drug interactions with drugs metabolized via CYP3A4 cytochrome. In particular, COVID-19 treatment (especially nirmatrelvir packaged with ritonavir, as Paxlovid) should be considered cautiously. It is advisable to stop or adjust the dose (10 mg atogepant when used for episodic migraine) of gepants when using Paxlovid (except for zavegepant). CGRP moncolconal antibodies (CGRP-mAbs) do not have drug - drug interactions, but a few days' interval between a COVID-19 vaccination and the use of CGRP mAbs is recommended to allow the accurate identification of the possible adverse effects, such as injection site reaction. Covid-19- and vaccination-related headache are known to occur. Whether CGRP-related drugs would be of benefit in these circumstances is not yet known.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ihara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Japanese Red Cross Ashikaga Hospital, Ashikaga, Japan
| | - Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Seiya Ohtani
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Narumi Watanabe
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Noboru Imai
- Department of Neurology, Japanese Red Cross Shizuoka Hospital, Shizuoka, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Satoko Hori
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - David Garcia-Azorin
- Headache Unit, Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Paolo Martelletti
- School of Health Sciences, Unitelma Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
VanElzakker MB, Bues HF, Brusaferri L, Kim M, Saadi D, Ratai EM, Dougherty DD, Loggia ML. Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [ 11C]PBR28 PET correlates with vascular disease measures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563117. [PMID: 37905031 PMCID: PMC10614970 DOI: 10.1101/2023.10.19.563117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction. In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls. We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction. These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.
Collapse
Affiliation(s)
- Michael B VanElzakker
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- PolyBio Research Foundation, Medford, MA, USA
| | - Hannah F Bues
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Computer Science And Informatics, School of Engineering, London South Bank University, London, UK
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deena Saadi
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Division of Neurotherapeutics, Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Tang SW, Helmeste DM, Leonard BE. COVID-19 as a polymorphic inflammatory spectrum of diseases: a review with focus on the brain. Acta Neuropsychiatr 2023; 35:248-269. [PMID: 36861428 DOI: 10.1017/neu.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
There appear to be huge variations and aberrations in the reported data in COVID-19 2 years now into the pandemic. Conflicting data exist at almost every level and also in the reported epidemiological statistics across different regions. It is becoming clear that COVID-19 is a polymorphic inflammatory spectrum of diseases, and there is a wide range of inflammation-related pathology and symptoms in those infected with the virus. The host's inflammatory response to COVID-19 appears to be determined by genetics, age, immune status, health status and stage of disease. The interplay of these factors may decide the magnitude, duration, types of pathology, symptoms and prognosis in the spectrum of COVID-19 disorders, and whether neuropsychiatric disorders continue to be significant. Early and successful management of inflammation reduces morbidity and mortality in all stages of COVID-19.
Collapse
Affiliation(s)
- Siu Wa Tang
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Daiga Maret Helmeste
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, China
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
12
|
Mancino E, Nenna R, Matera L, La Regina DP, Petrarca L, Iovine E, Di Mattia G, Frassanito A, Conti MG, Bonci E, Spatuzzo M, Ialongo S, Zicari AM, Spalice A, Midulla F. A Single Center Observational Study on Clinical Manifestations and Associated Factors of Pediatric Long COVID. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6799. [PMID: 37754658 PMCID: PMC10531477 DOI: 10.3390/ijerph20186799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Children with SARS-CoV-2 are mostly mild symptomatic, but they may develop conditions, such as persisting symptoms, that may put them at greater risk of complications. Our aim was to evaluate the frequency and the presence of risk factors for persisting COVID-19 symptoms in children. We carried out a prospective observational study of the clinical manifestation of Long COVID at the Department of Maternal Infantile Science of a tertiary University hospital in Rome. We included 697 children (0-18 years), with previous SARS-CoV-2 infection. Children and parents were asked questions regarding persistent symptoms of COVID-19. Children with symptoms 30 days after initial diagnosis were 185/697 (26.4%). Moreover, 81/697 (11.6%) patients presented symptoms 90 days after the diagnosis. Thirty-day-persisting symptoms were mostly present in children with anosmia, atopy, asthenia, and cough in the acute phase compared with the asymptomatic children 30 days after infection. After 90 days, symptoms described were mainly neurological (47/697 children, 6.7%), and headache (19/697; 2.7%) was the most frequent manifestation. In conclusion, a relatively large proportion of the patients reported persisting symptoms that seem to be related to the symptom burden and to the atopy. Ninety days after the infection, most of the children had recovered, showing that long-term effects are not frequent. Limitations of the study include the single-center design and the lack of a control group.
