1
|
Liss A, Siddiqi MT, Marsland P, Varodayan FP. Neuroimmune regulation of the prefrontal cortex tetrapartite synapse. Neuropharmacology 2025; 269:110335. [PMID: 39904409 DOI: 10.1016/j.neuropharm.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The prefrontal cortex (PFC) is an essential driver of cognitive, affective, and motivational behavior. There is clear evidence that the neuroimmune system directly influences PFC synapses, in addition to its role as the first line of defense against toxins and pathogens. In this review, we first describe the core structures that form the tetrapartite PFC synapse, focusing on the signaling microdomain created by astrocytic cradling of the synapse as well as the emerging role of the extracellular matrix in synaptic organization and plasticity. Neuroimmune signals (e.g. pro-inflammatory interleukin 1β) can impact the function of each core structure within the tetrapartite synapse, as well as promote intra-synaptic crosstalk, and we will provide an overview of recent advances in this field. Finally, evidence from post mortem human brain tissue and preclinical studies indicate that inflammation may be a key contributor to PFC dysfunction. Therefore, we conclude with a mechanistic discussion of neuroimmune-mediated maladaptive plasticity in neuropsychiatric disorders, with a focus on alcohol use disorder (AUD). Growing recognition of the neuroimmune system's role as a critical regulator of the PFC tetrapartite synapse provides strong support for targeting the neuroimmune system to develop new pharmacotherapeutics.
Collapse
Affiliation(s)
- Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Mahum T Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA.
| |
Collapse
|
2
|
Diaz MR, Barney TM, Marsland P, Deak T. Age- and cytokine-dependent modulation of GABAergic transmission within the basolateral amygdala of male Sprague Dawley rats. Neuropharmacology 2025; 267:110304. [PMID: 39827996 DOI: 10.1016/j.neuropharm.2025.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Alcohol binge drinking has a multitude of effects on CNS function, including changes in inflammatory cytokines such as IL-6 and IL-1β that may contribute to mood fluctuations associated with the intoxication-withdrawal cycle. Widely throughout the brain, including the amygdala, IL-6 mRNA is enhanced during intoxication, whereas IL-1β is initially suppressed during alcohol intoxication, with increased expression seen shortly after ethanol clearance, during acute hangover. Furthermore, induction of neuroimmune genes appears to be muted during adolescence in the amygdala, suggesting a broader functional immaturity of the adolescent neuroimmune system in structures involved in negative affect associated with ethanol exposure. However, neither the effect of IL-6 or IL-1β on synaptic function within the amygdala nor the impact of acute intoxication and withdrawal on these cytokines' function are known. To test this, we used whole-cell patch-clamp electrophysiology to assess the effects of IL-6 and IL-1β on GABA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in BLA pyramidal neurons from male rats in early adolescence (P28-40) or adulthood (P70+). These experiments were done in naïve, intoxicated (3-4 h following an intraperitoneal injection of 3.5 g/kg ethanol), and during acute hangover (11-18 h post ethanol injection). In naïve males, we found that IL-6 (10 ng/ml) significantly enhanced sIPSC amplitude only in adults, with no apparent effect in adolescents; this effect of IL-6 in adults was not different during intoxication. Conversely, IL-1β (10 ng/ml) did not alter sIPSC frequency in any group (naïve or hangover adolescents or adults). Unlike our previous work in adult rats, here we found that contextual fear conditioning was not altered in adolescents when conditioned during acute hangover. Together, these observations suggest that IL-6, but not IL-1β, regulation of BLA GABA transmission emerges as a function of age, but is not affected by acute ethanol exposure or hangover for adolescents or adults. Importantly, these findings provide additional evidence to support functional immaturity of the neuroimmune system in adolescence.
Collapse
Affiliation(s)
- Marvin R Diaz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Thaddeus M Barney
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
3
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Mayfield RD. Integrative Genomics Approach Identifies Glial Transcriptomic Dysregulation and Risk in the Cortex of Individuals With Alcohol Use Disorder. Biol Psychiatry 2025:S0006-3223(25)00994-1. [PMID: 40024496 DOI: 10.1016/j.biopsych.2025.02.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Previous studies of AUD used underpowered single-cell analysis or bulk homogenates of postmortem brain tissue, which obscure gene expression changes in specific cell types. Therefore, we sought to conduct the largest-to-date single-nucleus RNA sequencing (snRNA-seq) postmortem brain study in AUD to elucidate transcriptomic pathology with cell type-specific resolution. METHODS Here, we performed snRNA-seq and high-dimensional network analysis of 73 postmortem samples from individuals with AUD (n = 36, nnuclei = 248,873) and neurotypical control individuals (n = 37, nnuclei = 210,573) in the dorsolateral prefrontal cortex from both male and female donors. Additionally, we performed analysis for cell type-specific enrichment of aggregate genetic risk for AUD as well as integration of the AUD proteome for secondary validation. RESULTS We identified 32 distinct cell clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glial populations. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and coexpression modules linked to AUD. Differential gene expression was secondarily validated by integration of a publicly available AUD proteome. Finally, analysis for aggregate genetic risk for AUD identified subtypes of glia as potential key players not only affected by but also causally linked to the progression of AUD. CONCLUSIONS These results highlight the importance of cell type-specific molecular changes in AUD and offer opportunities to identify novel targets for treatment on the single-nucleus level.