Collapse
Affiliation(s)
- Enrica Mancino
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Raffaella Nenna
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Matera
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Domenico Paolo La Regina
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Petrarca
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Elio Iovine
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Greta Di Mattia
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonella Frassanito
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Enea Bonci
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Mattia Spatuzzo
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Sara Ialongo
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Alberto Spalice
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Midulla
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | | |
Collapse
|
13
|
Muench A, Lampe EW, Boyle JT, Seewald M, Thompson MG, Perlis ML, Vargas I. The Assessment of Post-COVID Fatigue and Its Relationship to the Severity and Duration of Acute COVID Illness. J Clin Med 2023; 12:5910. [PMID: 37762851 PMCID: PMC10531744 DOI: 10.3390/jcm12185910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging data suggests that COVID-19 is associated with fatigue well beyond the acute illness period. The present analysis aimed to: (1) characterize the prevalence and incidence of high fatigue at baseline and follow-up; (2) examine the impact of COVID-19 diagnosis on fatigue level following acute illness; and (3) examine the impact of acute COVID-19 symptom severity and duration on fatigue at follow-up. Subjects (n = 1417; 81.0% female; 83.3% White; X¯age = 43.6 years) completed the PROMIS-Fatigue during the initial wave of the pandemic at baseline (April-June 2020) and 9-month follow-up (January-March 2021). A generalized linear model (binomial distribution) was used to examine whether COVID-19 positivity, severity, and duration were associated with higher fatigue level at follow-up. Prevalence of high fatigue at baseline was 21.88% and 22.16% at follow-up, with 8.12% new cases at follow-up. Testing positive for COVID-19 was significantly associated with higher fatigue at follow-up. COVID-19 symptom duration and severity were significantly associated with increased fatigue at follow-up. COVID-19 symptom duration and severity during acute illness may precipitate longer-term fatigue, which could have implications for treatment planning and future research. Future studies should further evaluate the relationship between symptom severity, duration, and fatigue.
Collapse
Affiliation(s)
- Alexandria Muench
- Behavioral Sleep Medicine Program, Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA; (M.S.);
- Chronobiology and Sleep Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth W. Lampe
- Center for Weight Eating and Lifestyle Sciences, Drexel University, Philadelphia, PA 19104, USA;
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA 19104, USA
| | - Julia T. Boyle
- New England Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Seewald
- Behavioral Sleep Medicine Program, Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA; (M.S.);
| | - Michelle G. Thompson
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Michael L. Perlis
- Behavioral Sleep Medicine Program, Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA; (M.S.);
- Chronobiology and Sleep Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ivan Vargas
- Department of Psychological Science, University of Arkansas, Fayetteville, AK 72701, USA;
| |
Collapse
|
14
|
Joffe AR, Elliott A. Long COVID as a functional somatic symptom disorder caused by abnormally precise prior expectations during Bayesian perceptual processing: A new hypothesis and implications for pandemic response. SAGE Open Med 2023; 11:20503121231194400. [PMID: 37655303 PMCID: PMC10467233 DOI: 10.1177/20503121231194400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
This review proposes a model of Long-COVID where the constellation of symptoms are in fact genuinely experienced persistent physical symptoms that are usually functional in nature and therefore potentially reversible, that is, Long-COVID is a somatic symptom disorder. First, we describe what is currently known about Long-COVID in children and adults. Second, we examine reported "Long-Pandemic" effects that create a risk for similar somatic symptoms to develop in non-COVID-19 patients. Third, we describe what was known about somatization and somatic symptom disorder before the COVID-19 pandemic, and suggest that by analogy, Long-COVID may best be conceptualized as one of these disorders, with similar symptoms and predisposing, precipitating, and perpetuating factors. Fourth, we review the phenomenon of mass sociogenic (functional) illness, and the concept of nocebo effects, and suggest that by analogy, Long-COVID is compatible with these descriptions. Fifth, we describe the current theoretical model of the mechanism underlying functional disorders, the Bayesian predictive coding model for perception. This model accounts for moderators that can make symptom inferences functionally inaccurate and therefore can explain how to understand common predisposing, precipitating, and perpetuating factors. Finally, we discuss the implications of this framework for improved public health messaging during a pandemic, with recommendations for the management of Long-COVID symptoms in healthcare systems. We argue that the current public health approach has induced fear of Long-COVID in the population, including from constant messaging about disabling symptoms of Long-COVID and theorizing irreversible tissue damage as the cause of Long-COVID. This has created a self-fulfilling prophecy by inducing the very predisposing, precipitating, and perpetuating factors for the syndrome. Finally, we introduce the term "Pandemic-Response Syndrome" to describe what previously was labeled Long-COVID. This alternative perspective aims to stimulate research and serve as a lesson learned to avoid a repeat performance in the future.
Collapse
Affiliation(s)
- Ari R Joffe
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - April Elliott
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Scatà C, Carandina A, Della Torre A, Arosio B, Bellocchi C, Dias Rodrigues G, Furlan L, Tobaldini E, Montano N. Social Isolation: A Narrative Review on the Dangerous Liaison between the Autonomic Nervous System and Inflammation. Life (Basel) 2023; 13:1229. [PMID: 37374012 DOI: 10.3390/life13061229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Social isolation and feelings of loneliness are related to higher mortality and morbidity. Evidence from studies conducted during space missions, in space analogs, and during the COVID-19 pandemic underline the possible role of the autonomic nervous system in mediating this relation. Indeed, the activation of the sympathetic branch of the autonomic nervous system enhances the cardiovascular response and activates the transcription of pro-inflammatory genes, which leads to a stimulation of inflammatory activation. This response is adaptive in the short term, in that it allows one to cope with a situation perceived as a threat, but in the long term it has detrimental effects on mental and physical health, leading to mood deflection and an increased risk of cardiovascular disease, as well as imbalances in immune system activation. The aim of this narrative review is to present the contributions from space studies and insights from the lockdown period on the relationship between social isolation and autonomic nervous system activation, focusing on cardiovascular impairment and immune imbalance. Knowing the pathophysiological mechanisms underlying this relationship is important as it enables us to structure effective countermeasures for the new challenges that lie ahead: the lengthening of space missions and Mars exploration, the specter of future pandemics, and the aging of the population.
Collapse
Affiliation(s)
- Costanza Scatà
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Alice Della Torre
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Chiara Bellocchi
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Gabriel Dias Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
16
|
Abohashem S, Grewal SS, Tawakol A, Osborne MT. Radionuclide Imaging of Heart-Brain Connections. Cardiol Clin 2023; 41:267-275. [PMID: 37003682 PMCID: PMC10152492 DOI: 10.1016/j.ccl.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The heart and brain have a complex interplay wherein disease or injury to either organ may adversely affect the other. The mechanisms underlying this connection remain incompletely characterized. However, nuclear molecular imaging is uniquely suited to investigate these pathways by facilitating the simultaneous assessment of both organs using targeted radiotracers. Research within this paradigm has demonstrated important roles for inflammation, autonomic nervous system and neurohormonal activity, metabolism, and perfusion in the heart-brain connection. Further mechanistic clarification may facilitate greater clinical awareness and the development of targeted therapies to alleviate the burden of disease in both organs.