Collapse
Affiliation(s)
- Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas
| | - Nihal A Salem
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas; Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - Eric Brenner
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Julia Stevens
- New South Wales Brain Tissue Resource Centre, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Alison M Goate
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, New York; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas; Institute for Neuroscience, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
4
|
Guo Q, Geng K, Wan J, Lan T, Lu X, Tao L, Duan K, Zhou W, Guo H, Shen X. Lysozyme-targeted liposomes for enhanced tubular targeting in the treatment of acute kidney injury. Acta Biomater 2025; 192:394-408. [PMID: 39674240 DOI: 10.1016/j.actbio.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Acute kidney injury (AKI) is defined by the release of pro-inflammatory factors, leading to structural damage in renal tubules and subsequent tubular cell injury and death. Delivering drugs specifically to renal tubules to mitigate tubular cell damage holds potential for AKI treatment. In this work, we developed functional liposomes (LZM-PLNPs-TP) designed to bypass the glomerular filtration barrier and target tubules by leveraging the unique structural and pathological characteristics of glomeruli and tubules. LZM-PLNPs-TP, incorporating lysozyme (LZM) and cationic liposome, and carrying the anti-inflammatory and antioxidant drug Triptolide (TP), demonstrated favorable stability, efficient drug release, and good cytocompatibility in wide TP concentrations (0-100 ng/mL). These liposomes exhibited the enhanced renal accumulation, tubular retention, and cellular targeting through endocytosis by peritubular capillary endothelial cells. The administration of LZM-PLNPs-TP at a minimal TP dosage (0.01 mg/kg) demonstrated significant protection through the mitigation of oxidative stress and inflammation in ischemia/reperfusion injury (IRI) mice, while the naked TP (0.01 mg/kg) exhibited lower efficacy. Following treatment with LZM-PLNPs-TP, levels of serum creatine, blood urea nitrogen, superoxide dismutase, malondialdehyde, as well as the inflammatory cytokines IL-1β and IL-6 in renal IRI mice were found to be significantly reduced by factors of 2.9, 1.7, 0.7, 1.3, 2.1, and 1.9, respectively, compared to mice treated with TP alone. In summary, this study presents an LZM-targeted drug delivery system that synergistically enhances tubular reabsorption and cellular uptake, offering a promising strategy for AKI treatment. STATEMENT OF SIGNIFICANCE: We have designed specialized liposomes (LZM-PLNPs-TP) with targeting capabilities towards renal tubules to enhance cellular internalization, offering a promising therapeutic strategy for AKI treatment. Our research confirms that the increased accumulation of LZM-PLNPs-TP in renal tubules is facilitated by peritubular capillary endothelial cells rather than glomerular filtration. LZM-PLNPs-TP demonstrated effective mitigation of oxidative stress, inflammation suppression, and significant improvement in kidney injury, ultimately leading to the restoration of renal function in murine models of AKI induced by ischemia/reperfusion. This study introduces LZM-targeted liposomes that enhance tubular reabsorption and cellular uptake synergistically, providing a promising therapeutic approach for AKI management.
Collapse
Affiliation(s)
- Qianqian Guo
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China.
| | - Kedui Geng
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Jiangmin Wan
- Department of nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Tianyu Lan
- College of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, Guizhou Province, China
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Kunyuan Duan
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Wen Zhou
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Honglei Guo
- Department of nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Shamakina IY, Anokhin PK, Ageldinov RA, Kokhan VS. Neuroimmune Characteristics of Animals with Prenatal Alcohol Intoxication. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1922-1929. [PMID: 39647821 DOI: 10.1134/s0006297924110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 12/10/2024]
Abstract
Neuroinflammation can be an important factor of many disorders in central nervous system (CNS) including cognitive dysfunction, affective disorders, and addictive behavior associated with prenatal alcohol exposure and presented in early adulthood. In this study we used an experimental rodent model of prenatal alcohol (PA) exposure (consumption of a 10% ethanol solution by female Wistar rats throughout pregnancy), multiplex immunofluorescence analysis of interleukins (IL-1α, IL-1β, IL-3, IL-6, IL-9, and IL-12), tumor necrosis factor (TNF-α), and chemokine CCL5, as well as quantitative real-time PCR to assess the level of cytokine mRNAs in the prefrontal cortex of the sexually mature (PND60) offspring - male and female rats with prenatal alcohol intoxication and control animals. Significant decrease in the content of TNF-α and interleukins IL-1β, IL-3, IL-6, IL-9 was detected in the prefrontal cortex of male, but not in the female PA offspring. Importantly, PA males also showed decrease in the level of TNF-α mRNA in the prefrontal cortex by 45% compared to the control males, which may underlie the detected decrease in its content. Taken together, our study demonstrates that a number of neuroimmune factors are regulated in a sex-specific manner in the prefrontal cortex and are differentially affected in males and females by the prenatal exposure to alcohol. Sex factor must be taken into account when conducting further translational studies of the fetal alcohol spectrum disorders and developing new methods for prevention and therapy.
Collapse
Affiliation(s)
- Inna Yu Shamakina
- Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, 119002, Russia.
| | - Petr K Anokhin
- Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, 119002, Russia
- Artificial Intelligence Research Institute, Moscow, 121170, Russia
| | - Ruslan A Ageldinov
- Scientific Center for Biomedical Technologies of the Federal Medical and Biological Agency of Russia, Svetlye Gory, 143442, Russia
| | - Viktor S Kokhan
- Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, 119002, Russia
| |
Collapse
|
6
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Dayne Mayfield R. Integrative genomics approach identifies glial transcriptomic dysregulation and risk in the cortex of individuals with Alcohol Use Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607185. [PMID: 39211266 PMCID: PMC11360965 DOI: 10.1101/2024.08.16.607185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Past molecular studies of AUD used underpowered single cell analysis or bulk homogenates of postmortem brain tissue, which obscures gene expression changes in specific cell types. Here we performed single nuclei RNA-sequencing analysis of 73 post-mortem samples from individuals with AUD (N=36, N nuclei = 248,873) and neurotypical controls (N=37, N nuclei = 210,573) in both sexes across two institutional sites. We identified 32 clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glia. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and co-expression modules linked to AUD. Analysis for cell type-specific enrichment of aggregate genetic risk for AUD identified subtypes of microglia and astrocytes as potential key players not only affected by but causally linked to the progression of AUD. These results highlight the importance of cell-type specific molecular changes in AUD and offer opportunities to identify novel targets for treatment.