Collapse
Affiliation(s)
- Shady Abohashem
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Massachusetts General Hospital, Cardiovascular Imaging Research Center, 165 Cambridge Street, Suite 400, Boston, MA 02114, USA
| | - Simran S Grewal
- Massachusetts General Hospital, Cardiovascular Imaging Research Center, 165 Cambridge Street, Suite 400, Boston, MA 02114, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Ahmed Tawakol
- Massachusetts General Hospital, Cardiovascular Imaging Research Center, 165 Cambridge Street, Suite 400, Boston, MA 02114, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael T Osborne
- Massachusetts General Hospital, Cardiovascular Imaging Research Center, 165 Cambridge Street, Suite 400, Boston, MA 02114, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
17
|
Pallanti S, Di Ponzio M. PANDAS/PANS in the COVID-19 Age: Autoimmunity and Epstein-Barr Virus Reactivation as Trigger Agents? CHILDREN (BASEL, SWITZERLAND) 2023; 10:648. [PMID: 37189896 PMCID: PMC10136983 DOI: 10.3390/children10040648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
COVID-19 impacted the entire world's population, frequently resulting in long-lasting neuropsychiatric complications. Furthermore, social distancing, lockdowns and fear for one's personal health worsen individual psychological wellbeing, especially in children and adolescents. Herein, we discuss the results of studies that specifically reported data about the impact of the COVID-19 pandemic or infection on children with Pediatric Acute-Onset Neuropsychiatric Disorders (PANS). Furthermore, we present the cases of five adolescents with PANS whose symptomatology increased following SARS-CoV-2 infection. What emerged from this study was that COVID-19 resulted in the exacerbation of obsessions, tics, anxiety and mood symptoms and decreased wellbeing. Moreover, new symptoms, as well as new PANS cases, are reported to have arisen after COVID-19 infection. Here, we hypothesize that the pathogenic mechanisms of silent viruses, such as the Epstein-Barr virus, are related to neuroinflammation, immune responses and reactivation, with additional roles played by social-isolation-related inflammatory processes. The discussion of PANS, which represents a model of immune-mediated neuropsychiatric manifestations, is particularly relevant, with the aim of uncovering the mechanisms that lead to neuropsychiatric Post-Acute COVID-19 Syndrome (PACS). Prospects for future studies and treatment implications are discussed.
Collapse
Affiliation(s)
- Stefano Pallanti
- Department of Psychiatry and Health Sciences, Institute of Neurosciences, 50121 Florence, Italy
- Department of Psychiatry and Behavioural Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Michele Di Ponzio
- Department of Psychology and Cognitive Studies, Institute of Neurosciences, 50121 Florence, Italy
| |
Collapse
|
18
|
Morrissey EJ, Alshelh Z, Knight PC, Saha A, Kim M, Torrado-Carvajal A, Zhang Y, Edwards RR, Pike C, Locascio JJ, Napadow V, Loggia ML. Assessing the potential anti-neuroinflammatory effect of minocycline in chronic low back pain: Protocol for a randomized, double-blind, placebo-controlled trial. Contemp Clin Trials 2023; 126:107087. [PMID: 36657520 DOI: 10.1016/j.cct.2023.107087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Both preclinical studies, and more recent clinical imaging studies, suggest that glia-mediated neuroinflammation may be implicated in chronic pain, and therefore might be a potential treatment target. However, it is currently unknown whether modulating neuroinflammation effectively alleviates pain in humans. This trial tests the hypothesis that minocycline, an FDA-approved tetracycline antibiotic and effective glial cell inhibitor in animals, reduces neuroinflammation and may reduce pain symptoms in humans with chronic low back pain. METHODS AND ANALYSIS This study is a randomized, double-blind, placebo-controlled clinical trial. Subjects, aged 18-75, with a confirmed diagnosis of chronic (≥ six months) low back pain (cLBP) and a self-reported pain rating of at least four out of ten (for at least half of the days during an average week) are enrolled via written, informed consent. Eligible subjects are randomized to receive a 14-day course of either active drug (minocycline) or placebo. Before and after treatment, subjects are scanned with integrated Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) using [11C]PBR28, a second-generation radiotracer for the 18 kDa translocator protein (TSPO), which is highly expressed in glial cells and thus a putative marker of neuroinflammation. Pain levels are evaluated via daily surveys, collected seven days prior to the start of medication, and throughout the 14 days of treatment. General linear models will be used to assess pain levels and determine the treatment effect on brain (and spinal cord) TSPO signal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT03106740).
Collapse
Affiliation(s)
- Erin J Morrissey
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zeynab Alshelh
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paulina C Knight
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Atreyi Saha
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Minhae Kim
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Angel Torrado-Carvajal
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chelsea Pike
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Consulting Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vitaly Napadow
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Crook H, Ramirez A, Hosseini AA, Vavougyios G, Lehmann C, Bruchfeld J, Schneider A, d'Avossa G, Lo Re V, Salmoiraghi A, Mukaetova-Ladinska E, Katshu M, Boneschi FM, Håkansson K, Geerlings M, Pracht E, Ruiz A, Jansen JF, Snyder H, Kivipelto M, Edison P. European Working Group on SARS-CoV-2: Current Understanding, Unknowns, and Recommendations on the Neurological Complications of COVID-19. Brain Connect 2023; 13:178-210. [PMID: 36719785 DOI: 10.1089/brain.2022.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The emergence of COVID-19 was rapidly followed by infection and the deaths of millions of people across the globe. With much of the research and scientific advancement rightly focused on reducing the burden of severe and critical acute COVID-19 infection, the long-term effects endured by those who survived the acute infection has been previously overlooked. Now, an appreciation for the post-COVID-19 condition, including its neurological manifestations, is growing, although there remain many unknowns regarding the aetiology and risk factors of the condition, as well as how to effectively diagnose and treat it. Here, drawing upon the experiences and expertise of the clinicians and academics of the European working group on COVID-19, we have reviewed the current literature to provide a comprehensive overview of the neurological sequalae of the post-COVID-19 condition. In this review, we provide a summary of the neurological symptoms associated with the post-COVID-19 condition, before discussing the possible mechanisms which may underly and manifest these symptoms. Following this, we explore the risk factors for developing neurological symptoms as a result of COVID-19 and the post-COVID-19 condition, as well as how COVID-19 infection may itself be a risk factor for the development of neurological disease in the future. Lastly, we evaluate how the post-COVID condition could be accurately diagnosed and effectively treated, including examples of the current guidelines, clinical outcomes and tools that have been developed to aid in this process, as well as addressing the protection provided by COVID-19 vaccines against post-COVID-19 condition. Overall, this review provides a comprehensive overview of the neurological sequalae of the post-COVID-19 condition.
Collapse
Affiliation(s)
- Harry Crook
- Imperial College London, 4615, Brain Sciences, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Alfredo Ramirez
- University of Cologne, 14309, Department of Psychiatry and Psychotherapy, Koln, Nordrhein-Westfalen, Germany
- University of Bonn, 9374, Department of Neurodegenerative diseases and Geriatric Psychiatry, Bonn, Nordrhein-Westfalen, Germany
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, Department of Psychiatry , San Antonio, Texas, United States
- German Centre for Neurodegenerative Diseases, 172279, Bonn, Nordrhein-Westfalen, Germany;
| | - Akram A Hosseini
- Nottingham University Hospitals NHS Trust, 9820, Department of Neurology, Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland;
| | - Georgios Vavougyios
- University of Cyprus, 54557, Department of Neurology, Nicosia, Nicosia, Cyprus;
| | - Clara Lehmann
- University of Cologne, 14309, Department of Internal Medicine, Koln, Nordrhein-Westfalen, Germany
- University of Cologne, 14309, Center for Molecular Medicine Cologne (CMMC), Koln, Nordrhein-Westfalen, Germany
- German Centre for Infection Research, 459706, Braunschweig, Niedersachsen, Germany;
| | - Judith Bruchfeld
- Karolinska University Hospital, 59562, Department of Infectious Diseases, Stockholm, Sweden;
| | - Anja Schneider
- University Hospital Bonn, 39062, Department of Neurodegenerative diseases and Geriatric Psychiatry, Bonn, Nordrhein-Westfalen, Germany
- German Centre for Neurodegenerative Diseases, 172279, Bonn, Nordrhein-Westfalen, Germany;
| | - Giovanni d'Avossa
- Bangor University, 1506, School of Psychology, Bangor, Gwynedd, United Kingdom of Great Britain and Northern Ireland;