Collapse
|
7
|
Kang S, Lee J, Ali DN, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Low to moderate ethanol exposure reduces astrocyte-induced neuroinflammatory signaling and cognitive decline in presymptomatic APP/PS1 mice. Sci Rep 2024; 14:23989. [PMID: 39402264 PMCID: PMC11473946 DOI: 10.1038/s41598-024-75202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Alcohol use disorder has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the brain of APP/PS1 mice using IHC and ELISA in response to low to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake using 18F- fluorodeoxyglucose (FDG)-positron emission tomography (PET). Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble object recognition test, and Morris water maze. Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression was accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced levels of anti-inflammatory cytokines IL-4, and IL-10 without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of APP/PS1 mice exposed to ethanol starting at pre-symptomatic stage. Consistently, MEE increased FDG-PET-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte-derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pharmacology College of Medicine, Soonchunhyang University, 22 Soonchunhyango-ro, Ansan, Chungcheongnam-do, 31508, South Korea
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dina N Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paul H Min
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
- Neuroscience Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Liss A, Siddiqi M, Podder D, Scroger M, Vessey G, Martin K, Paperny N, Vo K, Astefanous A, Belachew N, Idahor E, Varodayan F. Ethanol drinking sex-dependently alters cortical IL-1β synaptic signaling and cognitive behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617276. [PMID: 39416094 PMCID: PMC11483015 DOI: 10.1101/2024.10.08.617276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Individuals with alcohol use disorder (AUD) struggle with inhibitory control, decision making, and emotional processing. These cognitive symptoms reduce treatment adherence, worsen clinical outcomes, and promote relapse. Neuroimmune activation is a key factor in the pathophysiology of AUD, and targeting this modulatory system is less likely to produce unwanted side effects compared to directly targeting neurotransmitter dysfunction. Notably, the cytokine interleukin-1β (IL-1β) has been broadly associated with the cognitive symptoms of AUD, though the underlying mechanisms are not well understood. Here we investigated how chronic intermittent 24-hour access two bottle choice ethanol drinking affects medial prefrontal cortex (mPFC)-related cognitive function and IL-1 synaptic signaling in male and female C57BL/6J mice. In both sexes, ethanol drinking decreased reference memory and increased mPFC IL-1 receptor 1 (IL-1R1) mRNA levels. In neurons, IL-1β can activate either pro-inflammatory or neuroprotective intracellular pathways depending on the isoform of the accessory protein (IL-1RAcP) recruited to the IL-1R1 complex. Moreover, ethanol drinking sex-dependently shifted mPFC IL-1RAcP isoform gene expression and IL-1β regulation of mPFC GABA synapses, both of which may contribute to female mPFC resiliency and male mPFC susceptibility. This type of signaling bias has become a recent focus of rational drug development. Therefore, in addition to increasing our understanding of how IL-1β sex-dependently contributes to mPFC dysfunction in AUD, our current findings also support the development of a new class of pharmacotherapeutics based on biased IL-1 signaling.
Collapse
|
9
|
Patel RR, Gandhi P, Spencer K, Salem NA, Erikson CM, Borgonetti V, Vlkolinsky R, Rodriguez L, Nadav T, Bajo M, Roberts AJ, Dayne Mayfield R, Roberto M. Functional and morphological adaptation of medial prefrontal corticotropin releasing factor receptor 1-expressing neurons in male mice following chronic ethanol exposure. Neurobiol Stress 2024; 31:100657. [PMID: 38983690 PMCID: PMC11231756 DOI: 10.1016/j.ynstr.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/11/2024] Open
Abstract
Chronic ethanol dependence and withdrawal activate corticotropin releasing factor (CRF)-containing GABAergic neurons in the medial prefrontal cortex (mPFC), which tightly regulate glutamatergic pyramidal neurons. Using male CRF1:GFP reporter mice, we recently reported that CRF1-expressing (mPFCCRF1+) neurons predominantly comprise mPFC prelimbic layer 2/3 pyramidal neurons, undergo profound adaptations following chronic ethanol exposure, and regulate anxiety and conditioned rewarding effects of ethanol. To explore the effects of acute and chronic ethanol exposure on glutamate transmission, the impact of chronic alcohol on spine density and morphology, as well as persistent changes in dendritic-related gene expression, we employed whole-cell patch-clamp electrophysiology, diOlistic labeling for dendritic spine analysis, and dendritic gene expression analysis to further characterize mPFCCRF1+ and mPFCCRF1- prelimbic layer 2/3 pyramidal neurons. We found increased glutamate release in mPFCCRF1+ neurons with ethanol dependence, which recovered following withdrawal. In contrast, we did not observe significant changes in glutamate transmission in neighboring mPFCCRF1- neurons. Acute application of 44 mM ethanol significantly reduced glutamate release onto mPFCCRF1+ neurons, which was observed across all treatment groups. However, this sensitivity to acute ethanol was only evident in mPFCCRF1- neurons during withdrawal. In line with alterations in glutamate transmission, we observed a decrease in total spine density in mPFCCRF1+ neurons during dependence, which recovered following withdrawal, while again no changes were observed in mPFCCRF- neurons. Given the observed decreases in mPFCCRF1+ stubby spines during withdrawal, we then identified persistent changes at the dendritic gene expression level in mPFCCRF1+ neurons following withdrawal that may underlie these structural adaptations. Together, these findings highlight the varying responses of mPFCCRF1+ and mPFCCRF1- cell-types to acute and chronic ethanol exposure, as well as withdrawal, revealing specific functional, morphological, and molecular adaptations that may underlie vulnerability to ethanol and the lasting effects of ethanol dependence.