| | | | - Alberto Salmoiraghi
- Betsi Cadwaladr University Health Board, 1507, Bangor, Gwynedd, United Kingdom of Great Britain and Northern Ireland
- Glyndwr University, 8725, Wrexham, Clwyd, United Kingdom of Great Britain and Northern Ireland;
| | - Elizabeta Mukaetova-Ladinska
- University of Leicester, 4488, Neuroscience, Psychology and Behaviour, University Road, Leicester, United Kingdom of Great Britain and Northern Ireland, LE1 7RH;
| | - Mohammad Katshu
- University of Nottingham, 6123, School of Medicine, Nottingham, Nottinghamshire, United Kingdom of Great Britain and Northern Ireland;
| | - Filippo M Boneschi
- University of Milan, 9304, Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Lombardia, Italy;
| | - Krister Håkansson
- Karolinska Institute, 27106, Department of Neurobiology, Care Sciences and Society, Stockholm, Stockholm, Sweden;
| | - Mirjam Geerlings
- Utrecht University, 8125, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands;
| | - Elisabeth Pracht
- University of Cologne, 14309, Department of Psychiatry and Psychotherapy, Koln, Nordrhein-Westfalen, Germany;
| | - Agustín Ruiz
- Universitat Internacional de Catalunya, 16760, Institut Català de Neurociències Aplicades, Barcelona, Catalunya, Spain;
| | - Jacobus Fa Jansen
- Maastricht University Medical Centre+, 199236, Department of Radiology and Nuclear Medicine, Maastricht, Limburg, Netherlands;
| | - Heather Snyder
- Alzheimer's Association, 44027, Chicago, Illinois, United States;
| | - Miia Kivipelto
- Karolinska Institute, 27106, Department of Neurobiology, Care Sciences and Society, Stockholm, Stockholm, Sweden;
| | - Paul Edison
- Imperial College London, 4615, Brain Sciences, Neurology Imaging Unit, 1st Floor, B - Block, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom of Great Britain and Northern Ireland, SW7 2AZ;
| |
Collapse
|
20
|
Bird LJ, McCabe M, Lim YY, Cornish K. Prevalence and correlates of subjective cognitive concerns in Australian university students during the COVID-19 pandemic. Front Psychol 2023; 13:1094497. [PMID: 36710843 PMCID: PMC9874933 DOI: 10.3389/fpsyg.2022.1094497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Coronavirus (COVID-19) instigated unprecedented global effects on healthcare systems, economies, employment, education, travel, and social lives. In addition to increased mental health challenges, pandemic restrictions have triggered emerging cognitive concerns. University students are at particularly high risk of adverse lockdown-related effects, yet despite the substantial adaptions to learning necessitated by COVID-19, limited research has so far focused on the cognitive consequences of the pandemic among university students. This study aimed to comprehensively examine the nature, prevalence, and correlates of subjective cognitive concerns among 972 students (Median age = 22 years, 70% female) enrolled at Monash University, Australia, in December 2020. Methods Students completed the online THRIVE@Monash survey, 5 weeks following prolonged lockdown in Melbourne. Using group comparisons and hierarchical binary logistic regression analyses, we examined associations between demographic and enrolment characteristics, COVID-19-related experiences and impacts (author-developed questions), self-reported anxiety and depression symptoms (PROMIS Anxiety and Depression scales), and students' perceived changes in everyday cognitive functions (author-developed questions). Results Over 60% of students reported subjective cognitive concerns (SCCs). After controlling for anxiety and depression symptoms, students reporting more SCCs were more likely to be younger, from White/European ethnic backgrounds, and in their first year of undergraduate study. No differences in SCCs were found between male and female students. Greater worry, anxiety, or stress related to COVID-19 (e.g., infection, leaving the house, hygiene and exposure prevention, impact on physical and mental health), and time spent reading or talking about COVID-19, were generally not associated with SCCs after controlling for anxiety and depression symptoms. Discussion These findings highlight vulnerable subgroups of students who might benefit from regular monitoring, education, and interventions to support their cognitive health during the pandemic and beyond. In addition, cognitive concerns may provide additional insight into mental health problems among students, and emphasize the importance of understanding factors that impact students' long-term academic and career success.
Collapse
|
21
|
Amini M, Yousefi Z, Ghafori SS, Hassanzadeh G. Sleep deprivation and NLRP3 inflammasome: Is there a causal relationship? Front Neurosci 2022; 16:1018628. [PMID: 36620464 PMCID: PMC9815451 DOI: 10.3389/fnins.2022.1018628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
In the modern era, sleep deprivation (SD) is one of the most common health problems that has a profound influence on an individual's quality of life and overall health. Studies have identified the possibility that lack of sleep can stimulate inflammatory responses. NLRP3 inflammasome, a key component of the innate immune responses, initiates inflammatory responses by enhancing proinflammatory cytokine release and caspase-1-mediated pyroptosis. In this study, NLRP3 modification, its proinflammatory role, and potential targeted therapies were reviewed with regard to SD-induced outcomes. A growing body of evidence has showed the importance of the mechanistic connections between NLRP3 and the detrimental consequences of SD, but there is a need for more clinically relevant data. In animal research, (i) some animals show differential vulnerability to the effects of SD compared to humans. (ii) Additionally, the effects of sleep differ depending on the SD technique employed and the length of SD. Moreover, paying attention to the crosstalk of all the driving factors of NLRP3 inflammasome activation such as inflammatory responses, autonomic control, oxidative stress, and endothelial function is highly recommended. In conclusion, targeting NLRP3 inflammasome or its downstream pathways for therapy could be complicated due to the reciprocal and complex relationship of SD with NLRP3 inflammasome activation. However, additional research is required to support such a causal claim.
Collapse
Affiliation(s)
- Mohammad Amini
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sayed Soran Ghafori
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Gholamreza Hassanzadeh,
| |
Collapse
|
22
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
23
|
Hill C. Psychological health, wellbeing and COVID-19: Comparing previously infected and non-infected South African employees. Front Psychol 2022; 13:1013377. [PMID: 36405203 PMCID: PMC9669586 DOI: 10.3389/fpsyg.2022.1013377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Most COVID-19 and work-related well-being research is centred around the adverse effects on employees' psychological well-being and is not focused on the work-related well-being of those infected by SARS-CoV-2. Furthermore, COVID-19 and work-related well-being research is generally aimed at healthcare workers. The current study focused on investigating the difference in the level of burnout, anxiety, depression and stress between previously infected and uninfected participants. This study used a cross-sectional survey design and non-probability quota sampling to collect data. A retrospective pre-post design was used to determine the difference between the level of burnout of the participants before and after infection. Working adults in South Africa were targeted and divided into those previously infected (n = 245) and those not yet infected with COVID-19 (n = 221). Participants completed questionnaires relating to burnout, depression, anxiety, and stress. A comparison of means revealed a significant increase in burnout after being infected. Infected participants had significantly higher burnout, anxiety, depression, and stress levels than their non-infected counterparts. Emotional exhaustion, withdrawal, and stress were the most prevalent psychological ill-health problems. The results of this study indicated that a SARS-CoV-2 infection has a detrimental impact on participants' psychological well-being and mental health compared to their own initially reported levels of burnout before infection, as well as compared to the levels of burnout, depression, anxiety and depression of the non-infected participants. Based on the findings, specific recommendations to industrial psychologists were made to manage the psychological impact of COVID-19 on employees.
Collapse
Affiliation(s)
- Carin Hill
- Department of Industrial Psychology and People Management, School of Management, College of Business and Economics, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
24
|
Schrepf A. When even the ground was burning: Neuroinflammation in the wake of COVID-19. Brain Behav Immun 2022; 105:27-28. [PMID: 35714917 PMCID: PMC9195410 DOI: 10.1016/j.bbi.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022] Open
|
25
|
Inhibition of Monoacylglycerol Lipase by NSD1819 as an Effective Strategy for the Endocannabinoid System Modulation against Neuroinflammation-Related Disorders. Int J Mol Sci 2022; 23:ijms23158428. [PMID: 35955562 PMCID: PMC9369272 DOI: 10.3390/ijms23158428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory—a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent β-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.
Collapse
|