Collapse
Affiliation(s)
- Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Pauravi Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Kathryn Spencer
- Core Microscopy Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nihal A. Salem
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chloe. M. Erikson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Larry Rodriguez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Tali Nadav
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - R. Dayne Mayfield
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| |
Collapse
|
10
|
Aşır F, Erdemci F, Çankırı Z, Korak T, Başaran SÖ, Kaplan Ö, Yükselmiş Ö, Dönmezdil N, Ayaz H, Kaplan Ş, Tunik S. Zonisamide Ameliorated the Apoptosis and Inflammation in Cerebellar Tissue of Induced Alcohol Addiction Animal Model. Life (Basel) 2024; 14:795. [PMID: 39063550 PMCID: PMC11278003 DOI: 10.3390/life14070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of zonisamide treatment on cerebellar tissues in an experimental alcohol addiction (AA) model and its potential mechanisms of action, particularly regarding apoptotic protease activating factor-1 (APAF-1) and tumor necrosis factor-alpha (TNF-α) expression. Thirty rats were divided into three groups: sham, ethanol (EtOH), and EtOH + zonisamide. AA was induced by administering 6 cc of EtOH orally every 8 h for 4 days. Zonisamide (100 mg/kg) was given to rats once daily before EtOH administration. Motor defects were evaluated using an open field maze. Serum TNF-α levels were measured from blood samples. Cerebellar sections were processed for histological examination and immunostained for APAF-1 and TNF-α. Protein interaction networks were constructed using Cytoscape, and functional annotations were performed with ShinyGO (version 0.80) software. The traveled area in the EtOH group was significantly reduced compared to the sham group (p = 0.0005). Rats in the EtOH + zonisamide group covered a larger area, with zonisamide treatment significantly improving locomotor ability compared to the EtOH group (p = 0.0463). Serum TNF-α levels were significantly elevated in the EtOH group compared to the sham group (p < 0.0001) and were significantly decreased in the EtOH + zonisamide group compared to the EtOH group (p = 0.0309). Regular cerebellar histological layers were observed in the sham group, while EtOH induction caused loss of cerebellar tissue integrity, neuronal degeneration, vascular dilatation and congestion, reduced myelin density, and neuropils in the EtOH group. Zonisamide treatment improved these pathologies, enhancing myelination and neuropil formation. Negative APAF-1 and TNF-α expressions were observed across cerebellar layers in the sham group. Due to EtOH toxicity, APAF-1 and TNF-α expression were upregulated in the EtOH group compared to the sham group (p < 0.001 for both). Zonisamide treatment downregulated these protein expressions in the EtOH + zonisamide group compared to the EtOH group (p < 0.001 and p = 0.0087, respectively). APAF-1 was primarily associated with AA through antifolate resistance, endopeptidases, and the interleukin-1 pathway, while TNF-α was predominantly enriched in infections and choline-binding, indicating zonisamide's impact on immune and inflammatory pathways. In conclusion, zonisamide treatment significantly mitigated ethanol-induced cerebellar damage and inflammation in an AA model. Zonisamide improved locomotor function and reduced serum TNF-α levels, as well as APAF-1 and TNF-α expression in cerebellar tissues. These findings suggest that zonisamide exerts its protective effects by modulating immune and inflammatory pathways, thereby preserving cerebellar integrity and function.
Collapse
Affiliation(s)
- Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Fikri Erdemci
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Zuhal Çankırı
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Tuğcan Korak
- Department of Medical Biology, Medical Faculty, Kocaeli University, 41001 Kocaeli, Turkey
| | - Süreyya Özdemir Başaran
- Department of Andrology, Gazi Yasargil Education and Research Hospital, Health Sciences University, 21090 Diyarbakir, Turkey
| | - Özge Kaplan
- Department of Andrology, Gazi Yasargil Education and Research Hospital, Health Sciences University, 21090 Diyarbakir, Turkey
| | - Özkan Yükselmiş
- Division of Physical Medicine and Rehabilitation, Diyarbakır Dağ Kapı State Hospital, 21100 Diyarbakır, Turkey
| | - Nilüfer Dönmezdil
- Department of Audiology, Faculty of Health Sciences, Mardin Artuklu University, 47200 Mardin, Turkey
| | - Hayat Ayaz
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Şehmus Kaplan
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Selçuk Tunik
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| |
Collapse
|
11
|
Steiner NL, Purohit DC, Tiefenthaler CM, Mandyam CD. Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats. Brain Sci 2024; 14:431. [PMID: 38790410 PMCID: PMC11118749 DOI: 10.3390/brainsci14050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence.
Collapse
Affiliation(s)
- Noah L. Steiner
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
| | | | - Casey M. Tiefenthaler
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
12
|
Tabakoff B, Hoffman PL, Saba LM. The genetical genomic path to understanding why rats and humans consume too much alcohol. JOURNAL OF NEUROBIOLOGY AND PHYSIOLOGY 2024; 5:15-22. [PMID: 40297323 PMCID: PMC12037163 DOI: 10.46439/neurobiology.5.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background At the invitation of the Journal, we are providing a summary of our published work that has followed the publication in 2009 of our manuscript entitled "Genetical Genomic Determinants of Alcohol Consumption in Rats and Humans". Our initial premise, which has been maintained throughout, is that knowledge regarding gene transcription would greatly enhance GWAS of alcohol-related phenotypes. We chose to concentrate our studies on the quantitative phenotype of alcohol consumption since high levels of alcohol consumption are a prerequisite for the development of alcohol use disorder (AUD). We also structured our studies to focus on "predisposition" to higher levels of alcohol consumption. We defined predisposition as a genetic structure and transcriptional pattern that is inherent in an organism and present prior to exposure to an environmental stimulus that engenders a physiological/behavioral response. In studies using humans, this interest in predisposition usually requires prolonged periods of cohort follow-up. On the other hand, studies with animals can use resources such as panels of recombinant inbred (RI) animals (in our case, the HXB/BXH rat panel) to capture the transcriptional landscape of animals not exposed to alcohol and compare this transcriptional landscape to levels of alcohol consumption collected from a different cohort of animals that are the same age, have an identical genetic composition, and are raised in an identical environment. The other benefit is that the stable genetic structure of inbred strains allows for a chronological expansion of information on these animals. This characteristic of the HXB/BXH RI rats allowed us to add important information as technology and analytical methods developed over time. Methods findings and conclusions Our initial studies relied on hybridization arrays for RNA quantification in brain, an initial set of polymorphic markers for the rat genome, and a standard behavioral (b)QTL analysis for alcohol consumption. What we added to the conceptual basis for analysis and interpretation was the calculation of transcript expression (e)QTLs and the requirements that: 1. the eQTL overlapped the location of the bQTL; and 2. the transcript levels were significantly correlated with the quantitative levels of alcohol consumption across rat strains. These criteria were used to identify genes (transcripts) as "candidate" contributors to the alcohol consumption phenotype. We soon realized that the search for candidate genes as unique determinants of a complex trait is irrational, since these phenotypes are best characterized by differences in genetic networks. Therefore, we incorporated Weighted Gene Coexpression Network Analysis (WGCNA) in our further work. We also realized the limitations of hybridization arrays for breadth of transcriptome coverage and quantification, and in the more current work used total RNA-Seq-derived data for characterizing nearly all of the brain transcriptome. Finally, we participated in the efforts for whole genome sequencing of the strains of the HXB/BXH panel, generating an extensive new panel of markers for remapping of the QTLs. We also realized that the biological determinants of a behavioral phenotype do not have to reside in brain and, by examining the liver transcriptome, we found that the gut-liver-brain axis was, in part, involved in predisposition to higher levels of free-choice alcohol consumption. In all, from the first exploration of the genetical genomics of the alcohol consumption phenotype, to the current status of our work, the function of the brain immune system, with emphasis on microglia and astrocytes, even prior to the animal being offered alcohol, has emerged as a most significant genetic contributor to the amount of alcohol an animal will consume on a daily basis. Particularly prominent was a cluster of inflammasome (NLRP3)-modulating transcripts (P2rx4, Ift81, Oas1b, Txnip) and a long noncoding transcript, "Lrap" that repeatedly appeared within a gene coexpression module associated with alcohol consumption levels. Interestingly, data from post-mortem tissue from brain of humans suffering from AUD also indicates a hyperactive neuroimmune function. The data from studies with animals may indicate that neuroimmune hyperactivity may be a trait rather than a state marker for AUD.
Collapse
Affiliation(s)
- Boris Tabakoff
- Lohocla Research Corporation, Aurora, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
| | - Paula L. Hoffman
- Lohocla Research Corporation, Aurora, CO, USA
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
13
|
Salem NA, Manzano L, Keist MW, Ponomareva O, Roberts AJ, Roberto M, Mayfield RD. Cell-type brain-region specific changes in prefrontal cortex of a mouse model of alcohol dependence. Neurobiol Dis 2024; 190:106361. [PMID: 37992784 PMCID: PMC10874299 DOI: 10.1016/j.nbd.2023.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/31/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
The prefrontal cortex is a crucial regulator of alcohol drinking, and dependence, and other behavioral phenotypes associated with AUD. Comprehensive identification of cell-type specific transcriptomic changes in alcohol dependence will improve our understanding of mechanisms underlying the excessive alcohol use associated with alcohol dependence and will refine targets for therapeutic development. We performed single nucleus RNA sequencing (snRNA-seq) and Visium spatial gene expression profiling on the medial prefrontal cortex (mPFC) obtained from C57BL/6 J mice exposed to the two-bottle choice-chronic intermittent ethanol (CIE) vapor exposure (2BC-CIE, defined as dependent group) paradigm which models phenotypes of alcohol dependence including escalation of alcohol drinking. Gene co-expression network analysis and differential expression analysis identified highly dysregulated co-expression networks in multiple cell types. Dysregulated modules and their hub genes suggest novel understudied targets for studying molecular mechanisms contributing to the alcohol dependence state. A subtype of inhibitory neurons was the most alcohol-sensitive cell type and contained a downregulated gene co-expression module; the hub gene for this module is Cpa6, a gene previously identified by GWAS to be associated with excessive alcohol consumption. We identified an astrocytic Gpc5 module significantly upregulated in the alcohol-dependent group. To our knowledge, there are no studies linking Cpa6 and Gpc5 to the alcohol-dependent phenotype. We also identified neuroinflammation related gene expression changes in multiple cell types, specifically enriched in microglia, further implicating neuroinflammation in the escalation of alcohol drinking. Here, we present a comprehensive atlas of cell-type specific alcohol dependence mediated gene expression changes in the mPFC and identify novel cell type-specific targets implicated in alcohol dependence.
Collapse
Affiliation(s)
- Nihal A Salem
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Lawrence Manzano
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael W Keist
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Olga Ponomareva
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Siddiqi MT, Podder D, Pahng AR, Athanason AC, Nadav T, Cates-Gatto C, Kreifeldt M, Contet C, Roberts AJ, Edwards S, Roberto M, Varodayan FP. Prefrontal cortex glutamatergic adaptations in a mouse model of alcohol use disorder. ADDICTION NEUROSCIENCE 2023; 9:100137. [PMID: 38152067 PMCID: PMC10752437 DOI: 10.1016/j.addicn.2023.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Alcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC). Dependent male C57BL/6J mice were generated using the chronic intermittent ethanol vapor-two bottle choice (CIE-2BC) paradigm. Non-dependent mice had access to water and ethanol bottles but did not receive ethanol vapor. Naïve mice had no ethanol exposure. We used patch-clamp electrophysiology to measure glutamate neurotransmission in layer 2/3 prelimbic mPFC pyramidal neurons. Since AMPAR function can be impacted by subunit composition or plasticity-related proteins, we probed their mPFC expression levels. Dependent mice had higher spontaneous excitatory postsynaptic current (sEPSC) amplitude and kinetics compared to the Naïve/Non-dependent mice. These effects were seen during intoxication and after 3-8 days withdrawal, and were action potential-independent, suggesting direct enhancement of AMPAR function. Surprisingly, 3 days withdrawal decreased expression of genes encoding AMPAR subunits (Gria1/2) and synaptic plasticity proteins (Dlg4 and Grip1) in Dependent mice. Further analysis within the Dependent group revealed a negative correlation between Gria1 mRNA levels and ethanol intake. Collectively, these data establish a role for mPFC AMPAR adaptations in the glutamatergic dysfunction associated with ethanol dependence. Future studies on the underlying AMPAR plasticity mechanisms that promote alcohol reinforcement, seeking, drinking and relapse behavior may help identify new targets for AUD treatment.
Collapse
Affiliation(s)
- Mahum T. Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Dhruba Podder
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Amanda R. Pahng
- Department of Physiology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA, 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, 11F, New Orleans, LA, 70119, USA
| | - Alexandria C. Athanason
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Tali Nadav
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA, 70112, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Florence P. Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
15
|
Kang S, Lee J, Choi S, Nesbitt J, Min PH, Trushina E, Choi DS. Moderate ethanol exposure reduces astrocyte-induced neuroinflammatorysignaling and cognitive decline in presymptomatic APP/PS1 mice. RESEARCH SQUARE 2023:rs.3.rs-3627637. [PMID: 38077051 PMCID: PMC10705690 DOI: 10.21203/rs.3.rs-3627637/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background Alcohol use disorder (AUD) has been associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). However, recent studies demonstrate that moderate alcohol consumption may be protective against dementia and cognitive decline. Methods We examined astrocyte function, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1), and the NF-κB p65 and IKK-α/β signaling pathways in modulating neuroinflammation and amyloid beta (Aβ) deposition. We assessed apolipoprotein E (ApoE) in the mouse brain using IHC and ELISA in response to moderate ethanol exposure (MEE). First, to confirm the intracerebral distribution of ApoE, we co-stained with GFAP, a marker for astrocytes that biosynthesize ApoE. We sought to investigate whether the ethanol-induced upregulation of LRP1 could potentially inhibit the activity of IL-1β and TNF-α induced IKK-α/β towards NF-κB p65, resulting in a reduction of pro-inflammatory cytokines. To evaluate the actual Aβ load in the brains of APP/PS1 mice, we performed with a specific antibody Aβ (Thioflavin S) on both air- and ethanol-exposed groups, subsequently analyzing Aβ levels. We also measured glucose uptake activity using 18F-FDG in APP/PS1 mice. Finally, we investigated whether MEE induced cognitive and memory changes using the Y maze, noble objective recognition (NOR) test, and Morris water maze (MWM). Results Our findings demonstrate that MEE reduced astrocytic glial fibrillary acidic protein (GFAP) and ApoE levels in the cortex and hippocampus in presymptomatic APP/PS1 mice. Interestingly, increased LRP1 protein expression is accompanied by dampening the IKK-α/β-NF-κB p65 pathway, resulting in decreased IL-1β and TNF-α levels in male mice. Notably, female mice show reduced anti-inflammatory cytokines, IL-4, and IL-10 levels without altering IL-1β and TNF-α concentrations. In both males and females, Aβ plaques, a hallmark of AD, were reduced in the cortex and hippocampus of ethanol-exposed presymptomatic APP/PS1 mice. Consistently, MEE increased fluorodeoxyglucose (FDG)-positron emission tomography (PET)-based brain activities and normalized cognitive and memory deficits in the APP/PS1 mice. Conclusions Our findings suggest that MEE may benefit AD pathology via modulating LRP1 expression, potentially reducing neuroinflammation and attenuating Aβ deposition. Our study implies that reduced astrocyte derived ApoE and LDL cholesterol levels are critical for attenuating AD pathology.
Collapse
Affiliation(s)
| | - Jeyeon Lee
- Mayo Clinic College of Medicine, and Science
| | - Sun Choi
- Mayo Clinic College of Medicine, and Science
| | | | - Paul H Min
- Mayo Clinic College of Medicine, and Science
| | | | | |
Collapse
|
16
|
Nagy EK, Leyrer-Jackson JM, Hood LE, Acuña AM, Olive MF. Effects of repeated binge intake of the pyrovalerone cathinone derivative 3,4-methylenedioxypyrovalerone on prefrontal cytokine levels in rats - a preliminary study. Front Behav Neurosci 2023; 17:1275968. [PMID: 38025384 PMCID: PMC10668493 DOI: 10.3389/fnbeh.2023.1275968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Drugs of abuse activate neuroimmune signaling in addiction-related regions of the brain, including the prefrontal cortex (PFC) which mediates executive control, attention, and behavioral inhibition. Traditional psychostimulants including methamphetamine and cocaine are known to induce PFC inflammation, yet the effects of synthetic cathinone derivatives are largely unexplored. In this study, we examined the ability of repeated binge-like intake of the pyrovalerone cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV) to alter cytokine profiles in the PFC. Male and female rats were allowed to intravenously self-administer MDPV (0.05 mg/kg/infusion) or saline as a control under conditions of prolonged binge-like access, consisting of three 96 h periods of drug access interspersed with 72 h of forced abstinence. Three weeks following cessation of drug availability, PFC cytokine levels were assessed using antibody arrays. Employing the unsupervised clustering and regression analysis tool CytoMod, a single module of co-signaling cytokines associated with MDPV intake regardless of sex was identified. With regards to specific cytokines, MDPV intake was positively associated with PFC levels of VCAM-1/CD106 and negatively associated with levels of Flt-3 ligand. These findings indicate that prolonged MDPV intake causes changes in PFC cytokine levels that persist into abstinence; however, the functional ramifications of these changes remain to be fully elucidated.
Collapse
Affiliation(s)
- Erin K. Nagy
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ, United States
| | - Jonna M. Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States
| | - Lauren E. Hood
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ, United States
| | - Amanda M. Acuña
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ, United States
- Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ, United States
- Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
17
|
Cruz B, Borgonetti V, Bajo M, Roberto M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol Stress 2023; 26:100562. [PMID: 37601537 PMCID: PMC10432974 DOI: 10.1016/j.ynstr.2023.100562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Excessive alcohol use disrupts neuroimmune signaling across various cell types, including neurons, microglia, and astrocytes. The present review focuses on recent, albeit limited, evidence of sex differences in biological factors that mediate neuroimmune responses to alcohol and underlying neuroimmune systems that may influence alcohol drinking behaviors. Females are more vulnerable than males to the neurotoxic and negative consequences of chronic alcohol drinking, reflected by elevations of pro-inflammatory cytokines and inflammatory mediators. Differences in cytokine, microglial, astrocytic, genomic, and transcriptomic evidence suggest females are more reactive than males to neuroinflammatory changes after chronic alcohol exposure. The growing body of evidence supports that innate immune factors modulate synaptic transmission, providing a mechanistic framework to examine sex differences across neurocircuitry. Targeting neuroimmune signaling may be a viable strategy for treating AUD, but more research is needed to understand sex-specific differences in alcohol drinking and neuroimmune mechanisms.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| |
Collapse
|
18
|
Nonoguchi HA, Jin M, Narreddy R, Kouo TWS, Nayak M, Trenet W, Mandyam CD. Progenitor Cells Play a Role in Reinstatement of Ethanol Seeking in Adult Male and Female Ethanol Dependent Rats. Int J Mol Sci 2023; 24:12233. [PMID: 37569609 PMCID: PMC10419311 DOI: 10.3390/ijms241512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Female and male glial fibrillary acidic protein-thymidine kinase (GFAP-TK) transgenic rats were made ethanol dependent via a six-week chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. During the last week of CIE, a subset of male and female TK rats was fed valcyte to ablate dividing progenitor cells and continued the diet until the end of this study. Following week six, all CIE rats experienced two weeks of forced abstinence from CIE-ED, after which they experienced relapse to drinking, extinction, and reinstatement of ethanol seeking sessions. CIE increased ED in female and male rats, with females having higher ethanol consumption during CIE and relapse sessions compared with males. In both sexes, valcyte reduced the levels of Ki-67-labeled progenitor cells in the subgranular zone of the dentate gyrus and did not alter the levels in the medial prefrontal cortex (mPFC). Valcyte increased ED during relapse, increased lever responses during extinction and, interestingly, enhanced latency to extinguish ethanol-seeking behaviors in males. Valcyte reduced the reinstatement of ethanol-seeking behaviors triggered by ethanol cues in females and males. Reduced seeking by valcyte was associated with the normalization of cytokines and chemokines in plasma isolated from trunk blood, indicating a role for progenitor cells in peripheral inflammatory responses. Reduced seeking by valcyte was associated with increases in tight junction protein claudin-5 and oligodendrogenesis in the dentate gyrus and reduction in microglial activity in the dentate gyrus and mPFC in females and males, demonstrating a role for progenitor cells in the dentate gyrus in dependence-induced endothelial and microglial dysfunction. These data suggest that progenitor cells born during withdrawal and abstinence from CIE in the dentate gyrus are aberrant and could play a role in strengthening ethanol memories triggered by ethanol cues via central and peripheral immune responses.
Collapse
Affiliation(s)
| | - Michael Jin
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | | | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
19
|
Borgonetti V, Cruz B, Vozella V, Khom S, Steinman MQ, Bullard R, D’Ambrosio S, Oleata CS, Vlkolinsky R, Bajo M, Zorrilla EP, Kirson D, Roberto M. IL-18 Signaling in the Rat Central Amygdala Is Disrupted in a Comorbid Model of Post-Traumatic Stress and Alcohol Use Disorder. Cells 2023; 12:1943. [PMID: 37566022 PMCID: PMC10416956 DOI: 10.3390/cells12151943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share dysregulated neuroimmune-related pathways. Here, we used our established rat model of comorbid post-traumatic stress disorder (PTSD)/AUD to characterize the interleukin 18 (IL-18) system in the central amygdala (CeA). Male and female rats underwent novel (NOV) and familiar (FAM) shock stress, or no stress (unstressed controls; CTL) followed by voluntary alcohol drinking and PTSD-related behaviors, then all received renewed alcohol access prior to the experiments. In situ hybridization revealed that the number of CeA positive cells for Il18 mRNA increased, while for Il18bp decreased in both male and female FAM stressed rats versus CTL. No changes were observed in Il18r1 expression across groups. Ex vivo electrophysiology showed that IL-18 reduced GABAA-mediated miniature inhibitory postsynaptic currents (mIPSCs) frequencies in CTL, suggesting reduced CeA GABA release, regardless of sex. Notably, this presynaptic effect of IL-18 was lost in both NOV and FAM males, while it persisted in NOV and FAM females. IL-18 decreased mIPSC amplitude in CTL female rats, suggesting postsynaptic effects. Overall, our results suggest that stress in rats with alcohol access impacts CeA IL-18-system expression and, in sex-related fashion, IL-18's modulatory function at GABA synapses.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Michael Q. Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Shannon D’Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Christopher S. Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| |
Collapse
|
20
|
Chuong V, Farokhnia M, Khom S, Pince CL, Elvig SK, Vlkolinsky R, Marchette RC, Koob GF, Roberto M, Vendruscolo LF, Leggio L. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. JCI Insight 2023; 8:e170671. [PMID: 37192005 PMCID: PMC10371247 DOI: 10.1172/jci.insight.170671] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Growing evidence indicates that the glucagon-like peptide-1 (GLP-1) system is involved in the neurobiology of addictive behaviors, and GLP-1 analogues may be used for the treatment of alcohol use disorder (AUD). Here, we examined the effects of semaglutide, a long-acting GLP-1 analogue, on biobehavioral correlates of alcohol use in rodents. A drinking-in-the-dark procedure was used to test the effects of semaglutide on binge-like drinking in male and female mice. We also tested the effects of semaglutide on binge-like and dependence-induced alcohol drinking in male and female rats, as well as acute effects of semaglutide on spontaneous inhibitory postsynaptic currents (sIPSCs) from central amygdala (CeA) and infralimbic cortex (ILC) neurons. Semaglutide dose-dependently reduced binge-like alcohol drinking in mice; a similar effect was observed on the intake of other caloric/noncaloric solutions. Semaglutide also reduced binge-like and dependence-induced alcohol drinking in rats. Semaglutide increased sIPSC frequency in CeA and ILC neurons from alcohol-naive rats, suggesting enhanced GABA release, but had no overall effect on GABA transmission in alcohol-dependent rats. In conclusion, the GLP-1 analogue semaglutide decreased alcohol intake across different drinking models and species and modulated central GABA neurotransmission, providing support for clinical testing of semaglutide as a potentially novel pharmacotherapy for AUD.
Collapse
Affiliation(s)
- Vicky Chuong
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR), NIH, Baltimore and Bethesda, Maryland, USA
- Neurobiology of Addiction Section, NIDA IRP, NIH, Baltimore, Maryland, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR), NIH, Baltimore and Bethesda, Maryland, USA
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Claire L. Pince
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR), NIH, Baltimore and Bethesda, Maryland, USA
- Neurobiology of Addiction Section, NIDA IRP, NIH, Baltimore, Maryland, USA
| | - Sophie K. Elvig
- Neurobiology of Addiction Section, NIDA IRP, NIH, Baltimore, Maryland, USA
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - George F. Koob
- Neurobiology of Addiction Section, NIDA IRP, NIH, Baltimore, Maryland, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Leandro F. Vendruscolo
- Stress and Addiction Neuroscience Unit, NIDA IRP and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR), NIH, Baltimore and Bethesda, Maryland, USA
| |
Collapse
|
21
|
Athanason A, Nadav T, Cates-Gatto C, Roberts A, Roberto M, Varodayan F. Chronic ethanol alters adrenergic receptor gene expression and produces cognitive deficits in male mice. Neurobiol Stress 2023; 24:100542. [PMID: 37197395 PMCID: PMC10184141 DOI: 10.1016/j.ynstr.2023.100542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Hyperkateifia and stress-induced alcohol cravings drive relapse in individuals with alcohol use disorder (AUD). The brain stress signal norepinephrine (also known as noradrenaline) tightly controls cognitive and affective behavior and was thought to be broadly dysregulated with AUD. The locus coeruleus (LC) is a major source of forebrain norepinephrine, and it was recently discovered that the LC sends distinct projections to addiction-associated regions suggesting that alcohol-induced noradrenergic changes may be more brain region-specific than originally thought. Here we investigated whether ethanol dependence alters adrenergic receptor gene expression in the medial prefrontal cortex (mPFC) and central amgydala (CeA), as these regions mediate the cognitive impairment and negative affective state of ethanol withdrawal. We exposed male C57BL/6J mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and assessed reference memory, anxiety-like behavior and adrenergic receptor transcript levels during 3-6 days of withdrawal. Dependence bidirectionally altered mouse brain α1 and β receptor mRNA levels, potentially leading to reduced mPFC adrenergic signaling and enhanced noradrenergic influence over the CeA. These brain region-specific gene expression changes were accompanied by long-term retention deficits and a shift in search strategy in a modified Barnes maze task, as well as greater spontaneous digging behavior and hyponeophagia. Current clinical studies are evaluating adrenergic compounds as a treatment for AUD-associated hyperkatefia, and our findings can contribute to the refinement of these therapies by increasing understanding of the specific neural systems and symptoms that may be targeted.
Collapse
Affiliation(s)
- A.C. Athanason
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - T. Nadav
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - C. Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - A.J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - M. Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - F.P. Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|